

Lecture Notes in Computer Science 3779
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Hai Jin Daniel Reed Wenbin Jiang (Eds.)

Network and
Parallel Computing

IFIP International Conference, NPC 2005
Beijing, China, November 30 - December 3, 2005
Proceedings

13

Volume Editors

Hai Jin
Huazhong University of Science and Technology
Cluster and Grid Computing Lab
Wuhan 430074, P.R. China
E-mail: hjin@hust.edu.cn

Daniel Reed
University of North Carolina at Chapel Hill
Institute for Renaissance Computing
CB 3175, Sitterson Hall, Chapel Hill, NC 27599-3175, USA
E-mail: dan_reed@unc.edu

Wenbin Jiang
Huazhong University of Science and Technology
Cluster and Grid Computing Lab
Wuhan 430074, P.R. China
E-mail: wenbinjiang@hust.edu.cn

Library of Congress Control Number: 2005935533

CR Subject Classification (1998): C.2, F.2, D.2, H.4, H.5, D.4, K.6

ISSN 0302-9743
ISBN-10 3-540-29810-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29810-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© IFIP International Federation for Information Processing 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11577188 06/3142 5 4 3 2 1 0

Preface

These proceedings contain the papers presented at the 2005 IFIP International
Conference on Network and Parallel Computing (NPC 2005), held in Beijing,
China, between November 30 and December 3, 2005. The goal of the conference
was to establish an international forum for engineers and scientists to present
their ideas and experiences in network and parallel computing.

A total of 320 submissions were received in response to our Call for Papers.
These papers were from the following countries or regions: Australia, Canada,
China, France, Germany, Hong Kong, India, Iran, Italy, Japan, Korea, Luxem-
burg, Nepal, Netherlands, Taiwan, United Arab Emirates, and United States.
Each submission was sent to at least three reviewers. Each paper was judged ac-
cording to its originality, innovation, readability, and relevance to the expected
audience. Based on the reviews received, a total of 68 papers were retained for in-
clusion in the proceedings. Among the 68 papers, 48 were accepted as full papers
for presentation at the conference. We also accepted 20 papers as short papers
for a possible brief presentation at the conference, followed by discussion during
a poster session. Thus, only 21% of the total submissions could be included in
the final program.

The IFIP NPC conference emerged from initial email exchanges between
Kemal Ebcioǧlu, Guojie Li, and Guang R. Gao in the year 2002, with a vision
toward establishing a new, truly international conference for fostering research
and collaboration in parallel computing. We are happy to see that the NPC
conference, with its eminent team of organizers, and its high-quality technical
program, is well on its way to becoming a flagship conference of IFIP.

We wish to thank the contributions of the other members of the Organizing
Committee. We thank the Publicity Chair, Cho-Li Wang, for his hard work to
publicize NPC 2005 under a very tight schedule.

We are deeply grateful to the Program Committee members. The large num-
ber of submissions received and the diversified topics made this review process
a particularly challenging one.

July 2005 Hai Jin
Daniel Reed

Conference Committees

General Co-chairs

Jean-Luc Gaudiot (University of California, Irvine, USA)
Lionel Ni (Hong Kong University of Science and Technology, Hong Kong, China)

Steering Committee Chair

Kemal Ebcioǧlu (IBM T.J. Watson Research Center, USA)

Program Co-chairs

Daniel Reed (University of North Carolina, USA)
Hai Jin (Huazhong University of Science and Technology, China)

Steering Committee Members

Jack Dongarra (University of Tennessee, USA)
Guangrong Gao (University of Delaware, USA)
Jean-Luc Gaudiot (University of California, Irvine, USA)
Guojie Li (Institute of Computing Technology, CAS, China)
Yoichi Muraoka (Waseda University, Japan)
Daniel Reed (University of North Carolina, USA)

Program Committee Members

Ishfaq Ahmad (University of Texas at Arlington, USA)
Makoto Amamiya (Kyushu University, Japan)
David A. Bader (Georgia Institute of Technology, USA)
Luc Bouge (IRISA/ENS Cachan, France)
Pascal Bouvry (University of Luxembourg, Luxembourg)
Wentong Cai (Nanyang Technological University, Singapore)
Jiannong Cao (Hong Kong Polytechnic University, Hong Kong, China)
Xueqi Cheng (Institute of Computing Technology, CAS, China)
Jong-Deok Choi (IBM T. J. Watson Research Center, USA)
Toni Cortes (Universitat Politècnica de Catalunya, Spain)
Chen Ding (University of Rochester, USA)
Jianping Fan (Institute of Computing Technology, CAS, China)
Xiaobing Feng (Institute of Computing Technology, CAS, China)
Guangrong Gao (University of Delaware, USA)

VIII Organization

Minyi Guo (University of Aizu, Japan)
Yanbo Han (Institute of Computing Technology, CAS, China)
Anura Jayasumana (Colorado State Univeristy, USA)
Chris R. Jesshope (Universiteit van Amsterdam, Netherlands)
Jin Suk Kim (University of Seoul, Korea)
Chung-Ta King (National Tsing Hua University, Taiwan, China)
Ricky Kwok (The University of Hong Kong, Hong Kong)
Kuan-Ching Li (Providence University, Taiwan, China)
Chuang Lin (Tsinghua University, China)
Geyong Min (University of Bradford, UK)
Soo-Mook Moon (Seoul National University, Korea)
John Morrison (University College Cork, Ireland)
Yi Pan (Georgia State University, USA)
Wolfgang Rehm (Chemnitz University of Technology , Germany)
Sartaj Sahni (University of Florida, USA)
Simon See (Sun Microsystems Inc., USA)
Selvakennedy Selvadurai (University of Sydney, Australia)
Franciszek Seredynski (Polish Academy of Sciences, Poland)
Hong Shen (Japan Advanced Institute of Science and Technology, Japan)
Xiaowei Shen (IBM T. J. Watson Research Center, USA)
Ninghui Sun (Institute of Computing Technology, CAS, China)
El-Ghazali Talbi (University of Lille, France)
Domenico Talia (University of Calabria, Italy)
David Taniar (Monash University, Australia)
Mitchell D. Theys (University of Illinois at Chicago, USA)
Cho-Li Wang (The University of Hong Kong, Hong Kong)
Weng-Fai Wong (National University of Singapore, Singapore)
Chao-Tung Yang (Tunghai University, Taiwan, China)
Laurence T. Yang (St. Francis Xavier University, Canada)
Qing Yang (University of Rhode Island, USA)
Lixin Zhang (IBM Austin Research Laboratory, USA)
Xiaodong Zhang (The College of William and Mary, USA)
Weimin Zheng (Tsinghua University, China)

Publicity Chair

Cho-Li Wang (The University of Hong Kong, Hong Kong, China)

Publication Chair

Wenbin Jiang (Huazhong University of Science and Technology, China)

Local Arrangements Chair

Wen Gao (Institute of Computing Technology, CAS, China)

Table of Contents

Special Session on Grid and System Software

TeraGrid: A Foundation for US Cyberinfrastructure
Charles E. Catlett . 1

Globus Toolkit Version 4: Software for Service-Oriented Systems
Ian Foster . 2

System Software for China National Grid
Li Zha, Wei Li, Haiyan Yu, Xianghui Xie, Nong Xiao,
Zhiwei Xu . 14

Session 1: Grid Computing

CGSV: An Adaptable Stream-Integrated Grid Monitoring System
Weimin Zheng, Lin Liu, Meizhi Hu, Yongwei Wu, Liangjie Li,
Feng He, Jing Tie . 22

Performance Modeling and Analysis for Resource Scheduling in Data
Grids

Yajuan Li, Chuang Lin, Quanlin Li, Zhiguang Shan 32

Study on π-Calculus Based Equipment Grid Service Chain Model
Yuexuan Wang, Cheng Wu, Ke Xu . 40

A Performance-Based Parallel Loop Self-scheduling on Grid Computing
Environments

Wen-Chung Shih, Chao-Tung Yang, Shian-Shyong Tseng 48

A Resource-Based Server Performance Control for Grid Computing
Systems

Naixue Xiong, Xavier Défago, Yanxiang He, Yan Yang 56

IBP: An Index-Based XML Parser Model
Haihui Zhang, Xingshe Zhou, Yang Gang, Xiaojun Wu 65

A Stochastic Control Model for Hierarchical Grid Service
Zhimin Tian, Liu Li, Yang Yang, Zhengli Zhai 72

X Table of Contents

Service-Based Grid Resource Monitoring with Common Information
Model

Hongyan Mao, Linpeng Huang, Minglu Li . 80

Distributed Gridflow Model and Implementation
Cheng Bo, Qihe Liu, Guowei Yang . 84

Session 2: Peer-to-Peer Computing

A Secure P2P Video Conference System for Enterprise Environments
Fuwen Liu, Hartmut Koenig . 88

Adaptive Query-Caching in Peer-to-Peer Systems
Zuoning Yin, Hai Jin, Chao Zhang, Quan Yuan, Chucheng Zhao . . . 97

Design and Deployment of Locality-Aware Overlay Multicast Protocol
for Live Streaming Services

Xuping Tu, Hai Jin, Dafu Deng, Chao Zhang, Quan Yuan 105

Session 3: Web Techniques

Dynamic Thread Management in Kernel Pipeline Web Server
Shan-Shan Li, Xiang-Ke Liao, Yu-Song Tan, Jin-Yuan Liu 113

QoS Aware Service Composition with Multiple Quality Constraints
Bixin Liu, Quanyuan Wu, Yan Jia, Bin Zhou . 123

Session 4: Cluster Computing

Performance Modelling and Optimization of Memory Access on
Cellular Computer Architecture Cyclops64

Yanwei Niu, Ziang Hu, Kenneth Barner, Guang R. Gao 132

TCP-ABC: From Multiple TCP Connections to Atomic Broadcasting
Zhiyuan Shao, Hai Jin, Wenbin Jiang, Bin Cheng 144

A Parallel File System Based on Spatial Information Object
Keying Huang, Guoqing Li, Dingsheng Liu, Wenyi Zhang 153

Topology-Aware Multi-cluster Architecture Based on Efficient Index
Techniques

Yun He, Qi Zhao, Jianzhong Zhang, Gongyi Wu 163

Table of Contents XI

A Parallel Routing Algorithm on Circulant Networks Employing the
Hamiltonian Circuit Latin Square

Dongkil Tak, Yongeun Bae, Chunkyun Youn, Ilyong Chung 172

An Efficient Load Balancing Algorithm for Cluster System
Chunkyun Youn, Ilyoung Chung . 176

Session 5: Parallel Programming and Environment

A Greedy Algorithm for Capacity-Constrained Surrogate Placement in
CDNs

Yifeng Chen, Yanxiang He, Jiannong Cao, Jie Wu 180

An Improved Scheme of Wavelength Assignment for Parallel FFT
Communication Pattern on a Class of Regular Optical Networks

Yawen Chen, Hong Shen . 189

A Parallel O(n27n/8) Time-Memory-Processor Tradeoff for
Knapsack-Like Problems

Ken-Li Li, Ren-Fa Li, Yang Lei, Yan-Tao Zhou 197

Improving Parallelism of Nested Loops with Non-uniform Dependences
Sam Jin Jeong, Kun Hee Han . 205

A Static Data Dependence Analysis Approach for Software Pipelining
Lin Qiao, Weitong Huang, Zhizhong Tang . 213

A Dynamic Data Dependence Analysis Approach for Software
Pipelining

Lin Qiao, Weitong Huang, Zhizhong Tang . 221

A Parallel and Distributed Method for Computing High Dimensional
MOLAP

Kongfa Hu, Ling Chen, Qi Gu, Bin Li, Yisheng Dong 229

An Improved ACO Algorithm for Multicast Routing
Ziqiang Wang, Dexian Zhang . 238

Performance Modelling of Pipelined Circuit Switching in Torus with
Hot Spot Traffic

F. Safaei, A. Khonsari, M. Fathy, M. Ould-Khaoua 245

An Incremental Compilation Approach for OpenMP Applications
Maurizio Giordano, Mario Mango Furnari . 249

XII Table of Contents

Enhanced Congestion Control Algorithm for High-Speed TCP
Young-Soo Choi, Sung-Hyup Lee, You-Ze Cho . 253

Advanced Software On-Demand Based on Functional Streaming
Jeong Min Shim, Won Young Kim, Wan Choi . 257

Can Out-of-Order Instruction Execution in Multiprocessors Be Made
Sequentially Consistent?

Lisa Higham, Jalal Kawash . 261

Efficiently Passive Monitoring Flow Bandwidth
Zhiping Cai, Jianping Yin, Fang Liu, Xianghui Liu, Shaohe Lv 266

A Heuristic for Scheduling Parallel Programs with Synchronous
Communication Model in the Network Computing Environments

Mingyu Zhao, Tianwen Zhang . 270

A Formal Model for Network Processor Workload
Zhang Xiao Ming, Sun Zhi Gang, Zhang Min Xuan 274

Coping with Data Dependencies of Multi-dimensional Array References
Lin Qiao, Weitong Huang, Zhizhong Tang . 278

Session 6: Network Architecture

QoS-Based Dynamic Channel Allocation for GSM/GPRS Networks
Jun Zheng, Emma Regentova . 285

Distributed Active Measuring Link Bandwidth in IP Networks
Zhiping Cai, Jianping Yin, Fang Liu, Xianghui Liu, Shaohe Lv 295

Preferential Bandwidth Allocation for Short Flows with Active Queue
Management

Heying Zhang, Liu Lu, Liquan Xiao, Wenhua Dou 303

A New Self-tuning Active Queue Management Algorithm Based on
Adaptive Control

Heying Zhang, Baohong Liu, Liquan Xiao, Wenhua Dou 310

Research on Multi-agent System Automated Negotiation Theory and
Model

Weijin Jiang, Yusheng Xu, Ding Hao, Shangyou Zhen 317

Adaptive Congestion Control in ATM Networks
Farzad Habibipour, Mehdi Galily, Masoum Fardis, Ali Yazdian 321

Table of Contents XIII

Session 7: Network Security

Secure Password Pocket for Distributed Web Services
Jae Hyung Koo, Dong Hoon Lee . 327

The Modified DTW Method for On-Line Automatic Signature
Verification

Dong Uk Cho, Young Lae J. Bae, Il Seok Ko . 335

A Secure On-Demand Routing with Distributed Authentication for
Trust-Based Ad Hoc Networks

Meng-Yen Hsieh, Yueh-Min Huang . 343

Probabilistic Packet Filtering Model to Protect Web Server from DDoS
Attacks

Jung-Taek Seo, Cheol-Ho Lee, Jungtae Kim, Taeshik Shon,
Jongsub Moon . 351

An Identity Authentication Protocol for Acknowledgment in IEEE
802.15.4 Network

Joon Heo, Choong Seon Hong . 355

A Design of the Digital Content Distribution System Based on the
Public Key and the Hierarchical Web Caching Structure

Yun Ji Na, Ko Il Seok, Gun Heui Han . 359

Session 8: Network Storage

Cluster-Aware Cache for Network Attached Storage
Bin Cai, Changsheng Xie, Qiang Cao . 363

Design and Implementation of a SAN Agent for Windows NT
Architecture

Ran Meng, Jiwu Shu, Wei Xue . 371

MagicStore: A New Out-of-Band Virtualization System in SAN
Environments

Guangyan Zhang, Jiwu Shu, Wei Xue, Weimin Zheng 379

A Content Delivery Accelerator in Data-Intensive Servers
Joon-Woo Cho, Hyun-Jin Choi, Seung-Ho Lim, Kyu-Ho Park 387

A Systematic Scheme to Resolve QoS Dissatisfaction for Storage Cluster
Young Jin Nam, Chanik Park . 396

XIV Table of Contents

Secure Anonymous Communication with Conditional Traceability
Zhaofeng Ma, Xibin Zhao, Guo Zhi, Gu Ming, Jiaguang Sun 405

Session 9: Multimedia Service

Real-Time Video over Programmable Networked Devices
Tien Pham Van . 409

A New Raid-Disk Placement Method for Interactive Media Server with
an Accurate Bit Count Control

Yo-Won Jeong, Seung-Ho Lim, Kyu-Ho Park . 417

A New Region of Interest Image Coding for Narrowband Network:
Partial Bitplane Alternating Shift

Li-Bao Zhang . 425

Using Route Probing to Derive Link Traffic Load with Edge-Based
Measurements

Guofeng Zhao, Tang Hong, Zhang Yi, Shangyu Gu 433

Scheduling Multicast Traffic in a Combined Input Separate Output
Queued Switch

Ximing Hu, Xingming Zhang, Binqiang Wang, Zhengrong Zhao 441

A QoS-Based Scheduling Mechanism for Overlay Aggregate Traffics
Yunbo Wu, Zhishu Li, Zhihua Chen, Yunhai Wu,
Li Wang, Tun Lu . 449

Session 10: Ubiquitous Computing

Energy Conservation by Peer-to-Peer Relaying in Quasi-Ad Hoc
Networks

Andrew Ka-Ho Leung, Yu-Kwong Kwok . 453

Developing Energy-Efficient Topologies and Routing for Wireless
Sensor Networks

Hui Tian, Hong Shen, Teruo Matsuzawa . 461

The Efficient Transmission Scheme in Wireless Crypto Communication
Jinkeun Hong, Kihong Kim . 470

Constructing k-Connected k-Cover Set in Wireless Sensor Networks
Based on Self-pruning

Jiang Jie, Minghua Han, Guofu Wu, Wenhua Dou 478

Table of Contents XV

GCMPR: Gateway-Centric Multi-path Routing for Internet
Connectivity of Wireless Mobile Ad Hoc Network

Yongqiang Liu, Wei Yan, Yafei Dai . 487

A Semantic and Adaptive Context Model for Ubiquitous Computing
Yunting Tang, Qing Wu . 495

Research of Survival-Time-Based Dynamic Adaptive Replica Allocation
Algorithm in Mobile Ad Hoc Networks

Yijie Wang, Yang Kan . 503

Author Index . 511

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, p. 1, 2005.
© IFIP International Federation for Information Processing 2005

TeraGrid: A Foundation for US Cyberinfrastructure

Charles E. Catlett

Senior Fellow, Computation Institute of Argonne
National Laboratory and University of Chicago

cec@uchicago.edu

Abstract. TeraGrid is a collaboration of partners providing a high-performance,
nationally distributed capability infrastructure for computational science. The
TeraGrid team has utilized multiple surveys of user requirements to develop
five-year roadmaps describing new capabilities and services, organized into
several new initiatives: Deep, Wide, and Open. TeraGrid is managed by the
University of Chicago and includes resources at eight partner sites (Argonne
National Laboratory, Indiana University, National Center for Supercomputing
Applications, Oak Ridge National Laboratory, Pittsburgh Supercomputing
Center, Purdue University, San Diego Supercomputer Center, and Texas
Advanced Computing Center).

TeraGrid Deep aims to assist scientists with applications that require the
combination of multiple leadership class systems- including TeraGrid storage,
computing, instruments, visualization, etc. – working in concert. A team of
roughly 15 staff is providing hands-on assistance to application teams pursuing
TeraGrid Deep projects.

TeraGrid Wide is a set of partnerships with peer Grid projects and prototype
"science gateways" that are aimed at making TeraGrid resources available to,
and tailored to, entire communities of users. Science gateways are driving
policy, process, and technology standards to enable web portals, desktop
applications, campus clusters, and other grid infrastructure projects to
seamlessly use TeraGrid resources. Initial TeraGrid science gateway projects
include community portals and desktop tools supporting life sciences and
biomedicine, high-energy physics, neutron science, astronomy, nanotechnology,
atmospheric and climate sciences, and environmental and emergency decision-
support.

TeraGrid Open involves the rapid evolution of the TeraGrid software and
services toward interoperability with peer Grids and campus resources.
Currently TeraGrid is partnering with the Open Science Grid as well as partners
in Europe (e.g. UK eScience, DEISA) and Asia-Pacific (e.g. Naregi, K*Grid).

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 2 – 13, 2005.
© IFIP International Federation for Information Processing 2005

Globus Toolkit Version 4:
Software for Service-Oriented Systems

Ian Foster

Math & Computer Science Division, Argonne
National Lab, Argonne, IL 60439, U.S.A.

Department of Computer Science, University of Chicago, Chicago, IL 60637, U.S.A.

Abstract. The Globus Toolkit (GT) has been developed since the late 1990s to
support the development of service-oriented distributed computing applications
and infrastructures. Core GT components address, within a common
framework, basic issues relating to security, resource access, resource
management, data movement, resource discovery, and so forth. These
components enable a broader “Globus ecosystem” of tools and components that
build on, or interoperate with, core GT functionality to provide a wide range of
useful application-level functions. These tools have in turn been used to
develop a wide range of both “Grid” infrastructures and distributed
applications. I summarize here the principal characteristics of the latest release,
the Web services-based GT4, which provides significant improvements over
previous releases in terms of robustness, performance, usability, documentation,
standards compliance, and functionality.

1 Introduction

Globus is:

− A community of users and developers who collaborate on the use and development
of open source software, and associated documentation, for distributed computing
and resource federation.

− The software itself—the Globus Toolkit: a set of libraries and programs that
address common problems that occur when building distributed system services
and applications.

− The infrastructure that supports this community—code repositories, email lists,
problem tracking system, and so forth: all accessible at globus.org.

The software itself provides a variety of components and capabilities, including
the following:

− A set of service implementations focused on infrastructure management.
− Tools for building new Web services, in Java, C, and Python.
− A powerful standards-based security infrastructure.
− Both client APIs (in different languages) and command line programs for

accessing these various services and capabilities.

 Globus Toolkit Version 4: Software for Service-Oriented Systems 3

− Detailed documentation on these various components, their interfaces, and how
they can be used to build applications.

These components in turn enable a rich ecosystem of components and tools that
build on, or interoperate with, GT components—and a wide variety of applications in
many domains. From our experiences and the experiences of others in developing and
using these tools and applications, we identify commonly used design patterns or
solutions, knowledge of which can facilitate the construction of new applications.

In this article, I review briefly the current status of Globus, focusing in particular
on those aspects of the GT4 release that should be of interest to those wishing to work
with the software. I provide references to research articles for those desiring more
details on the underlying concepts and mechanisms.

2 Motivation and Concepts

Globus software is designed to enable applications that federate distributed resources,
whether computers, storage, data, services, networks, or sensors. Initially, work on
Globus was motivated by the demands of “virtual organizations” in science. More
recently, commercial applications have become increasingly important. Commerce
and science often, but not always, have similar concerns.

Federation is typically motivated by a need to access resources or services that
cannot easily be replicated locally. For example:

− A scientist (or business analyst) needs to access data located in different databases
across a scientific collaboration (or enterprise).

− A business (or physics community) needs to allocate computing, storage, and
network resources dynamically to support a time-varying e-commerce (or physics
data analysis) workload.

− An engineer needs to design and operate experiments on remote equipment, linking
and comparing numerical and physical simulations.

− An astronomy experiment needs to replicate a terabyte of data a day to partner sites
around the world.

We find that while every application has unique requirements, a small set of
functions frequently recur: for example, we often need to discover available
resources, configure a computing resource to run an application, move data reliably
from one site to another, monitor system components, control who can do what, and
manage user credentials. Good-quality implementations of these functions can reduce
development costs. Furthermore, if these implementations are widely adopted and/or
implement standards, they can enhance interoperability. Globus software addresses
both goals, using an open source model to encourage both contributions and adoption.

GT4 makes extensive use of Web services mechanisms to define its interfaces and
structure its components. Web services provide flexible, extensible, and widely
adopted XML-based mechanisms for describing, discovering, and invoking network
services; in addition, its document-oriented protocols are well suited to the loosely
coupled interactions that many argue are preferable for robust distributed systems.
These mechanisms facilitate the development of service-oriented architectures—

4 I. Foster

systems and applications structured as communicating services, in which service
interfaces are described, operations invoked, access secured, etc., all in uniform ways.

While end-user applications are typically concerned with domain-specific
operations such as pricing a portfolio or analyzing a gene sequence, computing
ultimately requires the manipulation and management of infrastructure: physical
devices such as computers, storage systems, and instrumentation. Thus, GT4 provides
a set of Grid infrastructure services [12] that implement interfaces for managing
computational, storage, and other resources. In many Globus deployments (e.g.,
TeraGrid, Open Science Grid, LHC Computing Grid, China Grid, APgrid), these
services are deployed to support a range of different application communities, each of
which then executes their own application-specific code that relies on those services.

Java Services in Apache Axis
Plus GT Libraries & Handlers

Your
Java

Service

F
ile

 T
ra

ns
fe

r

G
R

A
M

D
el

eg
at

io
n

In
de

x

T
rig

ge
r

R
ep

lic
a

Lo
cn

.

C
om

m
. A

ut
h.

P
re

-W
S

 G
R

A
M

M
yP

ro
xy

D
at

a
A

cc
es

s

T
el

ec
on

tr
ol

G
rid

F
T

P

C Services using
GT Libraries

SERVER

CLIENT

Interoperable
WS-I-compliant

SOAP messaging

Your
Java
Client

Your
C

Client

Your
Python
Client

Your
Java
Client

Your
C

Client

Your
Python
Client

X.509 credentials =
common authentication

Python hosting,
GT Libraries

Your
Python
Service

Your
C

Service

Python
Container

C
Container

…
Java

Container

Fig. 1. GT4 architecture schematic, showing many (but not all) components. Shared boxes
denote GT4 code; white boxes represent user code.

3 Globus Architecture

Figure 1 illustrates various aspects of GT4 architecture. I note first of all the following
three sets of components:

− A set of service implementations (the bottom half of the figure) implement useful
infrastructure services. These services address such concerns as execution
management (GRAM), data access and movement (GridFTP [2], RFT, OGSA-DAI
[4]), replica management (RLS [6], DRS), monitoring and discovery (Index,
Trigger, WebMDS), credential management (MyProxy [16], Delegation,
SimpleCA), and instrument management (GTCP). Most are Java Web services but
some (bottom right) are implemented in other languages and use other protocols.

− Three containers can be used to host user-developed services written in Java,
Python, and C, respectively. These containers provide implementations of security,

 Globus Toolkit Version 4: Software for Service-Oriented Systems 5

management, discovery, state management, and other mechanisms frequently
required when building services. They extend open source service hosting
environments with support for a range of useful Web service (WS) specifications,
including WS Resource Framework (WSRF), WS-Notification, and WS-Security.

− A set of client libraries allow client programs in Java, C, and Python to invoke
operations on both GT4 and user-developed services. In many cases, multiple
interfaces provide different levels of control: for example, in the case of GridFTP,
there is not only a simple command-line client (globus-url-copy) but also control
and data channel libraries for use in programs—and the XIO library allowing for
the integration of alternative transports.

It is important to note that GT4 is more than just a set of useful services. The use of
uniform abstractions and mechanisms means that clients can interact with different
services in similar ways, which facilitates the construction of complex, interoperable
systems and encourages code reuse. This uniformity occurs at several levels:

− WS-I-compliant SOAP messaging among Web services and their clients.
− A common security and messaging infrastructure enables interoperability among

different applications and services.
− A powerful and extensible authorization framework supports a range of different

authorization mechanisms.
− The fact that all containers and most services implement common mechanisms for

state representation, access, and subscription facilitates discovery and monitoring.

4 Globus Software Details: How Do I …?

Figure 2 provides another perspective on GT4 structure, showing the major
components provided for basic runtime (on the right) and then (from left to right)
security, execution management, data management, and information services. I
introduce these components by showing how they are used to perform various tasks.

4.1 How Do I Manage Execution?

Let’s say we want to run a task on a computer, or deploy and manage a service that
provides some capability to a community. In both cases, we need to acquire access to
a computer, configure that computer to meet our needs, stage an executable, initiate
execution of a program, and monitor and manage the resulting computation.

The GT4 Grid Resource Allocation and Management (GRAM) service addresses
these issues, providing a Web services interface for initiating, monitoring, and
managing the execution of arbitrary computations on remote computers. Its interface
allows a client to express such things as the type and quantity of resources desired,
data to be staged to and from the execution site, the executable and its arguments,
credentials to be used, and job persistence requirements. Other operations enable
clients to monitor the status of both the computational resource and individual tasks,
to subscribe to notifications concerning their status, and control a task’s execution.

6 I. Foster

Data MgmtSecurity Common
Runtime

Execution
Mgmt

Info
Services

Grid Resource
Allocation &
Management

Index
Java

RuntimeGridFTP
Credential

Mgmt

Data
Replication

Replica
Location

Community
Authorization

Community
Scheduling
Framework

Python
Runtime

WebMDS

Reliable
File Transfer

Authentication
Authorization Trigger

C
Runtime

Workspace
Management

Data Access
& IntegrationDelegation

Grid
Telecontrol

Protocol

Tech
Preview

Fig. 2. Primary GT4 components (dashed lines represent “tech previews”)

A GRAM service can be used for many different purposes. The following are some
examples:

− The GriPhyN Virtual Data System (VDS), Ninf-G, and Nimrod-G are all tools that
use GRAM interfaces to dispatch (potentially large numbers of) individual tasks to
computational clusters. For example, Rodriguez et al.’s GADU service [17]
routinely uses VDS to dispatch several million BLAST and BLOCKS runs as it
updates its proteomics knowledge base.

− Various applications use GRAM as a service deployment and management service,
using a GRAM request first to start the service and then to control its resource
consumption and provide for restart in the event of resource or service failure.

− The MPICH-G2 implementation [15] of the Message Passing Interface uses
GRAM to coschedule subtasks across multiple computers. Dong et al. [8] have
used MPICH-G2 to conduct a complete simulation of the human arterial tree.

The following execution management components are also provided within GT4 as
“tech previews,” meaning that they are less thoroughly tested than other components
and more likely to change in the future:

− A Workspace Management Service (WMS) provides for the dynamic allocation of
Unix accounts as a simple form of sandbox. (A variant of this service that provides
for the dynamic allocation of virtual machines exists in prototype form.)

− The Grid TeleControl Protocol (GTCP) service is for managing instrumentation; it
has been used for earthquake engineering facilities and microscopes.

4.2 How Do I Access and Move Data?

Globus applications often need to manage, provide access to, and/or integrate large
quantities of data at one or many sites. This “data” problem is broad and complex, and

 Globus Toolkit Version 4: Software for Service-Oriented Systems 7

no single piece of software can “solve” it in any comprehensive sense. However,
several GT4 components implement useful mechanisms that can be used individually
and in conjunction with other components to develop interesting solutions. (A recent
article [3] reports on these tools and on various success stories.)

− The Globus implementation of the GridFTP specification provides libraries and
tools for reliable, secure, high-performance memory-to-memory and disk-to-disk
data movement. It has achieved 27 Gbit/s end-to-end over wide area networks, and
can interoperate with conventional FTP clients and servers. GridFTP provides the
substrate on which are built a wide variety of higher-level tools and applications.

− The Reliable File Transfer (RFT) service provides for the reliable management of
multiple GridFTP transfers. It has been used, for example, to orchestrate the
transfer of one million files from one astronomy archive to another.

− The Replica Location Service (RLS) is a scalable system for maintaining and
providing access to information about the location of replicated files and datasets.
The LIGO experiment uses it to manage more than 40 million file replicas.

− The Data Replication Service (DRS: a tech preview) combines RLS and GridFTP
to provide for the management of data replication.

− The Globus Data Access and Integration (OGSA-DAI) tools developed by the UK
eScience program provides access to relational and XML data.

4.3 How Do I Monitor and Discover Services and Resources?

Monitoring and discovery are two vital functions in a distributed system, particularly
when that system spans multiple locations, as in that context no one person is likely to
have detailed knowledge of all components. Monitoring allows us to detect and
diagnose the many problems that can arise in such contexts, while discovery allows us
to identify resources or services with desired properties. Both tasks require the ability
to collect information from multiple, perhaps distributed, information sources.

In recognition of the importance of these functions, monitoring and discovery
mechanisms are built in to GT4 at a fundamental level, as follows (see Figure 3).

− GT4 provides standardized mechanisms for associating XML-based resource
properties with network entities and for accessing those properties via either pull
(query) or push (subscription). These mechanisms—basically implementations of
the WSRF and WS-Notification specifications—are built into every GT4 service
and container, and can also be incorporated easily into any user-developed service.
Services can be configure to register with their container, and containers with other
containers, thus enabling the creation of hierarchical (or other) organizations.

− GT4 provides two aggregator services that collect recent state information from
registered information sources. As not all information sources support WSRF/WS-
notification interfaces, these aggregators can be configured to collect data from any
information source, whether XML-based or otherwise. The two aggregators
implement a registry (Index) and event-driven data filter (Trigger), respectively.

− GT4 provides a range of browser-based interfaces, command line tools, and Web
service interfaces that allow users to query and access the collected information. In
particular, the WebMDS service can be configured via XSLT transformations to
create specialized views of Index data.

8 I. Foster

GT4 Container

GRAM User

MDS-
Index

GT4 Cont.

RFT

MDS-
Index

GT4 Container

MDS-
Index

GridFTP

adapter

Registration &
WSRF/WSN

Access

Custom protocols
for non-WSRF entities

Clients (e.g., WebMDS)

Automated
registration
in container

WS-
ServiceGroup

Fig. 3. GT4 monitoring and discovery infrastructure

These different mechanisms provide a powerful framework for monitoring diverse
collections of distributed components and for obtaining information about
components for purposes of discovery. For example, the Earth System Grid (ESG) [5]
uses these mechanisms to monitor the status of the various services that it uses to
distribute and provide access to more than 100 TB of climate model data.

4.4 How Do I Control Who Can Do What?

Security concerns are particularly important and challenging when resources and/or
users span multiple locations. A range of players may want to exert control over who
can do what, including the owners of individual resources, the users who initiate
computations, and the “virtual organizations” established to manage resource sharing.
“Exerting control” may include variously enforcing policy and auditing behavior.
When designing mechanisms to address these requirements, we must work not only to
protect communications but also to limit the impact of breakins at end systems. A
complete security “solution” must always be a system that combines components
concerned with establishing identity, applying policy, tracking actions, etc., to meet
specific security goals. GT4 and related tools provide powerful building blocks that
can be used to construct a range of such systems.

At the lowest level, GT4’s highly standards-based security components implement
credential formats and protocols that address message protection, authentication,
delegation, and authorization. As shown in Figure 4, support is provided for (a) WS-
Security-compliant message-level security with X.509 credentials (slow) and (b) with
usernames/passwords (insecure, but WS-I Base Security Profile compliant) and for (c)
transport-level security with X.509 credentials (fast and thus the default).

In GT4’s default configuration, each user and resource is assumed to have a X.509
public key credential. Protocols are implemented that allow two entities to validate
each other’s credentials, to use those credentials to establish a secure channel for

 Globus Toolkit Version 4: Software for Service-Oriented Systems 9

Fig. 4. GT4 security protocols (see text for details). From [19].

purposes of message protection, and to create and transport delegated credentials that
allow a remote component to act on a user’s behalf for a limited period of time.

Authorization call outs associated with GT4 services can be used to determine
whether specific requests should be allowed. In particular, the authorization
framework component allows chains of authorization modules with well-defined
interfaces to be associated with various entities, e.g. services, in the container. It also
provides multiple different authorization module implementations, ranging from
traditional Globus gridmap-based authorization to a module that uses the SAML
protocol to query an external service for an authorization decision.

Supporting tools, some in GT4 and some available from other sources, support the
generation, storage, and retrieval of the credentials that GT4 uses for authentication,
and address related issues concerning group membership, authorization policy
enforcement, and the like. These tools can be configured so that users need never
manage their own X.509 credentials.

4.5 How Do I Build New Services?

A wide range of enabling software is included in GT4 to support the development of
components that implement Web services interfaces. This software deals with such
issues as message handling, resource management, and security, thus allowing the
developer to focus their attention on implementing application logic. GT4 also
packages additional GT4-specific components to provide GT4 Web services
containers for deploying and managing services written in Java, C, and Python. As
illustrated in Figure 5, these containers can host a variety of different services:

− Implementations of basic WS specifications such as WSDL, SOAP, and WS-
Security support services that make use of these specifications to implement basic
Web services functionality.

− Implementations of other specifications, notably WS-Addressing, WSRF, and WS-
Notification, support services that want to expose and manage state associated with
services, back-end resources, or application activities [11]. (For example, GT4

10 I. Foster

GRAM and RFT services use these mechanisms to manage state associated with
tens of thousands of computational activities and file transfers, respectively.)

− The Java container is used to host the various GT4 Java Web services mentioned
earlier, such as GRAM, RFT, DRS, Delegation, Index, and Trigger.

− Enhanced registry and management capabilities, notably the representation of
information about services running in a container as WS-Resources, facilitate the
creation of distributed registries and system monitoring tools.

User ApplicationsUser Applications

Custom
Web

Services
WS-Addressing, WSRF,

WS-Notification

Custom
WSRF Web

Services

GT4
WSRF Web

Services

WSDL, SOAP, WS-Security

User Applications

R
eg

is
tr

y
A

dm
in

is
tr

at
io

n

G
T

4
C

on
ta

in
er

Fig. 5. Capabilities of a GT4 container

In general, the Java container provides the most advanced programming
environment, the C container the highest performance [14], and (Python enthusiasts
would argue) the Python container the nicest language. If developing new services in
Java using GT4, see the tutorial text [18] and its accompanying Web site.

Numerous projects are developing exciting services and applications based on GT4
containers. For example, the Belfast eScience Center has 1.5 million lines of GT4
Java code (converted from GT3, a process that required “relatively few changes in
service code” [13]), implementing a range of applications including a digital video
management system for the BBC, and the China Grid Support Package provides a
rich set of services for eScience and education built on the GT4 Java container.

4.6 How Do I Do More Complicated Things?

GT4 services and libraries do not provide complete solutions to many distributed
computing problems: to do anything more complex than submit a job or move a file,
you must use GT4 software in conjunction with other tools and/or your own code—or
access a (GT-based) service that provides the capabilities that you require [10].

In analyzing how people use Globus software, we find that the same patterns tend
to reoccur across different projects and application domains. Thus, we have launched
an effort to document these solutions [1] and how they can be implemented using
components of the Globus ecosystem.

 Globus Toolkit Version 4: Software for Service-Oriented Systems 11

5 Processes, Results, and Evaluation

The Globus Alliance’s software engineering processes have improved steadily over
the past five years. These improvements have been made possible by both increased
software engineering resources (i.e., dedicated engineers) and more aggressive users
available for further testing. These processes now include:

− Extensive unit test suites and the use of test coverage tools to evaluate coverage.
− Frequent automated execution of build and test suites on more than 20 platforms,

via both local systems and the NMI GRIDS Center’s distributed build/test facility.
− Extensive performance test suites used to evaluate various aspects of component

performance, including latency, throughput, scalability, and reliability.
− A cross-GT documentation plan, managed by a dedicated documentation

specialist, to ensure complete coverage and uniform style for all components.
− A well-defined community testing process, which in the case of GT4 included a

six-month alpha and beta-testing program with close to 200 participants.
− An issue tracking system based on bugzilla, used to track both error reports and

feature requests, and the work associated with those issues.

GT4 performance is summarized in a recent report [9]. This report also provides
pointers to more detailed documentation, including reports on the performance of
different Web services containers, including GT4’s Java, C, and Python [14]; the GT4
implementation of GridFTP [2]; and the GT4 replica location service [7].

The UK eScience program has released an external evaluation of GT4 [13]. This
detailed report speaks favorably of the overall quality, usability, and performance of
the GT4 code and its documentation. It notes, for example, that “GT4 installation was
straightforward,” “GT4 services demonstrated significant improvements in
performance and reliability over their GT3 versions,” and “GT4 package descriptions
were of a high quality, well structured, and accurate.”

6 Contributing

A large and diverse Globus community is working hard to improve the scope and
quality of the Globus software. I hope that you, the reader, will feel inspired to
contribute also. There are several ways in which you can do so.

Use the software and report your experiences. Simply using the software and
reporting back on your experiences, positive or negative, can be immensely helpful.
Reports of problems encountered, particularly when well documented, help guide bug
fixes and/or prioritize work on new features. Reports of successful deployments and
applications can help justify continued support for the development of the software.

Develop documentation and examples. Despite considerable progress, we remain
in desperate need of code examples and associated documentation that can help other
users to start work with Globus software or related tools. Take the time to document
your successful application, and you will be repaid in gratitude from other users.

Contribute to the development of the software. The list of new features wanted by
users is always far greater than Globus developers can handle. You can contribute bug
fixes, test cases, new modules, or even entirely new components.

12 I. Foster

7 Futures

We are entering an exciting time for Globus, due to the confluence of the following
factors:

− The completion of GT4 means that Globus now has a solid Web services base on
which to build additional services and capabilities.

− Sustained funding for eScience support will allow us to accelerate efforts aimed at
meeting demands for ever-greater scalability, functionality, usability, and so forth.

− The creation of organizations dedicated to the support needs of industry means that
commercial adoption (and contributions) will accelerate.

− A rapidly growing user community is increasing the quantity and quality of user
feedback, code contributions, and components within the larger Globus ecosystem.

− Revisions to the Globus infrastructure and governance processes will make it
easier for us to engage additional contributors to the software and documentation.

Acknowledgements

I report here on the work of many talented colleagues and collaborators (see
www.globus.org). The core team is based primarily at Argonne National Lab, U.
Chicago, the USC Information Sciences Institute, U. Edinburgh, the Royal Institute of
Technology, the National Center for Supercomputing Applications, and Univa
Corporation. Many others in both academia and industry have contributed to code,
documentation, and testing, or made our work worthwhile by using the code.

Work on Globus has been supported in part by the Mathematical, Information, and
Computational Sciences Division subprogram of the Office of Advanced Scientific
Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38,
by the National Science Foundation (NSF) under its NSF Middleware Initiative and
other programs, and by IBM, DARPA, NASA, Microsoft, the UK Engineering and
Physical Sciences Research Council and Department of Trade and Industry, and the
Swedish Research Council.

Foster is also co-founder and Chief Open Source Strategist at Univa Corporation.

References

1. Grid Solutions, 2005. www.globus.org/solutions.
2. Allcock, B., Bresnahan, J., Kettimuthu, R., Link, M., Dumitrescu, C., Raicu, I. and Foster,

I., The Globus Striped GridFTP Framework and Server. SC'2005, 2005.
3. Allcock, W., Chervenak, A., Foster, I., Kesselman, C. and Livny, M., Data Grid Tools:

Enabling Science on Big Distributed Data. SciDAC Conference, 2005.
4. Atkinson, M., Chervenak, A., Kunszt, P., Narang, I., Paton, N., Pearson, D., Shoshani, A.

and Watson, P. Data Access, Integration, and Management. The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann, 2004.

5. Bernholdt, D., Bharathi, S., Brown, D., Chanchio, K., Chen, M., Chervenak, A., Cinquini,
L., Drach, B., Foster, I., Fox, P., Garcia, J., Kesselman, C., Markel, R., Middleton, D.,
Nefedova, V., Pouchard, L., Shoshani, A., Sim, A., Strand, G. and Williams, D. The Earth
System Grid: Supporting the Next Generation of Climate Modeling Research. Proceedings
of the IEEE, 93 (3). 485-495. 2005.

 Globus Toolkit Version 4: Software for Service-Oriented Systems 13

6. Chervenak, A., Deelman, E., Foster, I., Guy, L., Hoschek, W., Iamnitchi, A., Kesselman,
C., Kunst, P., Ripenu, M., Schwartzkopf, B., Stockinger, H., Stockinger, K. and Tierney,
B., Giggle: A Framework for Constructing Scalable Replica Location Services. SC'02:
High Performance Networking and Computing, 2002.

7. Chervenak, A.L., Palavalli, N., Bharathi, S., Kesselman, C. and Schwartzkopf, R.,
Performance and Scalability of a Replica Location Service. IEEE International Symposium
on High Performance Distributed Computing, 2004.

8. Dong, S., G, K. and Karonis, N. Cross-site computations on the TeraGrid. Computing in
Science & Engineering, 7 (5). 14-23. 2005.

9. Foster, I. Performance of Globus Toolkit Version 4. Globus Alliance, 2005.
www.globus.org/alliance/publications.

10. Foster, I. Service-Oriented Science. Science, 308. 814-817. 2005.
11. Foster, I., Czajkowski, K., Ferguson, D., Frey, J., Graham, S., Maguire, T., Snelling, D. and

Tuecke, S. Modeling and Managing State in Distributed Systems: The Role of OGSI and
WSRF. Proceedings of the IEEE, 93 (3). 604-612. 2005.

12. Foster, I. and Tuecke, S. Describing the Elephant: The Different Faces of IT as Service.
ACM Queue, 3 (6). 2005.

13. Harmer, T., Stell, A. and McBride, D. UK Engineering Task Force Globus Toolkit Version
4 Middleware Evaluation, UK Technical Report UKeS_2005-03, 2005.

14. Humphrey, M., Wasson, G., Jackson, K., Boverhof, J., Meder, S., Gawor, J., Lang, S.,
Pickles, S., McKeown, M. and Foster, I. A Comparison of WSRF and WS-Notification
Implementations: Globus Toolkit V4, pyGridWare, WSRF:Lite, and WSRF.NET. 14th
International Symposium on High Performance Distributed Computing. 2005.

15. Karonis, N., Toonen, B. and Foster, I. MPICH-G2: A Grid-Enabled Implementation of the
Message Passing Interface. Journal of Parallel and Distributed Computing, 63 (5). 551-
563. 2003.

16. Novotny, J., Tuecke, S. and Welch, V., An Online Credential Repository for the Grid:
MyProxy. 10th IEEE International Symposium on High Performance Distributed
Computing, San Francisco, 2001, IEEE Computer Society Press.

17. Rodriguez, A., Sulakhe, D., Marland, E., Nefedova, V., Maltsev, N., Wilde, M. and Foster,
I., A Grid-Enabled Service for High-Throughput Genome Analysis. Workshop on Case
Studies on Grid Applications, Berlin, Germany, 2004.

18. Sotomayor, B. and Childers, L. Globus Toolkit 4: Programming Java Services. Morgan
Kaufmann, 2005.

19. Welch, V. Globus Toolkit Version 4 Grid Security Infrastructure: A Standards Perspective,
2004. http://www.globus.org/toolkit/docs/4.0/security/GT4-GSI-Overview.pdf.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 14 – 21, 2005.
© IFIP International Federation for Information Processing 2005

System Software for China National Grid

Li Zha1, Wei Li1, Haiyan Yu1, Xianghui Xie2, Nong Xiao3, and Zhiwei Xu1

1 Institute of Computing Technology, Chinese Academy of Sciences,
100080 Beijing, China

2 JiangNan Institute of Computing Technology
3 National University of Defense Technology

Abstract. The China National Grid project developed and deployed a suite of
grid system software called CNGrid Software. This paper presents the features
and implementation of the software suite from the viewpoints of grid system
deployment, grid application developers, grid resource providers, grid system
administrators, and the end users.

1 Introduction

The China National Grid project is a 4-year (2002-2005) R&D project sponsored by
China Ministry of Science and Technology. It aims to constructing a wide-area
national grid [1] environment to enable resource sharing and collaboration over the
Internet, using standards-based components and novel technology developed by this
project. Another main goal is to build up human resources in grid computing.

By August 2005, the CNGrid project has built such an environment, consisting of
eight grid nodes (computing and data centers) spanning six cities in China. The total
computing capability exceeds 20 Tflop/s, provided by domestic HPC systems such as
Dawning 4000A (10 Tflop/s) and Lenovo 6800 (5 Tflop/s), as well as HPC systems
from multinational vendors. Eleven domain-specific application grids are also
running, from fields of scientific research, natural resource and environment,
manufacturing, and the service sector.

A key ingredient of CNGrid is the CNGrid Software suite. It connects all the users
(end users, grid application developers, grid resource providers, grid administrators)
and resources (computing, storage, data, and applications software resources) into a
uniform, coherent CNGrid environment.

The CNGrid Software suite employs a service-oriented architecture. It consists of
three loosely coupled subsystems: the Vega GOS (grid operating system), the
GriShield grid security software, and the GridDaEn data grid software. The current
hosting environment is mainly Apache Tomcat/Axis, while providing connections to
services running on Microsoft Windows platform.

In what follows, we present the main features of the CNGrid Software suite, from
the users’ viewpoints. We focus on showing how the CNGrid Software suite supports
a loosely coupled architecture and dynamic changing nature of grids, while providing
single system image and managed services, in a wide-area distributed environment
wherein resource providers desiring autonomous control.

 System Software for China National Grid 15

2 CNGrid Software from Five Viewpoints

This section presents the salient features of the CNGrid Software suite from the
viewpoints of grid system deployment, grid resource providers, grid system
administrators, grid application developers, and the end users. The CNGrid software
suite is meant to provide a tool set for users to build application grid systems,
according to the users’ business model. Therefore, there could be many alternatives.
We will focus on typical scenarios.

2.1 Deployment

Before the CNGrid Software is deployed, CNGrid is the sum of two types of isolated
resources: grid nodes and application grids. Grid nodes are HPC centers (e.g.,
Shanghai Supercomputing Center) or campus grids (e.g., Tsinghua University campus
grid). An application grid is usually a distributed enterprise application system, such
as the Simulation Grid for aviation/space industry. An application grid could have
multiple intra-enterprise grid nodes. Currently, CNGrid has eight grid nodes and
eleven application grids.

After the CNGrid Software is deployed, these isolated physical resources can be
connected into a virtualized, uniform and coherent national grid environment. The
deployment process usually consists of the following activities: install the CNGrid
Software on grid nodes (typically one copy per grid node), and configure the initial
grid system to create needed grid communities (called agoras). The CNGrid Software
deployment in CNGrid environment is show in Fig.1. The following is a typical
configuration seen by users:

Grid Node 2
(SSC, Shanghai)

Grid Node 3
(NUDT, Changsha)

Grid Node 4
(HKU, HongKong)

Grid Server

Grid
Server

Grid Server

Grid Server

Grid Server
. Router service, Agora service set
 and Grip container service
. System and application level
 services
. Handlers used by grid security
 mechanism
. Grid portal based on Grid Portal
 Engine (optional)

Dedicated Client/
Grid Application Client

Web Browser

Grid Client
. Generic Web Browser
. and/or CNGrid Admin Tools
. and/or CNGrid software API Based
 Grid Application

CNGrid CA

Grid Node 1
(SCCAS, Beijing)

HPC Hosting Env.

Applications
based on

distributed Java
virtual machine

To Other
Grid Nodes

To Other
Grid Nodes

HPC Hosting Env.

Weather
forecast

applications

HPC Hosting Env.

Hydrodynamics
applications

HPC Hosting Env.

Biology
information
applications

IAPCM, USTC and etc.

ICT, XJTU and etc.

Fig. 1. National wide deployment of CNGrid software

16 L. Zha et al.

 A single grid system called CNGrid, with its CA system.
 A CNGrid-wide virtual name space, implemented via a set of grid routers.
 One or more agoras. For instance, we could have an agora for each of the grid

nodes and another “global” agora for CNGrid, giving nine agoras in total.

2.2 Resource Provider

The Effective-Virtual-Physical space model [2] (show in Fig.2.) implements resource
virtualization. This EVP virtualization scheme is compatible with the OGSA 1.0
three-level naming scheme [3]. When a resource provider wants to add a new
resource (or connect an existing resource) to CNGrid, he/she sees a grid-wide virtual
address space and one or more agoras. A resource provider is responsible for two
duties: (1) wrap the resource as a WS-I compliant Web service and connect it into the
virtual name space; (2) register the service with one or more agoras, implying that the
service can be shared by users in this agora according to the specified policies. The
registration process has two aspects: deciding the virtualization mappings and
selecting the access control policies. Let us use an example to illustrate virtualization.

Agora1 Agora2

...
AgoraL

...
V1,2,3

Service Container1 Service Container2 Service ContainerN

...

Effective
Address
Space

Virtual
Address
Space

Phsical
Address
Space

Vm-2,m-1,m

E1 E2,3

P1, 2, 3 P4, 5, 6 Pn-1, n

El-2,l-1,l

Router1 RouterM

Service address naming schemes in CNGrid software 2.0 are as follow:
Physical: http://host_name_or_ip:port_number/suffix
Virtual: vres://router_id:service_id
Effective: eres://agora_name:effective_service_name

Fig. 2. The Effective-Virtual-Physical virtualization scheme in Vega GOS

The traditional approach to run mpiblast job on a machine is: login a frontend
machine by telnet and submit following command to the backend batch system.

mpirun -np nprocess mpiblast -p prog_name -d db_file -i in_file -o out_file

The above command can be wrapped by general purposed batch service or
dedicated one whose interfaces accept this command in a whole or all of the above
parameters independently. Multiple such services can be connected and registered
into virtual and effective name space, and build up one effective service named as
mpiblast service with reduced interfaces. The Parameter Transformer (PT) in Vega
GOS that resides on mappings between effective address and virtual address can
eliminate the inconsistency at service interface level. In mpiblast case, the nprocess,

 System Software for China National Grid 17

prog_name, and db_file parameters in multiple services can be converted to
uniformed ones by separate PT depending on practical situation. As listed below, the
code accessing service can be highly reduced at effective layer.

...
// “mpiblastEAddr” is effective address of mpiblast
// service. The nprocess, prog_name, and db_file
// parameters are encapsulated behind it.
out_file = mpiblastClient(mpiblastEAddr, in_file);
...

2.3 Grid System Administrator

The grid system administrators manage users, resources, and policies via a Web based
GUI tool or interfaces to agoras and grid routers. Each administrator can see one
agora and its associated grid routers. The management functions include the
following:

 Install, configure, and maintain GNGrid Software.
 Add, delete, and change attributes of users.
 Add, delete, and change attributes of resources (especially the EVP mappings

of resources).
 Add, delete, and modify policies.

Currently, only two types of policies are supported. They are resource selection
policies (e.g., random, FIFO) and access control policies.

2.4 Grid Application Developer

The Vega GOS allows grid application developers to see three levels of details: the
effective, the virtual, and the physical levels. Many applications only need to see the
effective level, which makes the following information available:

 An agora (with its specific policies and implied mappings to virtual services).
 All the effective services (resources) available in the agora, including system

level services (e.g., meta file service and file service) and application level
services (e.g., batch service).

 Interfaces to the GPE (Grid Portal Engine), if the developer wants the grid
application to provide a presentation layer based on Web technology.

 Five Vega GOS interfaces to services and agora (see Fig. 4).

For example, a weather forecast and visualization grid application is supposed to
be developed based on CNGrid Software. As the prerequisite, the weather forecast
service and visualization service are developed and registered as effective service in
an agora. The only thing that grid application developer needs to do is to integrate
application logic flow with these two effective services, and, if the end user wants to
submit weather forecast computation and views the graphical results by Web portal,
Web pages (.jsp) constructing this grid application logic are needed. The main pseudo
code is as below.

18 L. Zha et al.

...
// Create a new grip under GPE’s control.
GripClient gc = CreateGripUnderGPE;
// Upload weatherforecast required files to global user
// file space, and get back the global file addresses
// through the grip. The “hotfileEAddr” is the effective
// address of hotfile service.
weather_in_global = Upload(gc, hotfileEAddr,
 weather_in_local);
// Compose the weather forecast job description file.
weather_job_xml = weather_job_req + weather_in_global;
// Submit the job to effective weather forecast service
// by grip, and get back global result file addresses.
weather_out_global = JobSubmit(gc, weatherEAddr,

 weather_job_xml);
...
// Until weather forecast job finished, compose the
// visualization job description file.
viz_job_xml = viz_job_req + weather_out_global;
// Since the visualization input files are already
// existed in global space, directly submit the
// visualization job to effective visualization service,
// and get back the result.
viz_out_global = JobSubmit(gc, vizEAddr, viz_job_xml);
// Download result files in global space to portal side.
viz_out_local = Download(viz_out_global);
// Display the result at portal side.
Display(viz_out_local);
...

2.5 End User

An end user must go through an application/approval process (called user registration)
to become a legitimate CNGrid user. Such a user has a certificate and proxy
certificate (both GNGrid-wide unique), a home agora, and a user-name/password pair
unique within the agora.

Users can log into CNGrid via a common grid portal or a customized client
software (e.g., a Matlab client). When a user logs into CNGrid, he/she actually logs
into an agora (the home agora by default). There he/she can see and utilize all the
effective services (resources) available in the agora, subject to access control policies
applied to this particular user. The most common usage scenario for an end user is to
look for and utilize a pre-deployed application service. However, CNGrid provides
several system level services (utilities) by default:

 A batch job service, which allows jobs to be submitted to the entire CNGrid,
instead of a grid node or an application.

 A hotfile service, to allow location transparent access to files.
 GridDaEn data service, a more full-fledged data service than hotfile.

The hotfile services provide a location transparent file space for the users. Each
user sees a tree of directories and files under a root “/”, with the tree physically
distributed across CNGrid.

 System Software for China National Grid 19

3 Under the Hood

This section describes some implementation details of the CNGrid Software suite.

3.1 Architecture and Hosting Environment

Learned from computer systems [4], the CNGrid Software can be divided into four
layers from bottom up [5]. They are CNGrid hosting environment, core layer, system
layer and application layer (as show in Fig.1).

Currently, the CNGrid Software is hosted by J2SE/Tomcat environment, and can
be easily migrated to other platforms, such as OMII, WSRF, even the .NET platform.

The core layer is something like OS kernel, provides common functionalities
required by grid applications, such as layered service address management, grid user
management and grid process (grip) manipulation. Also, the authentication and
authorization are included in this layer.

The system layer provides a collection of basic libraries to help programmer
developing grid application quickly. The services that shadowed will be gradually
appended into this layer.

The application layer is not constructed by services, but by API provided by
system layer and core layer. Grid portal developer or integrator can be benefited from
Grid Portal Engine by avoiding using system or core layer API directly. GSML (Grid
Service Markup Language) software suite is kind of client side service composition
and collaboration toolkit which implements the GSML specification 1.0 and provides
“on demand” programming environment.

CNGrid
Hosting Env.

Core
Level

Services

Grip Container

Grip Container
Service

Servlet Based Scalable Grid Portal Engine

Grid Apps

Core Libs Core Service APIs, Core Exception Handling, Authentication and Authorization

Java J2SE, J2EE

Tomcat
(Apache)

WebSphere
(IBM)

WebLogic
(BEA) .NET

(Microsoft)

GT4
(Globus)

System and Application Service APIs, System Exception Handling, AC Handling

Batch Service Workflow Service etc.

User Libs

System
Level

Services

App Level
Services

Build-in Utility Collection Extended UtilitiesGrid
Portal

 Application Logic by Web Pages

BioInfo Service

OMII
(e-Science)

User
Customized
Applications

GSML
Browser

/Composer

Extended
System
Services

Information(MetaX)
Services

MetaDB
Service

MetaSys
Service

MetaFile
Service

etc.

CA&
Certificates

 Mgmt. Service

Base Services

Dymaic Deploy Service

System
Monitoring

Service

Logging&
Auditing
Service

File Service
Database
Service

Messaging
Service

Router ServiceService Router

Agora Service Set

Agora Authorization
Authority Service

Agora Service

Agora User
Mgmt. Service

Agora Resource
Mgmt. Service

A
pp

lic
at

io
n

L
ay

er
S

ys
te

m
 L

ay
er

C
or

e
L

ay
er

Fig. 3. Hierarchy of CNGrid Software

20 L. Zha et al.

3.2 Grip, Agora and Router Service

The core layer composed by grip service, agora service set and router service with
wrapped client side API; user authentication and service authorization mechanisms
implemented by Axis handler chains; and the Vega GOS exception handling extends
from the Axis fault which can help the developers accurately locating the service side
exceptions and failures.

Aggregated by grip at runtime, agora service sets and router services implement
the EVP space model. As show in Fig. 4, the grip client offers only five method calls.
Behind these method calls, the grip container service accepts the requests and
forwards the them to the agora service set or router service accordingly. When a grip
created inside a grip container service, it will retain the information of login user and
binding services in grip control block until a close operation is called. During the
lifetime of a grip, user can access it at anytime and anywhere. When user is invoking
the binding service through a grip, the grip will first resolve the virtual address to
physical one, and then invoke the actual service by endpoint. At last, the grip will get
back and cache the result of invocation for subsequent retrieval.

Authentication
create create

close close

Grip Container
Service

Agora Service
Set

System or Application
Level Services

Grip APIs
(Client Side)

Router
Services

�

a. Subject Authentication
b. Permission Authentication
c. AC Handling

User Profile,
Proxy

bind
Effective Addr

Virtual Addr,
Token

bind

gripHandle

invoke
Virtual Addr

Physical Addr

invoke

Operation name, Parameters
Proxy, Token

Result

rIndex

Result
Cachingcrtl

cachedResult

result

succ

Service
Locating

�

crtl
(getResult)

Fig. 4. Sequence diagram of CNGrid Software core

3.3 Security

Inside the CNGrid Software, GriShield is responsible for grid security issues. We
have developed a CA service for certificate management, and have implemented WS-
Security [6] conformed authentication, authorization, message level secure
communication, access control by handler-chains of Axis.

 System Software for China National Grid 21

4 Concluding Remarks

A main goal and feature of the CNGrid Software suite is loose coupling, achieved via
virtualization and service orientation based on WS-I and OGSA standards. The three
main modules, Vega GOS, Grishield security software, and GridDaEn data software
are all loosely coupled, not critically depending on each other. The EVP model
realizes resource (and service) virtualization, thus separate grid applications from
physical resources. It is possible to run an application without changing its code even
when the WSDL definition of a referenced physical service changes (location,
operations, parameters, etc.).

Another feature of CNGrid is single system image. Once a user logs into CNGrid,
he/she can use all available services in a location independent fashion. Furthermore,
this capability is realized by the CNGrid system software, not as an application
solution.

With the help of the Vega GOS core, agora and grip, the CNGrid API is also
virtualized, compared to Web services interface. Application developers only need to
understand the five interface calls provided via grip, with many details (including
security and policy issues) automatically taken care of by the CNGrid software.
Experiences show that it takes about 0.5-2 days to develop/deploy a simple grid
application, including presentation, logic and data.

Acknowledgements

We acknowledge contributions by the CNGrid Software team and its users, especially
Guangwen Yang, Hao Wang, Peixu Li, Mo Hai, Yanzhe Zhang and Honglei Dai. This
work is supported in part by the China Ministry of Science and Technology 863
Program (Grant No. 2002AA104310), the National Natural Science Foundation of
China (Grant No. 69925205), and the China National 973 Program (Grant No.
2003CB317000 and No. 2005CB321807), and Chinese Academy of Sciences
Distinguished Scholars Fund (Grant No. 20014010).

References

[1] I. Foster, C. Kesselman (Eds.), The Grid 2: Blueprint for a New Computing Infrastructure,
Morgan Kaufmann Publishers, San Francisco, 2004.

[2] W. Li, Z. Xu, A Model of Grid Address Space with Applications, Journal of Computer
Research and Development, 2003, Vol. 40, No. 12, pp. 1756-1762.

[3] I. Foster et al (Eds.), The Open Grid Service Architecture 1.0, GGF document, Feb. 2005.
[4] Z. Xu, W. Li, et al., Vega: A Computer Systems Approach to Grid Computing, Journal of

Grid Computing, 2004, Vol.2, Issue 2, pp. 109-120.
[5] L. Zha, W. Li, et al., Service oriented Vega grid system software design and evaluation,

Chinese Journal of Computers, 2005, Vol. 28, No. 4, pp. 495-504.
[6] OASIS, Web Services Security: SOAP Message Security 1.0, http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf, 2004.3

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 22 – 31, 2005.
© IFIP International Federation for Information Processing 2005

CGSV*: An Adaptable Stream-Integrated Grid
Monitoring System

Weimin Zheng1, Lin Liu1, Meizhi Hu1, Yongwei Wu1, Liangjie Li1,
Feng He1, and Jing Tie2

1 Department of Computer Science and Technology,
Tsinghua University, 100084 Beijing, China
{zwm-dcs, wuyw}@tsinghua.edu.cn

{ll99, hmq02, liliangjie99,
 hefeng04}@mails.tsinghua.edu.cn

2 Cluster and Grid Computing Lab,
Huazhong University of Science and Technology,

430074 Wuhan, China
tiejing@gmail.com

Abstract. Grid monitoring is essential for the grid management and
efficiency improvement. ChinaGrid Super Vision (CGSV) is proposed for
ChinaGrid to collect status information of each entity (such as resources,
services, users, jobs, Network), and provide corresponding information data
query and mining services. In this paper, CGSV architecture and its
components are discussed. CGSV is featured by data stream integration and
adaptability to cope with dynamic measurement data and multiform query
requirements. Measurement data can be accessed quickly and easily through
WSRF-compliant services in CGSV. Transfer and control protocols are
brought forward to facilitate data stream querying and runtime producer
configuration in CGSV.

1 Introduction

1.1 ChinaGrid and CGSP

Grid computing has become the trend of distributed computing and Internet
applications. As a problem solving mechanism, the grid supports geographically
scattered communities to form Virtual Organizations [2], in order to achieve sharing
and coordination of heterogeneous resources and to provide a virtual uniform
application interface.

ChinaGrid (China Education and Research Grid) is the largest grid computing
project in China, which is launched by the Ministry of Education (MoE) of China in
2002[1]. ChinaGrid aims to provide the nationwide grid computing platform and
services for research and education purpose among 100 key universities in China.
ChinaGrid Support Platform (CGSP) is developed for this ambitious goal. CGSP

* This work is supported by ChinaGrid project of Ministry of Education of China, Natural

Science Foundation of China under Grant 60373004, 60373005, 90412006, 90412011, and
Nation Key Basic Research Project of China under Grant 2004CB318000.

 CGSV: An Adaptable Stream-Integrated Grid Monitoring System 23

provides a set of tools for ChinaGrid application developers and specific grid platform
constructors. CGSP organizes grid resources in several domains. Each domain has a
complete set of grid components to be able to function relative independently.
ChinaGrid SuperVision (CGSV) is designed and developed based on CGSP and
provides monitoring functions for ChinaGrid.

1.2 Monitor Requirements and CGSV

Grids are large-scale distributed system, featured by dynamic and complex, which
require monitoring system running on to track status information of system resources
(e.g. hardware, network, services) and further to perform analysis and optimization.
Grid monitoring differs from traditional cluster monitoring mainly in that the former
require scalable support for both pull and push data delivery model that may be
distributed across organizations, together with extensibility and self-description
support of data format for interoperability [3].

In ChinaGrid, monitoring system is an essential part to keep such a complex
distributed system efficient. Most CGSP components, including Job Manager, Storage
Manager and Information Center, require a monitoring system to provide system
status information for different purposes. CGSV is then designed for monitoring
ChinaGrid. In addition to common inventory tracking tasks, ChinaGrid also require
CGSV to have scalable support to different types of data request, an efficient
approach of data processing and transmission must be developed. Moreover, CGSV is
also required to be able to dynamically change its monitoring behavior, that is to say,
to change monitor entity metadata.

To cope with the above requirements, CGSV is designed to be an adaptable,
stream-integrated grid monitor system. A transfer and control protocol is designed in
order to efficiently transfer various types of measurement data and perform
modification over producer behavior in a unified way. Re-publishers are stream
oriented, in that they are designed to support predicate-based processing over
measurement data streams and SQL-like stream query interfaces.

1.3 Roadmap

In Section 2, CGSV’s requirements, objective and position in ChinaGrid are
overviewed. In Section 3, basic system architecture is given, followed by the detail
design of system building blocks. Section 4 introduce the stream integration attempts in
CGSV. Finally, Section 5 compares some related works correlated with our design and
implementation, and in Section 6 a conclusion is summarized and future plan is listed.

2 Overview

2.1 Requirements and Objective

The final goal of CGSV is to implement a monitor and management module in
ChinaGrid, which enable users or other grid modules in ChinaGrid to perform
different level of system performance monitoring, analysis and optimization in a

24 W. Zheng et al.

flexible way. Hardware resources, network condition, grid services and job status, the
four main targets of ChinaGrid will be monitored in CGSV.

2.2 CGSV vs CGSP

CGSV will be implemented to be a control tower of ChinaGrid. The function of
CGSV is distinguished from Information Center, but they also rely on each other.
CGSV collects measurement data from hardware, Service Container, Job Manager,
Storage Manager, and provides these data to Information Center. Domain monitoring
services of CGSV acts like other system services in ChinaGrid, which rely on
Information Center’s domain topology information to locate monitoring services
deployed in other domains. CGSV puts emphasis on dynamic monitor information
while Information Center focuses relatively static information.

3 Architecture

CGSV is designed based on the Grid Monitoring Architecture [4] proposed by the
Global Grid Forum. As Fig.1 shown above, CGSV is built up by several components,
which can be divided into 3 layers, that is, collection layer, service layer and
presentation layer. On the collection layer, sensors are deployed for measurement data
collection. Sensor-I is responsible for collecting hardware resource information. Other
sources of information including network condition and dynamic service information
or data generated by other monitor tools are wrapped by an adaptor to unify the data
monitor center, where Domain Registry Service and Monitor Services are deployed. A
Message Gateway Service is provided to alleviate the communication cost of monitor
services since over numbered notification and subscription will disastrously decease

Fig. 1. Basic Architecture of CGSV Module Deployment

 CGSV: An Adaptable Stream-Integrated Grid Monitoring System 25

service performance. The top layer is the presentation layer, where data analysis,
visualization work and management can be performed. Detailed description of sensors,
protocol and stream-integration design will be discussed in the next section.

3.1 Collection Layer

For the purpose of both compactness and runtime controllability, we develop our own
contributed sensors for measurement data collection.

Unlike many existing monitor tools, the most significant characteristic of our
sensor is runtime configurable, which means that the monitor metadata, such as each
metric’s switch, collection frequency and granularity, is able to be changed over
runtime on demand. For example, we demand turning off all the resource monitoring
metrics except CPU load and also lower down the information collecting frequency to
alleviate intrusiveness on some machines with heavy load. For many other monitor
tools, configuration is written in files and is load only at startup; therefore the required
action needs us to login on that computing node, shutdown the tool, change
configuration file and start the tool again. This complicated work is not flexible for
the dynamic environment of the grid, where similar scenarios are envisioned to occur
frequently. In contrast, in CGSV, This action only needs us or grid system
components to send a command according to our protocol. The sensors will then
automatically change their configuration.

Configuration file is also used in our implementation, for initialization and logging
configuration when changes occur. In other words, this file is the real-time hard-disk
backup of sensor configuration, and is read only at startup. The configuration does not
exist in any other materialized form even in memory.

There are 2 main types of sensors called sensor-I and sensor-II in CGSV. The
difference between the 2 types is their function and deployment location in resource
and network monitoring. For corresponding components in GMA, sensor-I is the
actually producer and sensor-II can be treated as re-publisher.

Sensor-I is deployed on computing nodes of clusters and any PC resources. They
are responsible for collecting resource information. Broadcast discovery and data
transmission between Sensor-I are performed via UDP packets with the format
specified in a message protocol.

Sensor-II is deployed on front-end node of clusters and any PC resources. They are
responsible for pulling resource information from sensor-I like data sources (sensor-I
also supports the pushing manner) through UDP messages and processing incoming
data request through TCP massages. Dynamic information of web services are
available through APIs of Service Container, so we can treat the APIs as sensors and
wrap them with an adaptor, so that measurement data can go through a unified path.
In addition, Sensor-II is also responsible for processing control messages and
adjusting behaviors of Sensor-I. Sensor-II can also collect information from other
sensor-like components. All the messages are under the protocol that will be
discussed in 3.2.

Sensor-II can be connected hierarchically, but generally we do not advocate this
method in CGSV for resources are autonomous and independent in ChinaGrid. So
within each domain of ChinaGrid, Sensor-II are deployed flatly and connected to a
single domain monitoring center.

26 W. Zheng et al.

3.2 Transfer and Control Protocol

A message protocol is designed for both measurement data transmission and sensor
control. Inspired by the classical File Transfer Protocol (FTP) [14] and Supermon
project [9], our protocol is a client-server protocol, based on symbolic expressions (or
s-expressions). The underlying transfer protocol varies from UDP to TCP as
described in the above paragraph.

S-expressions originated from LISP as a recursively defined, simple format for
data representation. This format of data has the following features

• Extensibility: the protocol can be extended for new data types and new type of
commands, which allows the system to be capable to evolve.

• Self-descriptive: each measurement data is associated with its metric name and
timestamp, so the packet can be independently interpreted without any other
knowledge, therefore increases the system’s interoperability.

• Compactness: Though the packets are self-descriptive, the format is very compact
comparing with XML. This feature saves network transmission bandwidth and
memory cost for protocol interpretation, thus decrease the intrusiveness to host
systems.

• Architecture independence: This is achieved by plain textual representation, which
facilitates system portability.

Table 1. Five basic packets types implemented in CGSV protocol

Type Packet example Purpose Comments
QUERY (QUERY (get 1.2.3.4 *)) Issue a data query

request for all
measurement data of
host 1.2.3.4

If this IP is a cluster,
all back-end nodes’
information are
returned

DATA (DATA (hostname
1.2.3.4)(timestamp 11
15715626)(OSType 1
10)(CPUNumber 2 10))

Data packet indica-ting
2 monitor items (OS
type and CPU number)
with host IP and collect
time.

metric info tuple is
composed by metric
name, value and time
difference with the
complete timestamp.

SCHEM
A

(SCHEMA (hostname
1.2.3.4)(OSType 1
1500)(CPULoad 0 15))

Schema packet indic-
ating 2 metrics are
supported on host
1.2.3.4 with their
switches and monitor
intervals

Metric schema tuple is
composed by the
name, switch flag and
monitor interval in
seconds

CTRL (CTRL (close 1.2.3.4 4)) Issue a control request
to switch MemFree
metric off on host
1.2.3.4

“4” is predefined
number for MemFree
metric, full metric
name is also accepted.

RESULT (RESULT (1 (get 1.2.3.4
*)))

indicates execution
result (1) of command
“get 1.2.3.4 *”

“1” is predefined error
code for success

For the convenience of protocol parsing, not only data and schema packets, but
also command packets, including query, control and result, are encoded in

 CGSV: An Adaptable Stream-Integrated Grid Monitoring System 27

s-expressions. So within each domain of ChinaGrid, all monitoring messages
transferred are packets in the form of s-expression protocol. This unified data
transmission and control method simplifies the implementation of monitoring
components and naturally makes protocol interpretation and protocol execution
logically separated.

This effort also makes CGSV components loose coupled and easy to collaborate
with other monitor systems. Table 1 lists the basic packet types:

3.3 Service Layer

3.3.1 Registry
In each domain of ChinaGrid, we have a logical domain monitor center, where
registry, archive module and monitor services are deployed.

Registry of CGSV performs 2 tasks. One is for producer/re-publisher registration,
and to provide a lookup service for consumers to locate; the other task is to store
producers’ metric schema for system extension and modification. Since the adaptable
implementation of sensors and protocol allows producers to accept control packets
from any trusted source, the schema held by Registry needs to be synchronized
periodically.

3.3.2 Archive
Archiving is an optional component. It periodically acquires measurement data from
all data sources and stores them as historical information in DBMS. This mechanism
works similar as registry schema synchronization. The different is that archive is
much more costly and storage size increases quickly, so a distributed DBMS is used
to share the loads when the domain grows larger.

3.3.3 Services and Message Gateway
Domain Monitor Services are WSRF-compliant services which are responsible for
providing monitor information and management information interfaces. WSDM
specification [6] has been studied and applied on monitor services for management
issues. Each domain is treated as a WSDM manageability capability.

To alleviate the communication cost of monitor services, a message gateway
service is used only for transmitting request and response between monitor services
and grid users. As a result, data processing and data transmission are separated, and
then service load is distributed.

3.4 Presentation Layer

Visualization work is implemented by http server plus servlet and java applet, to
perform several forms (tables, histograms) of data presentation. Measurement data are
retrieved from monitor services or monitoring service gateway. Users can view the
grid by simply browsing the web pages. GIS (Geographical Information System) is
introduced to locate resources from their geographical location on maps. An open
source toolkit JFreeChart [16] is used for diagram plotting support. Basic Real-time
visualization is implemented for dynamic resource information. To reveal relationship

28 W. Zheng et al.

Fig. 2. Various visualization forms of CGSV implementation

between metrics, diagrams correlated with 2 or more metrics are designed for intuitive
data analysis. Management actions can also be performed through the GUI client.

4 Stream-Orientated Scheme

Data Stream systems have been proven to be suitable for monitoring applications
[12]. Research on data stream management system design and stream query model
have attracted great effort of work and mature formal theory is proposed [11]. In
CGSV, system monitor information is treated as a huge stream, which is composed of
several levels of data streams. CGSV focuses on the stream-like features of monitor
information and behaviors, such as trigger-oriented, real-time requirement. Two
extreme viewpoints are avoided here. One is only to see the grid’s instant status
information, where instant data is not enough in many system usage scenarios such as
failure analysis. The other is to view the grid as a virtual database, which often
requires large storage and schema mapping and translation. This approach is feasible
but often suffers from redundancy storage.

Stream integration in grid monitoring is a compromise of data storage, efficiency
and functional capability. Stream processing should be put close to data source to
distribute load and improve efficiency. For the sake of integration of any kinds of
sensors, CGSV implements data stream on sensor-II, the actually re-publisher.

Fig. 3 shows the stream integration structure of re-publishers. Data streams come
from Measure Data Puller, which pulls monitor information from producers. Data
Stream Queue Manager holds two types of queues. Recent measurement information
is kept in memory as buffer window queues, while outdated information is
materialized in local storage. Since more recent information is usually more important
and more frequently used, this division is reasonable. Both stream queues in memory

 CGSV: An Adaptable Stream-Integrated Grid Monitoring System 29

and local storage form the input stream for processing. Queries coming from protocol
interpreter give the system two input information. Data processing predicates are
processed by Filter Inserter, and then are inserted to Predicate Manager. Predicate
Manager maintains a predicate queue and also a processing plan by combination and
optimization of predicates. Connection information is kept as channel queues. After
processing of input streams, responses are sent to corresponding channel.

Fig. 3. Re-publisher Stream Integration Design

This structure has to coordinate with the proposed message passing protocol, in
order to facilitate query parsing and data response transmission. The underlying
Measure Data puller is a flexible component, which can be modified to combine any
other monitor tools.

Stream query language is a set of SQL-like queries. The support to the language
depends on the implementation of two components of Predicate Manager and Stream
Processing. Single stream processing is supported currently.

5 Related Work

Grid monitoring is not a new issue. There are a large number of mature projects
working on this area, but very few of them have a focus on stream integration for high
efficiency and adaptability is seldom considered either. CGSV benefits from their
efforts, and tries to naturally combine the outstanding features of some monitoring
projects while avoiding their shortcomings. CGSV is made up as an adaptable and
efficient grid monitoring framework based on ChinaGrid.

CGSV’s design uses several monitoring tools and data stream projects as good
references, integrates their features in one framework and also developed its own

30 W. Zheng et al.

features. The feature of sensors’ scalable broadcast discovery at cluster level is
learned from Ganglia project [8]. Message protocol design is enlightened by
Supermon [9]’s kernel mode protocol in the form of s-expression. Stream processing
design is inspired by Aurora [12], a data stream project. Finally, MonALISA [10]’s
intuitive and impressive visualization work, which has a rich set of visualization
forms, has a great impact on CGSV presentation works. Besides, CGSV attempts to
integrate data stream in re-publishers and has adaptable design of runtime configured
sensors and extensible protocols for both data transfer and control.

The first two cluster monitor tools mentioned above has their problems in grid
monitoring context. Ganglia has a registry-free arbitrary architecture with filter-free
aggregation, so it can only be used as basic sensors. However, Ganglia sensors are not
runtime configurable. Supermon uses a statically configured hierarchy of point-to-
point connections which makes it less scalable.

Relational Grid Monitoring Architecture (R-GMA) is a grid monitor system
considered stream integration problems. R-GMA perceives Grid monitoring as a data
integration problem, and extends GMA by choosing the relational data model. They
have performed some research on stream integration and developed basic techniques.
[13] However, they ignore the activity of monitor information, and treat the data
statically as a virtual database thus do not benefit from stream adequately.

6 Conclusion

CGSV is a complete set of grid monitor solution for ChinaGrid. In this paper, we first
introduce the basic CGSV architecture, along with some detail design and
implementation issues on system building blocks. CGSV focused on sensor
controllability, adaptable message protocol and stream integration on re-publishers,
and proposed a flexible mechanism for grid monitoring.

Our future plan of CGSV considers 4 research points.

• Data analysis, which assists decision making, and hence makes the behavior of our
adaptable sensors automatic

• Scalable optimization of data stream model to cope with large number of queries
and predicates.

• Security is also an important issue to be considered. The message protocol needs
security data transfer to restrict access to sensors and re-publishers, and to protect
sensitive measurement data.

• Measurement data precision representation and synchronization.

References

1. Hai, J.: ChinaGrid: Making grid computing a reality. Digital Libraries: International
Collaboration and Cross-Fertilization, Proceedings, Vol. 3334. Springer-Verlag Berlin
(2004) 13-24

2. Foster, I., Kesselman, C., et al.: The anatomy of the grid: Enabling scalable virtual
organizations. International Journal of High Performance Computing Applications, 15(3).
Sage Publications Inc (2001) 200-222

 CGSV: An Adaptable Stream-Integrated Grid Monitoring System 31

3. Zanikolas, S. and Sakellariou, R.: A taxonomy of grid monitoring systems. Future
Generation Computer Systems, 21(1). Elsevier Science Bv (2005) 163-188

4. Tierney, B., Aydt, R., et al: A Grid Monitoring Architecture. GWDPerf-16–3, Global Grid
Forum, August 2002. http://wwwdidc.lbl.gov/GGF-PERF/GMA-WG/papers/GWD-GP-
16-3.pdf

5. Web Service Resource Framework (WSRF): http://www.globus.org/wsrf/
6. OASIS Web Services Distributed Management (WSDM): http://www.oasis-open.org

/committees/tc_home.php?wg_abbrev=wsdm
7. GT Information Services: Monitoring & Discovery System (MDS): http://www.globus.org

/toolkit/mds/
8. Massie, M. L., Chun, B. N., et al.: The ganglia distributed monitoring system: design,

implementation, and experience. Parallel Computing, 30(7). Elsevier Science Bv (2004)
817-840

9. Sottile, M. J. and Minnich, R. G.: Supermon: A High-Speed Cluster Monitoring System.
Proceedings of the IEEE International Conference on Cluster Computing. Washinton D.C.
(2002) 39 IEEE Computer Society

10. Newman, H. B., Legrand, I. C., et al.: MonALISA: A Distributed Monitoring Service
Architecture. Computing in High Energy and Nuclear Physics (CHEP03). La Jolla,
California. (2003)

11. Babcock, B., Babu, S., et al.: Models and issues in data stream systems. Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems. Madison, Wisconsin. (2002) 1-16 ACM Press

12. Carney, D., Cetintemel, U., et al.: Monitoring Streams - A New Class of Data
Management Applications. Proceedings of Very Large Databases (VLDB). HongKong.
(2002)

13. Cooke, A., Gray, A. J. G., et al.: Stream integration techniques for Grid monitoring.
Journal on Data Semantics Ii, Vol. 3360. Springer-Verlag Berlin (2005) 136-175

14. Postel, J., Reynolds, J.: File Transfer Protocol (FTP). Available from http://www.ietf.org
/rfc/rfc959.txt

15. JFreeChart Project: http://www.jfree.org/jfreechart/index.html
16. ChinaGrid Project: http://www.chinagrid.edu.cn

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 32 – 39, 2005.
© IFIP International Federation for Information Processing 2005

Performance Modeling and Analysis
for Resource Scheduling in Data Grids*

Yajuan Li
1
, Chuang Lin

1
, Quanlin Li

2
, and Zhiguang Shan

3

1
Department of Computer Science and Technology, Tsinghua University,

Beijing 100084, China
{yjli, clin}@csnet1.cs.tsinghua.edu.cn

2
 Department of Industrial Engineering, Tsinghua University, Beijing 100084, China

liquanlin@tsinghua.edu.cn
3
 Public Technical Service Department, State Information Center, Beijing 100045, China

shanzg@mx.cei.gov.cn

Abstract. Data Grids normally deal with large data-intensive problems on geo-
graphically distributed resources; yet, most current research on performance
evaluation of resource scheduling in Data Grids is based on simulation tech-
niques, which can only consider a limited range of scenarios. In this paper, we
propose a formal framework via Stochastic Petri Nets to deal with this problem.
Within this framework, we model and analyze the performance of resource
scheduling in Data Grids, allowing for a wide variety of job and data scheduling
algorithms. As a result of our research, we can investigate more scenarios with
multiple input parameters. Moreover, we can evaluate the combined effective-
ness of job and data scheduling algorithms, rather than study them separately.

1 Introduction

A Data Grid [1] connects a collection of computational and data-resources distributed
geographically among multiple sites, and enables users to share these resources. To
use a Data Grid, users typically submit jobs. In order for a job to be executed, two
types of resources are required: computing facilities, data access and storage. The
Grid must make scheduling decisions for each job based on the current state of these
resources. Different job and data scheduling algorithms may bring different perform-
ance for the Data Grid.

Many research works have been done on the performance evaluation of Data Grids,
but most of which use simulation techniques, which can only analyze a limited range
of scenarios. For example, in [2], a special Data Grid simulator, called OptorSim, was
designed to study the complex nature of a typical Grid environment and evaluate
various data replication algorithms; in [3], a simulation work was developed to study

* This work is supported by the National Natural Science Foundation of China (No. 90412012,

60429202, 60372019 and 60373013), NSFC and RGC (No. 60218003), and the National
Grand Fundamental Research 973 Program of China (No.2003CB314804).

 Performance Modeling and Analysis for Resource Scheduling in Data Grids 33

dynamic replication strategies; in [4], a discrete event simulator, called ChicagoSim,
was constructed to evaluate the performance of different combinations of job and data
scheduling algorithms. Furthermore, many related works are based on a single factor
of job or data scheduling. In [2][3][5], performance is analyzed with the assumption
that jobs have been allocated to certain computing elements. While in [6-9], perform-
ance is analyzed with the assumption that data have been accessed. The research to
study the combined effectiveness of job and data scheduling strategies has been
pointed out to be very complex [10].

We propose a formal performance evaluation framework that addresses the above
mentioned issues. Within this framework, we can investigate more scenarios with
multiple input parameters. Moreover, we can evaluate the combined effectiveness of
job and data scheduling algorithms, rather than study them separately.

The rest of the paper is organized as follows. Section 2 describes the general and
extensible scheduling architecture of Data Grids that we use for our modeling and
analysis. Section 3 presents the performance model, while Section 4 analyzes the
performance of the model. We conclude and point to future directions in Section 5.

2 Architecture

Our study is based on a general and extensible Data Grid scheduling architecture,
which is inspired by the work presented in [4], and depicted in figure 1. The logic of
the architecture can be encapsulated in three distinct modules:

- Server. Each server comprises a number of processors and storage. Due to the
heterogeneousness of Grid environments, different server may have a different num-
ber of processors. The processors of a server can only access the local storage.

- Client. Each client submits jobs to schedulers. Then each job can be allocated to
any of the servers and further dispatched to any of the processors of a server. Each job
requires some specific data be available at the local storage before it can be executed.

- Scheduler. It is the core of the system and can be classified into three schedulers:
external scheduler (ES), local scheduler (LS), and data scheduler (DS). (1) External
scheduler. In the system, jobs can be classified depending on their different priority
levels. Each job is submitted to some ES in terms of its priority. Once an ES receives
a job, it immediately makes a decision on which server the job should be assigned to,
according to some scheduling algorithm. It may use the global information, such as
load of each server, and/or location of the data required by a job, as input to its deci-
sions. (2) Local scheduler. When a job is delivered to some server, it is managed by
the local scheduler of that server. The LS determines how to schedule the jobs allo-
cated to it, according to its associated scheduling algorithm. It only uses the local
information, such as load of each local processor, to guide its decisions. (3) Data
scheduler. Each DS is responsible for determining if and from which server to repli-
cate data according to some algorithm. When a job is allocated to some server, the DS
in that server will query whether the data required to run the job is already present at
the local storage. If not, the DS will use the global information, such as the

34 Y. Li et al.

C
li

en
t

C
lie

nt

E
S

C
lie

nt
C

li
en

t

E
S

LS DS

Server

P

Processors Storage

PL L

schedule

request data

DS

Server

P

Storage

PL L

request data
LS

J

J J

D

D

D

D

D D

schedule

Processors

Fig. 1. A Data Grid Scheduling Architecture

availability of the required data in a remote server, and/or the distance between two
servers, toreplicate the required data from some remote server to the local storage,
before the job is executed.

3 SPN Model

To study the performance of resource scheduling in Data Grids, we adopt the model-
ing and analysis method, which allows for the performance evaluation in various
scenarios. We choose the Stochastic Petri Net (SPN) [11] as the base for our study,
since it is a powerful graphical and mathematical tool that is able to handle priori-
tized, concurrent, asynchronous, stochastic and nondeterministic events. In figure 2,
we propose a SPN model of the Data Grid scheduling system.

Suppose there are n classes of jobs, the jobs in each class have the same priority
level. The priority level values range from 1 (the highest priority) to n (the lowest
one). Jobs with priority level i are denoted by ri. In accordance, the clients in the sys-
tem are classified into n categories. Each client in class i submits jobs ri to ESi accord-
ing to a Poisson distribution with the same mean arrival rate.

The system consists of k servers, each of which contains a depository with an infi-
nite capacity for storing data, and may have different compute power. To consider a

general case, we assume that server x comprises xm processors, for 1 x k≤ ≤ , and

each processor provides the exponential distributed service durations with different
mean rates for different priority-level jobs. In each processor, there are n waiting
queues of jobs, each for one priority level and with an infinite capacity. Jobs in the
same waiting queue are managed in FIFO (First-In-First-Out) order. If a job is in the
turn to be scheduled, it can be executed only when the processor is free and its re-
quired data is available. Each processor can provide service for at most one job at any

 Performance Modeling and Analysis for Resource Scheduling in Data Grids 35

time, and the jobs from different waiting queues are selected for service according to
their priorities, i.e., jobs with higher priorities have higher priorities to be executed.

There are n external schedulers, each for one priority level; k local schedulers, each
distributed in one server; and k data schedulers, each for one server.

The meanings of the transitions and the places are described as follows, where
variable i identifies priority level i (1 i n≤ ≤), x and y denote server x (1 x k≤ ≤)

and storage y (1 y k≤ ≤) respectively, j indicates processor j of server x

(1 xj m≤ ≤), z indicates client z (1 iz l≤ ≤).

- Places. if : the external job assigner, which holds jobs ri; ixa : the transmission

link from ESi to server x; ixf : the local job assigner of server x, which holds jobs ri;
x
ijq : the waiting queue, which holds jobs ri in processor j of server x; x

ijw : the running

state of a job ri at processor j of server x; x
jv : the available state of processor j of

server x; x
ijg : the place holding execution results of jobs ri in processor j of server x;

xy
ijsd : the place identifying for the processor j of server x whether the storage y pos-

sesses the data required by jobs ri;
x
ijdm : the logical module of data manager x, which

is responsible for jobs ri on the local processor j; xy
ijtd : the transmission link for data

required by jobs ri, from storage y to processor j of server x; x
ijls : the place holding

data required by jobs ri, that is already allocated to processor j of server x.

- Transitions. izc : the exponential transition representing that client z submits jobs

ri, with mean firing rate iλ ; ixu : the immediate transition denoting that ESi dis-

patches jobs ri to server x, according to some ES algorithm; ixe : the exponential tran-

sition denoting the job transmission from ESi to server x, with mean firing rate ixβ ;
x
ijd : the immediate transition representing that LSx allocates jobs ri to the local proc-

essor j of server x, according to some LS algorithm; x
ijh : the immediate transition

which transfers jobs ri in processor j of server x, from waiting state to execution state;
x
ijs : the exponential transition denoting that processor j of server x runs jobs ri, with

mean firing rate x
ijµ ; xy

ijud : the immediate transition representing that the data moni-

tor of processor j of server x, which collects data information for jobs ri from storage y

once the state of storage y changes; xy
ijrd : the immediate transition representing that

DSx schedules data required by jobs ri, from storage y to processor j, according to

some DS algorithm; xy
ijod : the exponential transition denoting that the data transmis-

sion for jobs ri, from storage y to processor j of server x, with mean firing rate xy
ijδ .

36 Y. Li et al.

�

�

�

M

1
1nw 1

1ns

�

1
1v

M

M

1
11ls1

11dm

1
11w 1

11s1
11d 1

11q 1
11h

11
11rd11

11sd 11
11od

1
11

krd1
11

ksd 1
11

kod

M

�

M

M

1f
11f

kf1

11u

ku1

11e

ke1

11a

ka1

M

M

1

1
nmq

1

1
nmh

1

1
nmw

1

1
nms

1

1
nmd

1

1
nmg

nf
1nf

nkf

1nu

nku

1ne

nke

1na

nka

1
kv

kd11
kq11

kh11
kw11

ks11 11
kg

k
nd 1

k
nq 1

k
nh 1

k
nw 1

k
ns 1 1

k
ng

k

k
mv

1 k

k
md 1 k

k
mq 1 k

k
mh 1 k

k
mw 1 k

k
ms 1 k

k
mg

k

k
nmq

k

k
nmh

k

k
nmw

k

k
nms

k

k
nmd

k

k
nmg

Server 1

Processor 1

Processor 1m

Server k

Processor 1

Processor km

1
11g

1
1ng

M

11c

12c

11lc

M

1nc

2nc

nnlc

11
11td

1
11

ktd

M

1
1
k

nrd

1
1ndm

11
1nrd11

1nsd 11
1nod

1
1nls

1
1
k

nsd
1
1
k

nod

11
1ntd

1
1
k

ntd

11
11ud

1
11

kud

11
1nud

1
1
k

nud

1
1nd 1

1nq 1
1nh

M

1

1
1md

1

1
1mq

1

1
1mh

1

1
1mw

1

1
1ms

1

1
1mg

1

1
1mdm

1

11
1mrd

1

11
1msd

1

11
1mod

1

1
1mls

1

1
1

k
mrd

1

1
1

k
msd

1

1
1

k
mod

1

11
1mud

1

11
1mtd

1

1
1

k
mud

1

1
1

k
mtd

M
1

1
nmdm

1

11
nmrd

1

11
nmsd

1

11
nmod

1

1
nmls

1

1k
nmrd

1

1k
nmsd

1

1k
nmod

1

11
nmud

1

11
nmtd

1

1k
nmud

1

1k
nmtd

M
11
kdm 11

kls

1
11
krd1

11
ksd 1

11
kod

11
kkrd11

kksd 11
kkod

1
11
kud 1

11
ktd

11
kkud 11

kktd

M

1

1
mv

M

1
k
ndm 1

k
nls

1
1

k
nrd1

1
k
nsd 1

1
k
nod

1
kk
nrd1

kk
nsd 1

kk
nod

1
1

k
nud 1

1
k
ntd

1
kk
nud 1

kk
ntd

M
1 k

k
mdm 1 k

k
mls

1
1 k

k
mrd

1 k

kk
mrd

1
1 k

k
msd 1

1 k

k
mod

1 k

kk
msd 1 k

kk
mod

1
1 k

k
mud 1

1 k

k
mtd

1 k

kk
mud 1 k

kk
mtd

M
k

k
nmdm

k

k
nmls

1

k

k
nmrd1

k

k
nmsd 1

k

k
nmod

k

kk
nmrd

k

kk
nmsd

k

kk
nmod

1

k

k
nmud 1

k

k
nmtd

k

kk
nmud

k

kk
nmtd

Fig. 2. A SPN Model of the Data Grid Scheduling System

 Performance Modeling and Analysis for Resource Scheduling in Data Grids 37

4 Performance Evaluation

In SPN models, performance evaluation is based on steady-state probabilities. Since
the model is very large and complicated, we adopt an approximate analysis technique
to reduce the complexity of the model solution, presented as the following steps.

(1) Refinement. To simplify a complicated model into a relatively compact model,
by deleting immediate transitions and transferring the enabling predicates associated
with these immediate transitions to some exponential transitions.

(2) Decomposition. To decompose a model into several sub-models, by using in-
dependence and interdependence relations of the sub-models. A refined sub-model of

the original model is generally described in figure 3, denoted as xy
ijA , which repre-

sents the module that job ri is submitted to processor j of server x, and its required
data is replicated from storage y. The refined complete model is composed of

()
1

k

ii
n k m

=
× × sub-models, which are independent with each other in structure.

The interdependence relation of these sub-models is embodied by the enabling predi-
cates associated with transitions.

(3) Iteration. For each sub-model, import parameters are from other sub-models;
after computed, the solution result is again exported to other sub-models.

xy
ijc xy

ija xy
ije

xy
ijq

xy
ijs

xy
ijodxy

ijtd xy
ijls

Fig. 3. A Refined Sub-Model of the Data Grid Scheduling System

It follows from the steady-state probabilities that system performance measures can
be obtained.

(1) The average throughput for transition t in steady state is:

() [] ()
()

Pr ,
M H t

T t M t Mθ
∈

= × ,

where Pr[M] is the steady-state probability of marking M, (),t Mθ is the firing rate

of transition t in marking M, and H(t) is the subset of reachable markings that enable t.
(2) The average number of tokens for place q in steady state is:

() ()PrN q i M q i= × = .

Following the above, we consider two important metrics of the Data Grid schedul-
ing system: average system throughput and average job completion duration.

(1) Average system throughput:

1

n

i
i

T T
=

= ,

38 Y. Li et al.

where Ti is the throughput for job ri and obtained by

()
1 1 1

xmk k
xy

i ij
x j y

T T s
= = =

= .

(2) Average job completion duration:

1

n

i i
i

JCD T
JCD

T
=

×
= ,

where JCDi is the job completion duration for job ri and acquired by

1

k

i i ix ix i
x

JCD SD PR TD DT
=

= + × + ,

where SDi: the submission duration of job ri from client to ESi, and

()
1 1 1

1
xi mk k

xy
ij

x j y

SD

T c
= = =

= ,

PRix: the probability of job ri being allocated to server x, and

()

()
1 1

1 1 1

x

x

m k
xy
ij

j y
ix mk k

xy
ij

x j y

T s

PR

T s

= =

= = =

= ,

TDix: the transfer duration of job ri from ESi to LSx, and

()

()
1 1

1 1

x

x

m k
xy
ij

j y
ix m k

xy
ij

j y

N a

TD

T e

= =

= =

= ,

DTi: the delay time of job ri for all servers, and

()

()

()

()
1 1 1 1 1 1

1 1 1 1 1 1

x x

x x

m mk k k k
xy xy
ij ij

x j y x j y
i m mk k k k

xy xy
ij ij

x j y x j y

N td N q

DT

T od T s

= = = = = =

= = = = = =

= + .

5 Conclusions and Future Work

In this paper, we construct the SPN model based on a general and extensible schedul-
ing architecture of Data Grids, and further evaluate the system performance. The

 Performance Modeling and Analysis for Resource Scheduling in Data Grids 39

performance metrics considered in this paper include the system throughput and the
job completion duration experienced in system.

In future work, we want to develop an analysis tool to evaluate the performance of
practical Grids. Particularly, this tool is planned to be able to plug in different algo-
rithms for selecting the best server, the best processor, and the best replication. An-
other area for further research is to study the sensitivities with respect to all system
parameters, which will be helpful to come up with more reasonable schemes for sys-
tem designs.

References

1. Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., Tuecke, S.: The Data Grid: To-
wards an Architecture for the Distributed Management and Analysis of Large Scientific
Data Sets. J. Network and Computer Applications Vol. 23. No. 3. (2000) 187-200

2. William, H.B., David, G.C., Luigi, C., Paul, M.A., Kurt, S., Floriano, Z.: Simulation of
Dynamic Grid Replication Strategies in OptorSim. In: Proceedings of the Third Interna-
tional Workshop on Grid Computing. Lecture Notes in Computer Science, Vol. 2536.
Springer-Verlag, London, UK (2002) 46-57

3. Ranganathan, K., Foster, I.: Identifying Dynamic Replication Strategies for a High-
Performance Data Grid. In: Proceedings of the Second International Workshop on Grid
Computing. Lecture Notes in Computer Science, Vol. 2242. Springer-Verlag, London, UK
(2001) 75-86

4. Ranganathan, K., Foster, I.: Simulation Studies of Computation and Data Scheduling Al-
gorithms for Data Grids. Journal of Grid Computing, Vol. 1. No. 1. (2003) 53-62

5. Venugopal, S., Buyya, R., Lyle, J.W.: A Grid Service Broker for Scheduling Distributed
Data-oriented Applications on Global Grids. In: Proceedings of the 2nd Workshop on
Middleware for Grid Computing. ACM Press, USA (2004) 75-80

6. Hamscher, V., Schwiegelshohn, U., Streit, A., Yahyapour, R.: Evaluation of Job-
Scheduling Strategies for Grid Computing. In: Proceedings of the First IEEE/ACM Inter-
national Workshop on Grid Computing. Lecture Notes in Computer Science, Vol. 1971.
Springer-Verlag, London, UK (2000) 191-202

7. James, H.A., Hawick, K.A., Coddington, P.D.: Scheduling Independent Tasks on Meta-
computing Systems. Technical Report DHPC-066. University of Adelaide, Australia
(1999)

8. Shirazi, B.A., Husson, A.R., Kavi, K.M. (eds.): Scheduling and Load Balancing in Parallel
and Distributed Systems. IEEE Computer Society Press (1995)

9. Subramani, V., Kettimuthu, R., Srinivasan, S., Sadayappan, P.: Distributed Job Scheduling
on Computational Grids Using Multiple Simultaneous Requests. In: Proceedings of the
11th IEEE International Symposium on High Performance Distributed Computing. IEEE
Computer Society Press, Los Alamitos (2002) 359-367

10. Desprez, F., Vernois. A.: Simultaneous Scheduling of Replication and Computation for
Data-Intensive Applications on the Grid. Technical Report RR2005-01 (2005)

11. Gianfranco, B.: Introduction to Stochastic Petri Nets. In: Lectures on Formal Methods and
Performance Analysis: first EEF/Euro summer school on trends in computer science.
Springer-Verlag, Berlin Heidelberg New York (2002)

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 40 – 47, 2005.
© IFIP International Federation for Information Processing 2005

Study on -Calculus Based Equipment Grid Service
Chain Model*

Yuexuan Wang, Cheng Wu, and Ke Xu

National CIMS Engineering Research Center, Department of Automation,
Tsinghua University, Beijing 100084, P.R. China
{wangyuexuan, wuc}@tsinghua.edu.cn

Abstract. The development of modern science requires the equipment grid to
provide a scientific collaboration research platform, which can realize remote
collaboration and sharing with the key instruments and equipment in wide
areas. The reliability and high efficiency of a grid service chain model are key
points in creation of a grid equipment system. The -calculus as powerful
process algebra has a specific advantage in modeling and testing the grid
service chain model. This research investigates and improves a theoretical
analysis and algorithm framework for the modeling, correctness checking and
analysis of the -calculus based equipment grid service chain model. It also
studies on the analysis of its logistic structure and flexible modeling for the
equipment grid. It would be beneficial to open up a new space in the theoretical
and applied research on grid technology and formal methodology based on
cross-disciplinary cooperation.

1 Introduction

With the development of scientific research and continuous emergency of cross-
disciplinary research, it's highly necessary to share the related knowledge and various
equipments. However, due to different communication protocols and data formats,
information can not be easily integrated and understood with each other and has
difficulty sharing with the equipment effectively [1].

The emergence and development of grid computing technology provides a
revolutionary way to couple geographically distributed equipment resources and to
solve large-scale resource sharing problems in wide area networks [2][3][4][5][6].
The equipment grid provides an abstraction of equipments, then presents and
publishes their functionalities in the form of grid service to some granularity. Each
service clearly shows its processing flow and value. Any service conforming to the
specification can become an element in a workflow, and any change from one
participant will not affect its cooperative counterpart. In this way, the unified
operation and the cooperative sharing of equipment can be achieved [7][8][9][10].

* This paper is supported by China “211 project” “15” construct project: National Universities

Equipment and Resource Sharing System and China Postdoctoral Science Foundation (No.
2003034155).

 Study on -Calculus Based Equipment Grid Service Chain Model 41

Due to the complexity of wide areas distributed equipment, the equipment grid
systems require high reliability. In order to accomplish a complicated task, equipment
grid application often integrates a large number of grid services and equipment to
conduct its inter-operation according to expected flow. On the other hand, with the
increase of equipment resources and data, users will meet a large, dynamic and
complex decision-making space. It is needed not only to select appropriate equipment
service, but also to assure optimization of interoperation flow. Some of the key
research problems on the equipment grid flow are as follows.

(1) As for the service chain model, how to check the correctness of its logical
structure, such as no deadlock, being reachable to the end of the chain, compatibility
between services, and whether the interaction of grid services meets the requirement
of the pre-defined protocol, and etc.

(2) How to judge that a certain service chain model has the properties to meet the
user’s expectation. For example, whether the model can give the correct responses to
user’s requests, and whether the service in the model can be completed under the
given time constraints or not.

(3) How to evaluate the working performance of a service chain, including the
efficiency, cost and whether it has any space to perform further improvement or not.

(4) How to find a proper theoretical foundation for the modeling of the dynamic
evolution characteristics of the equipment grid environment (service crash, new
service and resource registration, alternative resource search tactics, selection of
multiple optional services etc.) and depict the dynamical interaction and composition
of the service and equipment resource.

Therefore, a complete theory system and related tools are urgently needed to
answer the above questions. It is infeasible to analyze the above problems by simple
manual methods. Firstly, the equipment grid system structure determines the complex
alternative and coupling relations among the massive data, complicate equipment
resources and services. Furthermore, the grid applications have their own complexity.
Take E-science [11] [12] for an instance. The applications of the astronomical
observation grid [13] of the disaster forecast grid [14] [15] are related to thousands of
basic services. An equipment grid service chain model and its checking and
reorganizing based on -calculus are proposed in this paper.

This paper is organized as follows. In Section 2, some related work on grid service
flow models is discussed. The equipment grid architecture and its 4-tuple are
introduced in Section 3. A flexible equipment grid service chain model based on -
calculus is presented in Section 4. In Section 5, a proposal on a layered checking and
analysis system for an equipment grid service chain model is explained. This study is
a precondition for equipment grid service chain optimization. Finally, the conclusions
of this research are presented in Section 6.

2 Related Work

Most existing work in grid service flow area is implementation specific, tailored to a
particular grid application; almost every major grid project or system has its own flow
language. Today, the idea based on services is the key concept of OGSA (Open Grid

42 Y. Wang, C. Wu, and K. Xu

Service Architecture). The OGSI (Open Grid Service Infrastructure) [16] has
extended the WSDL (Web Service Definition Language) based on this idea and a
defined grid service. The Global Grid Forum is working to develop a Web Services
Flow Language (GSFL) that will provide a standard, platform-independent way to
specify a grid services flow [17]. GSFL is an attempt to integrate efforts from the grid
computing, Web services, and workflow areas. With the introduction of the WSRF
(Web Service Resource Framework), the integration of grid computing and Web
services has reached a new level.

The grid service flow management is a necessary phase in most grid systems
including the Gridflow system by the NASA Ames research centre, the Pegasus
system by USC information science association, and the grid workflow system by
ChinaGrid (Education and Scientific Research Grid Project) support platform (CGSP)
[18]. These systems can be grouped into two methods by the view of flow model
validation and analysis. One is the semantic network [19][20] based research method.
It is mainly applied in the Service Composition [21] and related service flow model
analysis. The other benefits from the conventional workflow model validation method
[22] that checks the related logical flow model. However, the above methods are only
subset of the grid service flow model validation method. A completely grid service
flow model validation system should include the application logical validation,
service alternation protocol validation, service behavior and compatibility validation,
and data and resource constraint validation, etc.

The -calculus [23] proposed by Robin Milner is reputed for its powerful
expressiveness. Through its mobility, -calculus realizes the flexible description for
the dynamical evolutionary system including grid systems and performs the
equivalency analysis for alternative system behaviors. Through the mobility of -
calculus, the grid system dynamical properties such as new service register, service
selection broker mechanism and disaster recover can be well described.

The direct support of -calculus to the model checking technology provides good
fundamentals for model analysis and validation. The composition operation defined in

-calculus supports the system structure decomposed and composed from the bottom
to the top a natural and flexible description [24]. It is especially suitable to be used to
depict the different composition and interaction in the grid service and also to model
and optimize equipment grid service chain models.

3 Equipment Grid Service Architecture

The objective of equipment grid is to provide on-demand service according to user
requirement. A user may query for a task which has to be carried out by several grid
service cooperation together. The equipment grid has to find this set of services and
propose a service chain in order to achieve the desired results. The equipment grid can
be regarded as a 4-tuple: },,,{ ∏= MPRUDIG . Where:

U : A set of grid users, including the resource provider and the resource consumer
and tagged oSU Pr and, ConSU respectively. ConSoS UUU UPr= . For there might be some

cases that a consumer is also a resource provider, we can see Φ≠∩ ConSoS UU Pr .

 Study on -Calculus Based Equipment Grid Service Chain Model 43

R : Resources in the system, including equipment resource set D and other
assistant resource set A (such as network, etc.). The reason of dividing the resources
in the system into two parts is that we will emphasize the main entity in the system:
the sharing mechanism of equipment resource research.)},(;{ Pr oSUuTtOpTD ∈∈= , T is

type set of the equipment resources, u is subset of the resource provider, Op denotes
the operation set offered by the t types of equipment resources provided by u .
Following the trend of Service-Oriented Architecture (SOA) architecture, each
sharing operation of each resource will publish a service in the equipment grid
system. Therefore, the equipment resource set D equals the set of operation, that’s to
say)}({ Pr oSUuOpD ∈= .

P : The sharing rule set of the resource set by the resource provider. It can be
described as the following mathematical expression: }/,,{Pr ANnoyesOPUU ConSoS →∗∗ ,

The value will certainly be AN / if a user who does not have the possession right
ANUtopUU /))1,1(,2,1(= , if 1UUI ≠ , as stated above, it shows that 1U does not have the

possession right of the equipment resource belonging to UI .

∏M : The set of the equipment service chain is based on work flow. It expresses the

operation combination mode between the equipments, and it can be a combination of
different functional operations of the same type of equipment or of different ones. So
we can get)},(,{ utOPopopM ∈= +

∏ . ∏M is the key of the research project. It aims to

record thoroughly the equipment service chain through the construct of equipment
operations in the system using a flexible description to provide high layered service.

4 Flexible Equipment Grid Service Chain Model Based on
-Calculus

Based on the equipment grid 4-tuple model proposed in Section 3 and integrated with
OGSI, GSFL and the semantic of -calculus, a brief overview of our meta-model of
the equipment grid service chain is illustrated in Fig. 1.

Fig. 1. Equipment gird service chain meta-model

44 Y. Wang, C. Wu, and K. Xu

In Fig. 1, Activities are the atomic building blocks of a service chain. ServiceNodes
are bounded with the actual existing services that can be used to fulfill certain
functionality of an activity, and it is the Broker’s job to select a ServiceNode from a
set of alternative services to implement an activity.

Consequently, the formal semantics of the above meta-models are captured with -
calculus as a basis for the later process validation and verification. The polyadic
version of -calculus is used here [22] [24], whose syntax is concluded below.

[] φφφφ

τπ

φπ

¬∧==

><=

=
=

yx

yxyx

yyAPQPPPxnewPP

i

n

n

i ii

::

)(::

0|),...,(||||!||.:: 11

(1)

Limited by the length of the paper, part of the -calculus formalization of elements
in Fig. 2 is as follows.

:Activity

0..)(

)..|)((.),(

completecompleteAction

ActoutctrlcompletecompleteActioncompletenewinctrloutctrlinctrlAct

τ=

=

(2)

:,,, JoinMergeForkDecision

. ()
def

ii I
Decision inctrl outctrlτ

=
= (3)

. ()
def

i I iFork inctrl outctrlτ ∈= ∏ (4)

(). .
def

ii I
Merge inctrl outctrlτ

∈
= (5)

(.).
def

ii I
I

Join inctrl ack ack ack outctrlτ
∈

= ∏ 14243
 (6)

:Timer

[] []
(, , ,) . ().

(. . .(|))
Timer inctrl signal timeout outctl inctl signal message

message timeout outctrl Timer message timeout inctrl Timer

=
= + ≠

 (7)

:DataStore

)),().(()(11110 xinStoragexputxnewputStorage
def

=
(8)

1)(.)),...,,().(),...,,(

.).((),...,,,,(

0111121

111

≥++
><=

+++−

+

nputStorageresetxxinStoragexputxxputStorage

xchanchangetxnewxxresetgetputStorage

nnnnn

n

def

nn
(9)

 Study on -Calculus Based Equipment Grid Service Chain Model 45

:Subflow
The composition of all the connection nodes in the corresponding sub service chain

model, with each name ‘ inctrl ’ and ‘ outctrl ’ in the sub-nodes of the sub-flow being
restricted in the scope of the whole composed -process.

5 Equipment Grid Service Chain Model’s Layered Checking and
Analysis System

Model checking techniques are applied to the verification of grid service chain model
based on its formalized results with -calculus as mentioned in the previous sections.
The analysis and checking of an equipment grid chain can be divided into 3 levels:
correctness checking, temporal constraint checking and equivalence analysis.
Correctness checking indicates the logical properties including no deadlock, final state
reachability, etc. Temporal constraint checking indicates temporal properties depicted
by logical formulas using the formal techniques. Equivalence analysis judges whether
there is the same behavior and same property between two models and it forms an
important basis for service replacement, flow optimization and model integration.

Fig. 2. Equipment grid service chain model’s layered checking and analysis system

Applying model checking techniques in the field of grid systems raises new
challenges as opposed to its traditional application domain of hardware design.
Conventional model checking technology often counts on a holistic formal model

46 Y. Wang, C. Wu, and K. Xu

which captures all the states or actions of the system as a whole. However, such a
model for a grid system could be rather complicated. For example, it may involve the
consideration of different system perspectives such as grid resources, security
policies, and etc. Besides, the grid environment is dynamically evolving because of
the life-cycle of grid services and the interactions among them.

Therefore, a layered verification architecture for grid environment based on above
problem is needed as shown in Fig. 2. The layered verification idea includes not only
the usage of model checking technique itself, but also the optimization techniques for
the grid service chain model. The functions of each layer are described as follows.

Application logic verify layer: Confirm application requirement and determine
alternative services that fulfill the corresponding requirement.

Service interaction protocol checking layer: Get service in accord with interaction
protocol among optional services and compose service. In this layer, services are
formalized with typed -calculus and the correctness of the service interaction is thus
ensured by the well-typeness of the composition of typed -calculus processes.

Service behavior checking layer: Check service chain compatibility and integrity
with model checking techniques based on the formal models of -calculus.
Schedulability test can also be carried out when real-time constraints are encountered
with a timed version of original -calculus [25].

Model optimization layer: Replace alternative services with the help of bi-
simulation analysis in -calculus. The purposes of the analysis are: (1) to find a safe
substitution for an existing service in the service chain in case it is crushed; (2) to find
a better service which fulfills the same requirement to replace the existing one.

6 Conclusions and Future Work

Grid system development should be emphasized on service mobility and interaction
among grid services. Its correctness, logicality, compatibility, data property and
related equipment state need to be checked carefully. The -calculus as powerful
formal specification method can be used to describe a grid complex system and its
dynamic property. An equipment grid service chain model’s flexible model and its
layered checking system were developed based on -calculus. By adopting the -
calculus based service chain model, we can create virtual equipments that integrate
equipment resources distributed across a machine room, institution, or the globe. The
study on -calculus based on the equipment grid service chain model provides strict
mathematic foundation. What’s more, it can be compatible with other criteria. It
would be beneficial to open up a new space in the theoretical and applied research on
grid technology and formal methodology based on cross-disciplinary cooperation.

References

1. Jindong Wang, Hai Zhao, Guangjie Han, Jiyong Wang: Research of a SBDM model based
on interoperable computing. Journal of China Institute of Communications. Vol. 25 No. 3
(2004) 84-93

2. Foster I, Kesselman C.: The Grid: Blueprint for a future Computing Infrastructure. USA:
Morgan Kaufmann (1999)

 Study on -Calculus Based Equipment Grid Service Chain Model 47

3. Foster, I., Kesselman, C., et al.: The Anatomy of the grid: Enabling scalable virtual
organizations. International Journal of Supercomputer Applications Vol. 15 No. 3 (2001)
200-222

4. Zhihui Du, Yu Chen, Peng Liu: Grid Computing. Publishing House of Tsinghua
University (2002)

5. Ian Foster, Carl Kesselman. The Grid 2 : Blue print for a New Computing Infrastructure.
USA:Morgan Kaufmann (2003)

6. Hai Jin, Pingpeng Yuan, Ke Shi: Grid Copmuting 2. Publishing House of Electronics
Industry (2004)

7. Yuexuan Wang, Lianchen Liu, Xixiang Hu, Cheng Wu: The Study on Simulation Grid
Technology for Equipment Resource Sharing System. In Proceedings of the 5th World
Congress on Intelligent Control and Automation (2004) 3235-3239

8. Yuexuan Wang, Cheng Wu, Xixiang Hu, Lianchen Liu: The Study of Equipment Grid
Based on Simulation Modeling. Computer Integrated Manufacturing Systems (2004)
10(9): 1031-1035

9. Yuexuan Wang, Lianchen Liu, Cheng Wu: Research on equipment resource scheduling in
grids. The Third International Conference on Grid and Cooperative Computing (GCC
2004). Wuhan, China (2004) 927-930

10. Yuexuan Wang, Lianchen Liu, Cheng Wu: Research on Equipment Grid Platform for
Resource Sharing. World Engineers Convention (WEC) Shanghai (2004) 148-151

11. Hey, A., and Trefethen, A. The UK e-Science Core Programme and the Grid. Future
Generation Computer, Vol. 18 No. 8(2002) 1017-1031

12. Hey, A., Trefethen A.: The data deluge: An e-science perspective in Grid Computing:
Making the Global Infrastructure a Reality. Wiley, New York (2003)

13. Yolanda, G., Ewa, D., et al.: Artificial Intelligence and Grids: Workflow Planning and
Beyond. IEEE Intelligent Systems (2004) 19 (1): 26-33

14. Foster, I., Kesselman, C., et al.: The Philosophy of the Grid: An Open Grid Service
Architecture for Distributed Systems. Global Grid Forum (2002)

15. Foster, I., Gannon, D., et al. : Open Grid Services Architecture Use Cases Version 1.0.
Global Grid Forum public documents (GFD-I.029) (2004)

16. Tuecke, S., Czajkowski, K., et al.: Open Grid Services Infrastructure (OGSI) Version 1.0.
Grid Forum public documents (GFD-I.015) (2003)

17. Sriram, K.; Patrick W.; et al. GSFL: A Workflow Framework for Grid Services. (2002)
http://wwwunix.globus.org/cog/papers/gsfl-paper.pdf

18. ChinaGrid project: http://www.chinagrid.edu.cn.
19. Davies, N. J., Fensel, D. et al.: The future of Web Services. BT Technology Journal, Vol.

22, No.1 (2004) 118-130
20. Ding, Y.: A review of ontologies with the Semantic Web in view, Journal of Information

Science, Vol. 27 No. 6 (2001) 377-384
21. Kouadri, M. S., Hirsbrunner, B.: Towards a Context-Based Service Composition

Framework, Proceedings of the International Conference on Web Services (2003) 42-45
22. Van der Aalst: Verification of workflow nets. Lecture Notes in Computer Science (1997)

1248: 407
23. Milner, R.: Communicating and Mobile Systems: the -calculus. Cambridge University

Press (1999)
24. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
25. Ke Xu., Lianchen Liu, Cheng Wu: Time Pi Calculus and Weak-timed Bisimulation

Analysis. Compter Integrated Manufacturinig System. In press

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 48 – 55, 2005.
© IFIP International Federation for Information Processing 2005

A Performance-Based Parallel Loop Self-scheduling
 on Grid Computing Environments

Wen-Chung Shih1, Chao-Tung Yang2,*, and Shian-Shyong Tseng1,3

1 Department of Computer and Information Science, National Chiao Tung University,
Hsinchu 300, Taiwan, R.O.C.

{gis90805, sstseng}@cis.nctu.edu.tw
2 High-Performance Computing Laboratory,

Department of Computer Science and Information Engineering,
Tunghai University,

Taichung 407, Taiwan, R.O.C.
ctyang@thu.edu.tw

3 Department of Information Science and Applications,
Asia University,

Taichung 413, Taiwan, R.O.C.
sstseng@asia.edu.tw

Abstract. Efficient loop scheduling on parallel and distributed systems depends
mostly on load balancing, especially on heterogeneous PC-based cluster and
grid computing environments. In this paper, a general approach, named
Performance-Based Parallel Loop Self-Scheduling (PPLSS), was given to
partition workload according to performance of grid nodes. This approach was
applied to three types of application programs, which were executed on a
testbed grid. Experimental results showed that our approach could execute
efficiently for most scheduling parameters when estimation of node
performance was accurate.

Keywords: Parallel loops, Loop scheduling, Self-scheduling, Grid computing,
Globus, MPI.

1 Introduction

A promising approach to parallel computing is grid computing, which utilizes
heterogeneous computers through the Internet to compute [2, 5, 6]. Traditional
schemes for parallel loop scheduling include static scheduling and dynamic
scheduling [8]. While the former might incur load imbalancing on heterogeneous
environments, the latter has not been investigated thoroughly on grid environments.

Self-scheduling is a major class of dynamic loop scheduling schemes. Well-known
self-scheduling schemes include Pure Self-Scheduling (PSS), Chunk Self-Scheduling
(CSS), Guided Self-Scheduling (GSS) [9], Factoring Self-Scheduling (FSS) [7], and
Trapezoid Self-Scheduling (TSS) [10]. These schemes partition work load according
to a simple formula, not considering performance of processors.

* Corresponding author.

 A Performance-Based Parallel Loop Self-scheduling 49

In [11], a method (self-scheduling) is proposed to improve well-known self-
scheduling schemes. Although this scheme partition work load according to CPU
clock speed of processors, CPU could not completely represent performance of
processors. In [12], an approach is proposed to adjust scheduling parameter, but
performance is still estimated only by CPU speed. In [4], a class of self-scheduling
schemes is extended to heterogeneous distributed systems.

In this paper, we address the performance estimation issue in parallel loop
scheduling, and propose a general approach called Performance-Based Parallel Loop
Self-Scheduling (PPLSS). This approach estimates the performance ratio of each node
to partition loop iterations. For verification, this approach is applied to three types of
application programs.

We organize the rest of this paper as follows. Section 2 describes the background
about parallel loop self-scheduling schemes. Next, our approach is presented in
section 3. In section 4, our system configuration is specified and experimental results
on three application programs are also reported. Finally, the conclusion is given in the
last section.

2 Background

In this section, related work on self-scheduling schemes is described. First, we review
several well-known self-scheduling schemes. Next, two recently proposed schemes
are introduced.

2.1 Well-Known Self-scheduling Schemes

Traditional self-scheduling schemes operate in common. At each step, the master
assigns some amount of loop iterations to an idle slave. These schemes differ in the way
how the master computes the amount to next idle slave. The well-known schemes
include PSS, CSS, GSS, FSS and TSS. Table 1 shows the different chunk sizes for a
problem with the number of iteration N=1536 and the number of processor p=4.

Table 1. Sample partition size

Scheme Sample partition size
PSS 1, 1, 1, 1, 1, 1, 1, 1, 1, …
CSS(125) 125, 125, 125, 125, 125, 125, 125, 125, 125, …
FSS 192, 192, 192, 192, 96, 96, 96, 96, 48, …
GSS 384, 288, 216, 162, 122, 91, 69, 51, 39, …
TSS 192, 180, 168, 156, 144, 132, 120, 108, 96, …

2.2 Schemes for Cluster and Grid Environments

In [11], the authors revise known loop self-scheduling schemes for extremely
heterogeneous PC-cluster environments. The algorithm is divided into two phases. In
phase one, % of workload is partitioned according to CPU clock of processors. Then,
the rest of workload is scheduled according to some well-known selfscheduling in the
second phase.

50 W.-C. Shih, C.-T. Yang, and S.-S. Tseng

In [3, 12], a new scheme for heterogeneous grid computing environments is
proposed. This scheme is still a two-phased approach. However, it can adjust the
scheduling parameter according to the relative heterogeneity of the environment.

3 Performance-Based Parallel Loop Self-scheduling (PPLSS)

In this section, the concept of performance estimation is presented first. After that, the
algorithm of our approach is described.

3.1 Performance Estimation

We propose to estimate performance of each grid node, and assign work load to each
node accordingly. In this paper, our performance function (PF) for node j is defined as

PFj =

∈∀

×

Snode
i

j

i

T

T
w

1

1

(1)

where

− S is the set of all grid nodes.
− Ti is the execution time (sec.) of node i for some application program, such as

matrix multiplication.
− w is the weight of this term.

The performance ratio (PR) is defined to be the ratio of all performance functions.
For instance, assume the PF of three nodes are 1/2, 1/3 and 1/4. Then, the PR is 1/2 :
1/3 : 1/4; i.e., the PR of the three nodes is 6 : 4 : 3. In other words, if there are 13 loop
iterations, 6 iterations will be assigned to the first node, 4 iterations will be assigned
to the second node, and 3 iterations will be assigned to the last one.

3.2 Algorithm

The algorithm of our approach is modified from [11], and master program and slave
program are listed as follows.

Module MASTER
Gather performance ratio of all slave nodes
r = 0;
for (i = 1; i < number_of_slaves; i++) {
 partition % of loop iterations according to the
performance ratio;
 send data to slave nodes;
 r++;
}
Partition (100-)% of loop iterations into the task
queue using some known self-scheduling scheme
Probe for returned results
Do {

 A Performance-Based Parallel Loop Self-scheduling 51

 Distinguish source and receive returned data
 If the task queue is not empty then
 Send another data to the idle slave
 r -- ;
 else
 send TAG = 0 to the idle slave
} while (r > 0)
END MASTER

Module SLAVE
Probe if some data in
While (TAG > 0) {
 Receive initial solution and size of subtask
work and compute to fine solution
 Send the result to the master
 Probe if some data in
}
END SLAVE

4 Experimental Results

In this section, our grid configuration is presented. Then, experimental results for
matrix multiplication, Mandelbrot and circuit satisfiability are shown respectively.

4.1 Grid Environments

The testbed grid includes three clusters which are located in three universities
respectively. Cluster 1, located in Providence University, has five nodes. One of the
nodes is designated as the master node. Cluster 2, located in Hsiuping Institute of
Technology, has four nodes. Cluster 3, located in Tunghai University, also has four
nodes. We use the following middleware to build the grid:

• Globus Toolkit 3.0.2
• Mpich library 1.2.6

For readability of experimental results, the naming of our implementation is listed
in Table 2.

Table 2. Description of our implementation for all programs

AP Name Description
G(F, T)SS Dynamic scheduling G(F, T)SS
NG(F, T)SS Fixed scheduling + G(F, T)SS

Matrix Multiplication,
Mandelbrot, and
Circuit Satisfiability PG(F, T)SS Our scheduling + G(F, T)SS

4.2 Application 1: Matrix Multiplication

The matrix multiplication is a fundamental operation in many applications. In this
subsection, we investigate how scheduling parameters influence performance. In the
experiment as shown in Fig. 1(a), we find NGSS get best performance when = 50.

52 W.-C. Shih, C.-T. Yang, and S.-S. Tseng

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 100

Alpha Value (%)

T
im

e
(s

)

NGSS

PGSS

0

20

40

60

80

100

120

140

160

512 * 512 1024 * 1024 1536 * 1536

Matrix Size

T
im

e
(s

) GSS

NGSS

PGSS

Fig. 1. (a)Execution time for different alpha values (b) Execution Time of Matrix Multip-
lication with GSS

Therefore, this value is adopted for the next experiment. Fig. 1(b) illustrates the result
for = 50. Although both NGSS and our PGSS seem to perform well the same, PGSS
is not restricted by the selection of value. In other words, PGSS is more robust.

Fig. 2(a) illustrates the result for = 30. Although FSS, NFSS and our PFSS seem
to perform well the same, PFSS is not restricted by the selection of value. In other
words, PFSS is more robust. Fig. 2(b) illustrates the result for = 30. Although TSS,
NTSS and our PTSS seem to perform well the same, PTSS is not restricted by the
selection of value. In other words, PTSS is more robust.

0

10

20

30

40

50

60

70

80

512 * 512 1024 * 1024 1536 * 1536

Matrix Size

Ti
m

e
(s

) FSS

NFSS

PFSS

0

10

20

30

40

50

60

70

80

90

100

512 * 512 1024 * 1024 1536 * 1536

Matrix Size

Ti
m

e
(s

) TSS

NTSS

PTSS

Fig. 2. (a) Execution Time of Matrix Multiplication with FSS (b) Execution Time of Matrix
Multiplication with TSS

For application of Matrix Multiplication, experimental results show that our
performance-based approach is efficient and robust.

4.3 Application 2: Mandelbrot

The Mandelbrot set is a problem involving the same computation on different data
points which have different convergence rates [1]. In this subsection, we investigate
how scheduling parameters influence performance. In the experiment as shown in Fig.
3(a), we find NGSS get best performance when = 50. Therefore, this value is
adopted for the next experiment. Fig. 3(b) illustrates the result for = 50. Although
both NGSS and our PGSS seem to perform well the same, PGSS is not restricted by
the selection of value. In other words, PGSS is more robust.

 A Performance-Based Parallel Loop Self-scheduling 53

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100

Alpha Value (%)

T
im

e
(s

)

NGSS

PGSS

0

10

20

30

40

50

60

70

80

128 * 128 256 * 256 384 * 384

Image Size

T
im

e
(s

) GSS

NGSS

PGSS

Fig. 3. (a)Execution time for different alpha values (b) Execution Time of Mandelbrot with
GSS

Fig. 4(a) illustrates the result for = 50. Although FSS, NFSS and our PFSS seem
to perform well the same, PFSS is not restricted by the selection of value. In other
words, PFSS is more robust. Fig. 4(b) illustrates the result for = 50. Although TSS,
NTSS and our PTSS seem to perform well the same, PTSS is not restricted by the
selection of value. In other words, PTSS is more robust.

0

5

10

15

20

25

30

35

40

45

50

128 * 128 256 * 256 384 * 384

Image Size

T
im

e
(s

) FSS

NFSS

PFSS

0

10

20

30

40

50

60

128 * 128 256 * 256 384 * 384

Image Size

T
im

e
(s

) TSS

NTSS

PTSS

Fig. 4. (a) Execution Time of Mandelbrot with FSS (b) Execution Time of Mandelbrot with
TSS

For application of the Mandelbrot set, experimental results show that our
performance-based approach is efficient and robust.

4.4 Application 3: Circuit Satisfiability

The circuit satisfiability problem is one involving a combinational circuit composed
of AND, OR, and NOT gates. In this subsection, we investigate how scheduling
parameters influence performance. In the experiment as shown in Fig. 5(a), we find
NGSS get best performance when = 50. Therefore, this value is adopted for the next
experiment. Fig. 5(b) illustrates the result for = 50. Although both NGSS and our
PGSS seem to perform well the same, PGSS is not restricted by the selection of
value. In other words, PGSS is more robust.

54 W.-C. Shih, C.-T. Yang, and S.-S. Tseng

0
10
20
30
40
50
60
70
80

0 10 20 30 40 50 60 70 80 90 100

Alpha Value (%)

T
im

e
(s

)

NGSS

PGSS

0

20

40

60

80

100

120

140

160

15 16 17

����������	
��
���

T
im

e
(s

) GSS

NGSS

PGSS

Fig. 5. (a)Execution time for different alpha values (b) Execution Time of Circuit Satisfiability
with GSS

Fig. 6(a) illustrates the result for = 50. Although FSS, NFSS and our PFSS seem
to perform well the same, PFSS is not restricted by the selection of values. In other
words, PFSS is more robust. Fig. 6(b) illustrates the result for = 50. Although TSS,
NTSS and our PTSS seem to perform well the same, PTSS is not restricted by the
selection of value. In other words, PTSS is more robust.

0

20

40

60

80

100

120

15 16 17

����������	
��
���

Ti
m

e
(s

) FSS

NFSS

PFSS

0

20

40

60

80

100

120

15 16 17

����������	
��
���

T
im

e
(s

) TSS

NTSS

PTSS

Fig. 6. (a) Execution Time of Circuit Satisfiability with FSS (b) Execution Time of Circuit
Satisfiability with TSS

For application of the Circuit Satisfiability problem, experimental results show that
our performance-based approach is efficient and robust.

5 Conclusions and Future Work

We have proposed a performance-based parallel loop self-scheduling (PPLSS)
approach, which partitions work load according to performance ratio of grid nodes. It
has been compared with previous algorithms by experiments on three types of
application programs. In each case, our approach can obtain performance
improvement on previous schemes. Besides, our approach is less sensitive to� values
than previous schemes; in other words, it is more robust. In our future work, we will
implement more types of application programs to verify our approach. Furthermore,
we hope to find better ways of modeling the performance function, incorporating
network information.

 A Performance-Based Parallel Loop Self-scheduling 55

References

1. Introduction To The Mandelbrot Set, http://www.ddewey.net/mandelbrot/
2. What Is Grid Computing, http://www-1.ibm.com/grid/about_grid/what_is.shtml/
3. Kuan-Wei Cheng, Chao-Tung Yang, Chuan-Lin Lai, and Shun-Chyi Chang, “A Parallel

Loop Self-Scheduling on Grid Computing Environments,” Proceedings of the 2004 IEEE
International Symposium on Parallel Architectures, Algorithms and Networks, pp. 409-
414, KH, China, May 2004.

4. A. T. Chronopoulos, R. Andonie, M. Benche and D.Grosu, “A Class of Loop Self-
Scheduling for Heterogeneous Clusters,” Proceedings of the 2001 IEEE International
Conference on Cluster Computing, pp. 282-291, 2001.

5. K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, “Grid Information Services for
Distributed Resource Sharing,” Proceedings of the 10th IEEE International Symposium on
High-Performance Distributed Computing (HPDC-10), pp. 181-194, August 2001.

6. I. Foster, “The Grid: A New Infrastructure for 21st Century Science,” Physics Today,
55(2):42-47, 2002.

7. S. F. Hummel, E. Schonberg, and L. E. Flynn, “Factoring: a method scheme for
scheduling parallel loops,” Communications of the ACM, vol. 35, 1992, pp. 90-101.

8. H. Li, S. Tandri, M. Stumm and K. C. Sevcik, “Locality and Loop Scheduling on NUMA
Multiprocessors,” Proceedings of the 1993 International Conference on Parallel
Processing, vol. II, pp. 140-147, 1993.

9. C. D. Polychronopoulos and D. Kuck, “Guided Self-Scheduling: a Practical Scheduling
Scheme for Parallel Supercomputers,” IEEE Trans. on Computers, vol. 36, no. 12, pp.
1425-1439, 1987.

10. T. H. Tzen and L. M. Ni, “Trapezoid self-scheduling: a practical scheduling scheme for
parallel compilers,” IEEE Transactions on Parallel and Distributed Systems, vol. 4, 1993,
pp. 87-98.

11. Chao-Tung Yang and Shun-Chyi Chang, “A Parallel Loop Self-Scheduling on Extremely
Heterogeneous PC Clusters,” Journal of Information Science and Engineering, vol. 20, no.
2, pp. 263-273, March 2004.

12. Chao-Tung Yang, Kuan-Wei Cheng, and Kuan-Ching Li, “An Efficient Parallel Loop
Self-Scheduling on Grid Environments,” NPC’2004 IFIP International Conference on
Network and Parallel Computing, Lecture Notes in Computer Science, Springer-Verlag
Heidelberg, Hai Jin, Guangrong Gao, Zhiwei Xu (Eds.), vol. 3222, pp. 92-100, Oct. 2004.

A Resource-Based Server Performance Control
for Grid Computing Systems�

Naixue Xiong1,3, Xavier Défago1,2, Yanxiang He3, and Yan Yang4

1 School of Information Science,
Japan Advanced Institute of Science and Technology (JAIST), Japan

naixue@jaist.ac.jp
2 PRESTO, Japan Science and Technology Agency (JST),

defago@jaist.ac.jp
3 The State Key Lab of Software Engineering, Computer School,

Wuhan University, PR China
yxhe@whu.edu.cn

4 Computer School, Wuhan university of science and technology, PR China
Y.Yang@mail.ccnu.edu.cn

Abstract. With the rapid advances in Internet and Grid technique, an
increasing number of applications will involve computing systems. These
applications in turn create an increasing demand for efficient resource
management, request handling policies and admission control. In this
paper, we propose an efficient admission control algorithm to protect
the critical resource of server and improve the performance of the com-
puting system. Stability of CPU utilization is aimed to protect the server
from overload and under-load. It is then beneficial to keep a satisfactory
response time of requests, high throughput and less potential loss of ser-
vice. We analyze the stability in detail and present a method for tuning
control gains in order to guarantee the system stability. Finally, we per-
form simulations to evaluate the performance of the proposed algorithm.
Simulation results demonstrate that the proposed algorithm stabilizes
the utilization of CPU in the computing system if the control gains are
appropriately chosen on the basis of system stability. It then achieves
satisfactory performance.

1 Introduction

With the rapid advances in Internet Application and Grid technique, the num-
ber of servers increased sharply in recent years, an increasing number of server
applications will involve a large of computing systems. For every server, com-
puting means consuming its resources, including CPU slot, memory, bandwidth
and so on. When one or several kinds of resources are scare, the server will be
regarded as overload. Because web server overload can lead to loss of service
and even possible damage to some critical resources due to its over-utilization,
� This research is conducted as a program for the 21st Century COE Program by

Ministry of Education, Culture, Sports, Science and Technology.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 56–64, 2005.
c© IFIP International Federation for Information Processing 2005

A Resource-Based Server Performance Control 57

web servers need to be protected from overload. Therefore, there is a need of
efficient admission control to protect these resources and services in the above
computing systems, especially during periods of peak server load. A number of
admission control schemes have been studied in [1-6]. In these admission control
methods, much attention has been paid to the context of performance metrics,
such as the request response time, system throughput and efficient serving rate.
The controller software process is embedded in Apache Server Linux OS in [7].
However, in [7], the stability of the network control system is not discussed, while
this requirement to a control system in engineering is very important. Stability
of control systems can protect the server from overload and under-load. It is
then beneficial to keep a satisfactory response time of requests, high throughput
and less potentially loss of service. The performance of an unstable system can
severely and persistently diverge from the desired performance so as to cause
system malfunctioning even worse to lead to the whole system break down [2].
Choosing the proper setting for tuning parameters is also very important for
guaranteeing the stability of the whole system and achieving satisfactory perfor-
mance.

In this paper, we propose an effective admission control scheme that utilizes
the information about the resource consumption, which is indicated by CPU uti-
lization. We call the approach resource-based admission control. Due to stability
is a key requirement in admission control to achieve satisfactory performance,
we focus on the stability analysis of the proposed network controller, and give
a procedure for tuning the control gains in detail. The approach is shown by
simulations to be able to avoid resource over-utilization and server overload and
improve the computing system performance. Explicitly, we compare by simula-
tions the system performance under various control schemes, namely the stable
and unstable situations.

2 Design of Admission Controller

In controller design, an analysis of the computing system models leads to a con-
troller that will achieve the service level objects. We report on an analysis of a
closed-loop system using a proportional integral plus derivative (PID) control
law. The object is to maintain the target CPU utilization. Using stability ana-
lyzing method in classical control theory, we are able to design a PID controller
that leads the computing system to be stable and thus avoid the system oscilla-
tions in response to requests. Such oscillations are undesirable since they increase
variability, thereby resulting in a failure to meet the service level objects.

2.1 Notations

Unless otherwise specified, the following notations are pertain to the considered
computing system model:

m(n): the number of maximum parallel threads in the nth interval;
f(n):the feedback information on server’s utilization in the nth interval;

58 N. Xiong et al.

u: the target CPU utilization ratio of genetic server;
r(n): the number of requests in the nth interval;
kP : the proportional control gain;
kI : the integral control gain;
kD : the Derivative control gain;
N : the duration of time slots.

2.2 Selection of Sampling Time

The choice of sampling time is a key factor that affects the performance of the
admission controller [2]. In the controlled system, the sampling time not only
determines the length of time between successive updates of the control inputs,
but also the length of time system outputs are averaged over. In this sense, the
sampling time is also an averaging interval. A short sampling time enables the
controller to reacts to changes in the system quickly but increases measurement
overhead. A long sampling time keeps the controller from overreacting to random
fluctuations by averaging out the stochastic of the metrics, but will also yield a
slow response. In order to balance these competing goals, the minimum sampling
time in network control system must be larger than two special kinds of time
[8]. One is the sampling time of SNMP (simple network management protocol)
agent itself and the other is the Round Trip Time (RTT) between the controller
and controlled device. The first one is easy to be found from the manuals of
device, and the second one should be measured on Internet.

Some sampling rules about robustness can be supposed as below. If the sam-
pling interval is less than the minimum RTT, the feedback will be regarded as
the (n+1)th sampling results, because the (n− 1)th feedback has been received
and the (n + 1)th sampling result is impossible to be retrieved so quickly. If the
interval is equal to or more than the average RTT, the feedback will be regarded
as the (n + 1)th sampling results, because we suppose that the nth sampling
result has been lost. On the basis of this simple and practical method, we design
the PID controller.

2.3 Controller Design and Stability Analysis

The hardware and software in admission closed loop control system are dis-
tributed as shown in Fig. 1. The reference is the desired CPU utilization denoted
by u. In this approach, the job of the administrator is shifted from directly set-
ting the tuning parameters to supplying the desired utilization value. At the
server, an admission control algorithm checks if the required CPU is available
and determines if the arriving request can be admitted into the system. The
server is able to service maximum number of requests in a round. The request
will be admitted into the system if the number of requests currently being served
plus one request is not more than the maximum number of requests. Because
an inappropriately designed controller can overreact to performance errors and
push a real-time system to unstable conditions, stability is a necessary condition
for achieving the desired performance reference and is especially of importance.

A Resource-Based Server Performance Control 59

Since the direct measurements of m(n) and f(n) is not be acquired, we can
use the history values of m(i) and f(i) (i = 1, 2, ..., N) to estimate m(n) and
f(n). Therefore we can design a PID controller that can be better served to
predict the number of maximum parallel threads in the nth interval than a
simple proportional controller [7, 8].

Fig. 1. Block diagram of feedback system for control of CPU utilization

In the following, we propose the PID controller, analyze its system stability
and give the specific method for tuning control gains. The PID controller and
the state equation of system are respectively described as follows:

m(n) = kP (f(n) − u) + kI

N∑
j=1

m(n − j) + kD[f(n) − f(n − 1)]. (1)

f(n) = cf(n − 1) + am(n − 1) + b

N∑
j=2

m(n − j). (2)

Where a, b and c are constants that are estimated from statistical data. It is noted
that the precise description given in (2) can be obtained by using some system
identification method on the basis of statistical data. A statistical autoregressive-
moving-average (ARMA) is established in [9] to fit the historical measurement.
In this method, the procedure of estimating the parameters is as follows: First,
measurement of the target system is obtained while configuring the input pa-
rameters in a controlled way. Second, the least-squares regression method is used
to estimate a,b and c for different values of N . In general, the fit of the model im-
proves as N is increased. For the concrete technique with regard to this modeling
process, one is referred to [10].

60 N. Xiong et al.

For analysis purposes, it is much more convenient to convert the above two
linear equations from the time domain into the z (frequency) domain, where z is
a complex number. z-transfer function has several nice properties. For example,
consider two linear systems with transforms A(z) and B(z). Then the transform
of the system formed by connecting these two in series is A(z)B(z). If outputs
of the two systems are summed, then the combined system has the transform
A(z) + B(z). Also, if the input to A(z) is multiplied by k, then the associated
transform is kA(z).

Applying these principles to equations (1) and (2), we obtain the z-transform:

M(z) = kP (F (z) − uD(z)) + kI

N∑
j=1

M(z)z−j + kDF (z)(1 − z−1). (3)

F (z) = cF (z)z−1 + aM(z)z−1 + b
N∑

j=2

M(z)z−j . (4)

Where
M(z) =

∑∞
n=0 m(n)z−n, F (z) =

∑∞
n=0 f(n)z−n, D(z) = z

1−z .
From (3), we can derive

M(z)(1 − kI

N∑
j=1

z−j) = kP (F (z) − uD(z)) + kDF (z)(1 − z−1). (5)

By substituting (5) into (4), one yields

(1 − cz−1)(1 − kI

N∑
j=1

z−j)F (z) = (az−1 + b
N∑

j=2

z−j)kP (F (z) − uD(z))

+(az−1 + b

N∑
j=2

z−j)kDF (z)(1 − z−1).

(6)

From (6), we can get

[(1 − cz−1)(1 − kI

N∑
j=1

z−j) − akP z−1 − bkP

N∑
j=2

z−j − akDz−1(1 − z−1)

−bkD(1 − z−1)
N∑

j=2

z−j] · F (z) = −ukP D(z)(az−1 + b

N∑
j=2

z−j).

(7)

Both sides of (7) are multiplied by z , we can get

[(z − c)(1 − kI

N∑
j=1

z−j) − akP − bkP

N∑
j=2

z1−j − akD(1 − z−1)

−bkD(z − 1)
N∑

j=2

z−j] · F (z) = −ukP D(z)(a + b

N∑
j=2

z1−j).

(8)

A Resource-Based Server Performance Control 61

Then the following description �(z) represents the characteristic polynomial
of (7)

�z = (z − c)(1 − kI

N∑
j=1

z−j) − akP − bkP

N∑
j=2

z1−j

−akD(1 − z−1) − bkD(z − 1)
N∑

j=2

z−j

= z − (kI + bkP + bkD)
N∑

j=2

z1−j + (ckI + bkD)
N∑

j=2

z−j

−(kI + c + akP + akD) + (akD + ckI)z−1.

(9)

The above characteristic polynomial is closely related to system stability.
From control theory [10, 11], when all the zeros of this polynomial lie within the
unit circle, the system governed by (1) and (2) is stable in terms of the server
utilization. To yield a condition of stability, we let kI = bkP /(c − 1), a = b and
kD = ckP /(1 − c). The roots of the equation �z = 0 are z = c. Therefore, we
can get when |c| < 1, all roots are in the unit circle. In this case, the controlled
computing system is stable in terms of the CPU utilization.

3 Performance Evaluation

In this section, we mainly consider the transient-state response and its stability.
Transient-state response represents the responsiveness and efficiency of adaptive
resource scheduling in reacting to changes in run-time conditions.

In the following experiments, we investigate if the proposed connection con-
trol scheme can be used to protect a web server from overload by a targeted

Fig. 2. Control effect of the scheme with parameters N = 2, kP = 2 (stable fast

responsive case)

62 N. Xiong et al.

Fig. 3. Control effect of the scheme with parameters N = 2, kP = 2 (unstable case)

control of high overhead requests. As mentioned in [8, 12], CPU utilization ratio
between 60% and 70% is good for it to avoid damage after computing for a long
time. Therefore, in our simulations the expected CPU utilization ratio u in sim-
ulation is set to be 65%. The values of a, b and c are similar to those suggested in
[8, 12], i.e., a = 0.5, b = 0.5, c = 0.6. To simplify the control system, we measure
the rule of input requests as ”pulse signal” type. The period of such request is
two minutes, in the first half period, there’re one hundred requests per minute
and in the second there are forty. The average input rate is seventy requests per
minute.

We perform simulations for different values of a, b, c, kI , kP and kD control
gains. The simulation results are shown in Figures 2-5. Obviously, control gains

Fig. 4. Control effect of the scheme with parameters N = 8, kP = 5 (Stable but

sluggish case)

A Resource-Based Server Performance Control 63

Fig. 5. Control effect of the scheme with parameters N = 8, kP = 5 (unstable case)

determine the stability of system and the value of N influences the response of
system. The smaller N is, the faster the system achieves steady state. When
the control gains are chosen in the area of stability (see Figure 2 and Figure
4) based on the above stability condition, the CPU utilization rate is gradually
becoming stable after adjusted for a short time. So is the number of maximum
parallel threads. On the contrary, when control gains are not chosen in the area
of stability (refer to Figure 3 and Figure 5), the system is unstable, and severe
oscillations appear which will result in a failure to meet the service level objects.

The above performance profile establishes a set of metrics of adaptive real-
time systems based on the specification of dynamic response in control theory.
The metrics enables system designers to apply established control theory tech-
niques to achieve stability, and meet transient and steady state specifications.

4 Conclusions

The widespread use of information technology has motivated the need of perfor-
mance management of computing systems. In network control system, transfer
function is not clear between input and output variables. Therefore, in this pa-
per, we propose the use of a PID feedback control strategy to achieve the goal
of optimized performance management. The proposed controller can protect the
crucial resource of the server and enhance the performance of the server. Fur-
thermore, systems administrator can translate desired performance into appro-
priate setting of available tuning parameters. Simulation results demonstrate the
proposed algorithm can be applied into the server and can be very effective. Cer-
tainly, challenges still exist in the modeling and control of computing systems,
for example computing systems generally exhibit stochastic behavior inspired
by random requests from users and how to control the performance of them to
scale such stochastic behavior would be a subject for future research.

64 N. Xiong et al.

References

1. P. Mundur, R. Simon, and A. Sood: Integrated Admission Control in Hierarchical
Video-on-Demand Systems. In Proceedings of the IEEE International Conference
on Multimedia Computing and Systems (ICMCS ’99), pp. 220-225, Florence, Italy,
June 7-11, 1999

2. N. Gandhi and DM Tilbury, Y. Diao, J. Hellerstein, and S. Parekh: MIMO Con-
trol of an Apache Web Server: Modeling and Controller Design. Proceedings of
American Control Conference, May 2002

3. K. H Yum, E. J Kim, C. R Das, M. Yousif, and J. Duato: Integrated Admission and
Congestion Control for QoS Support in Clusters. In Proceedings of IEEE Interna-
tional Conference on Cluster Computing, pp.325-332, September 2002, Chicago,
Illinois, pp. 325

4. R. Mortier, I. Pratt, C. Clark, and S. Crosby: Implicit Admission Control. IEEE
Journal on Selected Areas in Communications, Vol. 18, No.12, 2000

5. F. Kelly, P. Key, and S. Zachary: Distributed Admission Control. IEEE Journal
on Selected Areas in Communications, Vol. 18, No. 12, Dec. 2000

6. R. J Gibbens, F. P Kelly, and P. B Key: A decision-theoretic approach to call
admission control in ATM networks. IEEE Journal on Selected Areas of Commu-
nications, pp. 1101- 1114, August 1995

7. Thiemo Voigt, Gunningberg: Handling Multiple bottlenecks in web servers using
adaptive inbound controls. Seventh International Workshop on Protocols for High-
Speed Networks, Berlin, German, April 2002

8. Yijiao Yu, Qin Liu and Liansheng Tan: Application of server performance control
with simple network management protocol. The Second International Workshop
on Grid and Cooperative Computing, Shanghai, China, December 2003

9. Arnold Neumaier, Tapio Schneider: Estimation of parameters and eigenmodes of
multivariate autoregressive models. ACM Transactions on Mathematical Software
(TOMS), Volume 27, Issue 1, pp. 27 - 57, March 2001

10. J. L Hellerstein and S Parekh: An introduction to control theory with applications
to computer science. ACM SIGMETRICS, 2001

11. W. Kamen, B. S. Heck: Fundamentals of Signals and Systems Using the Web and
Matlab. Science Press and Pearson Education North Asia Limited, 2000

12. S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, and J. Bigus: Us-
ing control theory to achieve service level objectives in performance management.
Journal of Real-time Systems, 23 (1/2), July 2002

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 65 – 71, 2005.
© IFIP International Federation for Information Processing 2005

IBP: An Index-Based XML Parser Model

Haihui Zhang1, Xingshe Zhou 1, Yang Gang1, and Xiaojun Wu 2

1 College of Computer Science, Northwestern Polytechnical University,
Xi’an, Shaanxi, China, 710072

zhh409@tom.com, zhouxs@nwpu.edu.cn, yang.gang@gmai.com
2 College of Information Engineering, Chang'an University,

Xi'an, Shaanxi, China, 710064
depender@yahoo.com

Abstract. With XML widely used in distributed system, the existing parser
models, DOM and SAX, are inefficient and resource intensive for applications
with large XML documents. This paper presents an index-based parser model
(IBP), which contains validation and non-validation modes, supports nearly all
the XML characteristics. IBP has the characters of speediness, robustness and
low resource requirement, which is more suitable for mass information parsing.
We presents the application of IBP in a real-time distributed monitoring
prototype system, the results have shown IBP effective.

1 Introduction

XML (Extensible Mark-up Language) is a meta-language to describe other markup
languages. Since it appeared, XML has got greatly development and become standard
of information exchange. Apart from traditional documents, it also comprises textual
files describing graphical objects, transactions, protocol data units and all other kind
of imaginable structured data. Despite XML’s well known advantages, it has one key
disadvantage: document size. Indeed, the XML standard explicitly states that markup
terseness was not a design goal. Consequently, XML documents can be many times
larger than equivalent non-standardized text or binary formats [2].

XML-conscious compression techniques have been well researched, XMLZIP, by
XML Solutions [3], and Liefke and Suciu’s XMILL[1], of which we are aware, also
recently the Wireless Access Protocol standard group’s Binary XML Content Format
(WBXML) [4] and MHM[5] which based on Prediction by Partial Match (PPM).
They are designed to reduce the size of XML documents with no loss of functionality
or semantic information.

In a large-scale distributed system, it is always needed to exchange information
with some applications that adopt original XML expression, so compression is not for
all occasions. As Matthias[6] pointed out that in real-world experiences of using XML
with databases, XML parsing was usually the main performance bottleneck. XML
parser takes a most important role in XML applications. There are two models of
XML parsers, DOM and SAX, which are proved to be ineffective for large XML
database. Another feasible measure is to optimize the XML parser.

In our research, we develop Index-based Parser Model (IBP), which support almost
whole XML specifications. With it, we can get element from the large XML file by

66 H. Zhang et al.

its’ multilevel index. It has the characteristic that parsing cost does not increase with
the document size. Especially when parsing large XML file, it can get significant
performance improvement compared to SAX and DOM.

2 Existing XML Parser Models

A XML parser is a basic but also very important tool. Publicly available parsers in use
today, such as IBM’s XML4J, Microsoft’ MSXML, Oracle’s XML Parser, Sun’s
JavaTM Project X and some open source code parsers such as Expat, OpenXML,
Xerces, SXP. Most XML parsing libraries use one of two interfaces, Simple API for
XML (SAX) [7] and Document Object Model (DOM) [8]. XML parsing allows for
optional validation of an XML document against a DTD or XML schema, so
classified with validation and non-validation.

2.1 Document Object Model (DOM)

DOM is a standard tree-based API specification and under constant development by
the Document Object Model working group at the W3C (World Wide Web
Consortium). A tree-based parser parses and compiles an XML document into an
internal, in-memory tree structure that represents the XML document’s logical
structure, which then is made available to the application. The current version is
DOM Level 2 proposed recommendation [9], which is a platform-and-language-
neutral interface that allows applications to dynamically access and update the content
and structure of documents. DOM does allow applications to perform tree operations
such as node additions, modifications, conversions and removals.

Since a DOM parser constructs an internal tree representation of the XML
document content in main memory, it consumes memory proportional to the size of
the document (2 to 5 times, hence unsuitable for large documents) [6]. Also, when a
DOM parser constructs a tree, it will take account of all objects such as elements, text
and attributes. But if applications only pay attention constantly to small proportion of
total objects, the resource occupancy by which rarely or never used is striking. Lazy
DOM parsers materialize only those parts of the document tree that are actually
accessed, if most the document is accessed, lazy DOM is slower than regular DOM.

2.2 Simple API for XML (SAX)

SAX is a simple, low-level event-based API specification [7] and developed
collaboratively by the members of the XML-DEV mailing list, hosted by OASIS. SAX
2.0 was released on the 5th of May 2000, and is free for both commercial and non-
commercial use. SAX reports parsing events (such as the start and end of elements)
directly to the application through callbacks. The application uses SAX parser to
implement handlers to deal with different events. The memory consumption does not
grow with the size of the document and it is possible to get the desired data without
parsing the whole document. In general, applications requiring random access to the
document nodes use a DOM parser while for serial access a SAX parser is better.

On the other hand, SAX has some disadvantages that restrict its application. SAX
events are stateless, so, it may result in repeatedly parsing of the document to get multi-
elements that scattered in the file. More serious is that events are only used to find the

 IBP: An Index-Based XML Parser Model 67

elements, applications must maintain lots of specially callback handles which are full of
IF/ELSE structures. SAX is read only and difficult to carry out complex query.

3 Index-Based Parser Model (IBP)

Through our experiences of using XML with databases, we noted that XML
documents contain one or more key tags just as index in relational database. So we
introduce the index mechanism to the parsing process. There is an initial operation
before the operation on XML document, during which key tag index tables and sub-
tree index tables will be built. After that, IBP allow applications to perform operations
based on these tables.

The following example shows the basic process of our IBP method. This is a
simple XML document (named BookSet.xml) with DTD statements.

<?xml version="1.0" encoding="GB2312" ?>
<!ELEMENT BookSet (Book*)>
<!ELEMENT Book(ISBN, Name, Author+, Price*)>
<!ELEMENT ISBN(#PCDATA)>
<!ELEMENT Name(#PCDATA)>
<!ELEMENT Author(#PCDATA)>
<!ELEMENT Price(#PCDATA)>
<!ATTLIST Price currency (dollar | RMB | pound) ‘Dollar’>

The IBP parser parses XML data and breaks the structural tree into many sub-trees
with specified elements. In this document the best choice of element is ‘Book’, just
logging all the positions of start tags (<Book>) and end tags (</Book>) to form sub-
tree index table. If we know which sub-tree contains what we want, just search this
one. How to know the sub-tree is just using the key tag index table. We can create
index with any tag we needed, but the elements with exclusive text value are

Fig. 1. Index tables after initial

68 H. Zhang et al.

recommendation. Therefore we take ISBN as the key tag and log the text between
‘<ISBN>’ and ‘</ISBN>’ as the value. After initial process, IBP builds the sub-tree
index table and key tag index table (see Fig 1).

Now, if we want to find the author of a book with ISBN as ‘7-302-04517’, we only
load and search the fragment of document from position 67 to 140, just a string with
length of 73.

3.1 Non-validation IBP

Non-validating parsers are only able to check if an XML document is well formed,
whereas validating parsers can additionally check if the XML document conforms to
its DTD (Document Type Definition).

IBP implements both modes. Non-validation mode of IBP (named IBP-nv), which
works as above-mentioned, with which the XML document is read only. IBP-nv is
suitable to lookup the XML database such as search tools and filters. IBP-nv is
competent for the situation where SAX is used, but more efficient than SAX for its
directly acquiring the special sub-tree by index tag, whereas SAX must parse the
document at the beginning of the file.

After initial process, the optional operation can close the file handler, and reopen
the file and read specified zone according to the sub-tree index table when needed.
IBP-nv occupies very little memory, and it does not increase with the increase of file
size.

3.2 Validation IBP

Validation mode of IBP (named IBP-v) does allow applications to perform updating
operations such as node addition, modification, conversion and removal. In this mode,
XML document is kept in memory, and the sub-tree index table is constructed in
another way (see Fig 2).

Fig. 2. Sub-tree index table in IBP-v

After initial process, the XML document locates in a consecutive memory area. If
an element needs to be modified, contents of the sub-tree must be copied to another
reallocated memory first, and then change the sub-tree’s memory pointer to the new
address, and evaluate the ‘Reallocated’ with ‘True’ after update the element. The key
of this mode is that a sub-tree is taken as an allocated memory unit, and memory

 IBP: An Index-Based XML Parser Model 69

pointer permanently points to the latest memory area. Before closing the file, all sub-
tree will write back to the disk one by one according to the index.

Which one (IBP-nv or IBP-v) will be used in application depends on whether the
XML need to be updated. If only parsing to search document, IBP-nv is
recommended. The cost of validation, reparsing or revalidating a full document as
part of a small update is sometimes unacceptable. After much experiment work, we
find that parsing even small XML documents with validation can increase the CPU
cost by 2 to 3 times or more.

4 XML Parser Performance

Parser performance always depends on document characteristics such as tag-to-data
ratio, heavy vs. light use of attributes [6], amount of sub-trees vs. average size of sub-
tree, etc, but we do not strive to quantify these dependencies here. In our project, we
have developed a prototype system, which has the above-mentioned features. Our
goal is to relate the cost of Microsoft’s MSXML4.0, which is used in windows system
widely, and support SAX and DOM parsers.

We still take BookSet.xml as our example, its DTD statements has been given
above. First, we create 7 XML documents of 12KB, 115KB, 229KB, 458KB, 917KB,
1835KB, 4599KB, which contain different amount of elements. Then, we make
quantitative analysis of the cost of parser initialization and parsing time, using
MSXML4.0 and IBP respectively.

4.1 Analysis of Initialization Time

XML documents are initialized 5 times with DOM, SAX, and IBP parsers. The
average times are listed in Fig 3.

Fig. 3. Initialization times of DOM, SAX and IBP

In initial process, DOM needs to parse and compile a XML document into an
internal, in-memory tree, the initial time is proportional to the size of the XML
document. SAX only creates a handle to open the file, but does not read any data, so
the cost is the least. IBP needs to parse and build index tables, so it takes more time.

70 H. Zhang et al.

4.2 Parsing Cost

The 7 XML documents are parsed 1,000 times, without grammar caching. Average
cost of 1000 times’ random parsing can reflect moderately the parser’s performance.

Fig. 4. Average parsing performance (1000 times)

DOM parser performs very well on small XML document, but cost for large
document exceeds the limit of our tolerance. SAX parser’s performance is better than
DOM, but it is still not very efficient. After further research, we find DOM parser and
SAX parser have the approximately same costs when the XML document size is
720KB. During the IBP parser initialization process, it creates sub-tree index table
and key tag index table, so it’s parsing process actually contain two operations:
lookup the tables and then matches element in special sub-tree. In IBP, index tables
are optimized with hash function, so the lookup time is almost invariable. And the
searching time in a sub-tree is only related with the tree’ size. Therefore, IBP parser
has high performance even for very large XML documents.

In the worst case, IBP need to be re-initialized to build index table on a new tag.
We compare the initialization and parsing time of IBP with the parsing time of DOM
and SAX. IBP still has a better performance than DOM and SAX.

Fig. 5. Average performance (1000 times): initialization and parsing time of IBP vs. parsing
time of DOM and SAX

 IBP: An Index-Based XML Parser Model 71

5 Future Work

Future research directions concern both theoretical and practical aspects of the
research carried out in this paper. We plan to keep on developing IBP API for full
XML characteristic and research more flexible parsing model. Another interesting
direction is tighter integration of database system with IBP.

6 Summary

We discuss common XML parser models, DOM and SAX, point out they are not
suitable to large XML documents. Aiming at large-scale distributed systems, we
present a new parser model called IBP, which has low resource requirement and good
performance, regardless of the XML document size. For large XML files, IBP parses
much more faster than DOM and SAX. Via API with C++, IBP can be widely used in
various kinds of applications with low parsing time cost, and present a new idea for
XML parsing.

References

1. H. Liefke and D. Suciu. Xmill. an efficient compressor for XML data. In Proceedings of
the 2000 ACM SIGMOD International Conference on Management of Data, pages 153-
164,2000.

2. James Cheney, Compressing XML with Multiplexed Hierarchical PPM Models,
ICDE2001

3. XML Solutions. XMLZIP. http: //www.xmls.com/.
4. WAP Binary XML Content Format, W3C NOTE 24 June 1999, http://www.w3.org/

TR/wbxml/
5. James Cheney, Compressing XML with Multiplexed Hierarchical Models, in Proceedings

of the 2001 IEEE Data Compression Conference, pp. 163–172.
6. Matthias Nicola and Jasmi John. XML Parsing: A Threat to Database Performance,

CIKM’03, November 3–8, 2003
7. Megginson, David, SAX 2.0: The Simple API for XML, http://www.megginson.com/

SAX/
8. Extensible Markup Language (XML). 1.0 W3C Recommendation 10-Feb-98.

http://www.w3.org/TR/1998/REC-xml-19980210.pdf.
9. World Wide Web Consortium. Extensible Markup Language (XML) 1.0 (Second

Edition).http://www.w3.org/TR/2000/REC-xml-20001006.
10. Quanzhong Li and Bongki Moon, Indexing and Querying XML Data for Regular Path

Expressions. Proceedings of the 27th International Conference on Very Large Databases
(VLDB’2001), pages 361-370, Rome, Italy, September 2001.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 72 – 79, 2005.
© IFIP International Federation for Information Processing 2005

A Stochastic Control Model for Hierarchical
Grid Service*

Zhimin Tian, Li Liu, Yang Yang, and Zhengli Zhai

School of Information Engineering,
University of Science and Technology Beijing, Beijing, China

t_zhm@163.com

Abstract. In this paper, we introduce a model for deployment and hosting of a
hierarchical gird service wherein the service provider must pay to a resource
provider for the use of resources. Our model produces policies that balance the
number of required resources with the desire to keep the cost of hosting the ser-
vice to a minimum. In each layer of our framework, we quantify the cost in-
crease of reserved resources caused by the fluctuation of the users’ demand. A
stochastic control algorithm is cast in order to resolve the problem. The results
show that the model makes good decisions in the face of such uncertainties as
random demand for the service.

1 Introduction

The success of OGSA (Open Grid Service Architecture) and web services has influ-
enced grid applications [1]. Grid application designers are now beginning to make use
of software services that provide a specific functionality to the application, such as
solving a system of equations or performing a simulation remotely. Grid applications
that make use of such services require consistent response time and high availability
of those services. The service provider, who develops the service and its interface,
may charge users through subscriptions to the service [2]. In turn, we assume that there
is a cost to the service provider for maintaining the presence of a service in the grid.
This cost is charged to the service provider by the owner and maintainer of the com-
putational resources, the resource provider[3]. If there were no costs to maintain the
presence of a grid service, then the service provider could simply deploy the service
in as many places as possible and leave it running. Therefore, the service provider
must balance the demand for service with the desire to keep the cost of providing it to
a minimum. This work focuses on controlling the cost.

The amount of resources needed may vary over time and is a function of the de-
mand for the service and the compute intensive nature of the service. We address the
situation where the service demand and the execution time to process the service
requests are unknown, but can be estimated. Even though the service provider will
know the processing requirements for a typical invocation of the service, the execu-
tion time of any particular instantiation of the service can vary due to input data

* This work has been supported by National Natural Science Foundation of China. (No.

90412012).

 A Stochastic Control Model for Hierarchical Grid Service 73

dependencies as well as resource contention with other services if, as is likely in a
grid, the service is deployed in a time-sharing environment.

In this paper, we propose a layered model for service grid. The models are designed
for a service grid focusing on business intelligence services that often involve a lot of
data and many complex algorithms. The service Grid provides an economic platform
for business intelligence services. In the model, the number of resources each tier pro-
vides is larger than that the users demand, because their demand is uncertain. i.e. the
demand variability increases when it moves up a chain. This will make the cost in-
crease. Our work is to control the cost by using the stochastic control theory.

The paper is organized as follows. Related works are reviewed in Section 2. In
Section 3, a resource schedule framework of service grid is described. In Section 4,
the stochastic control algorithms are discussed in details. Some simulation experi-
ments are presented in Section 5. Finally, we draw some conclusions in Section 6.

2 Related Works

A number of works have proposed service-oriented architectures and have tested high-
performance applications in those environments [4][5]. Weissman and Lee presented an
architecture and middleware for dynamic replica selection and creation in response to
service demand [6]. Their work answers the questions of when and where to deploy a
grid service. In contrast, this work focuses on the question of how many resources are
required to host a grid service in the presence of random demand and execution times.
Buyya et. al.[7] and Wolski et. al. [8] examined the use of supply- and demand-based
economic models for the purpose of pricing and allocating resources to the consumers
of grid services. In this article we assume a supply- and demand-based economy in
which both software services and computational resources are in demand. In particular,
we assume a separation of interests between the service provider and the resource
provider. The service provider obtains the necessary computational resources at a cost.
The user then, is only concerned with the software services that are required for the
application, rather than negotiating directly with a resource owner for computing time.

3 Grid Service Hierarchical Framework

Fig. 1 shows a layered architecture of a service Grid. Logically, the architecture is
divided into four tiers: the User Tier, the Grid Tier, the Admin Domain Tier and the
Node Tier. The Node Tier can be a computer, a service provider and a storage re-
source. It provides all kinds of resources for the upper tier. The Admin Domain Tier
consists of machine groups, named as Admin Domains (AD), in which all nodes be-
long to one organization. For example in Fig. 1, AD1 belongs to the Computer Center
and AD2 belongs to the Department of Computer Science. On the one hand, each AD
can be regarded as a whole system, and all nodes in it have a common objective. On
the other hand, an AD can fully centrally control the resources of its nodes but cannot
operate the resources of nodes in the other ADs directly. In this view, all nodes are
cooperative in the same AD. The ADs Tier not only provides service for the Grid
Tier, but also reserves resource of the Node Tier. A Grid Service Tier can have many

74 Z. Tian et al.

ADs connected together and have good collaboration and trust relationship between
the ADs. For example, Grid Service1 in Fig. 1 can be a Grid in Hong Kong and Grid
Service2 is a Grid in Beijing, China. However, Grid services are independent from
each other, the user can submit tasks to a Grid from its Portal. Likewise, the Grid
Service Tier provides service for users.

Fig. 1. The hierarchical framework for service grid

In this framework, the User Tier will subscribe services that the Grid Service
Tier provides. Generally, what the Grid Service Tier provides is more than what the
User Tier demands, or the application request can’t be executed in time once some
services halt. We define the offset as surplus resources. So is the Admin Domain Tier.
Therefore, the surplus resources will become greater and greater from User Tier to
Node Tier when the user’s requests increase. The cost is also higher and higher. Our
work is study how to control the cost by stochastic control theory.

4 Modeling for Hierarchical Grid Service

4.1 Modeling for Grid Service Chain

At first, we define the variables as follows:
s

ku ,1 ——denotes quantity of user demand; n-dimensional vector;
s

kx ,1 ——denotes surplus resources in grid service tier, n-dimensional vector;

kd ,1 ——denotes certainty of user demand, n-dimensional vector;
s

ku ,2 ——quantity of services that the Grid Service Tier subscribes in Admin

 A Stochastic Control Model for Hierarchical Grid Service 75

Domain Tier, m-dimensional vector;
s

kx ,2 ——the surplus resources of the Admin Domain Tier, m-dimensional vector;
 L——m×n matrix;

s
kLu ,1 ——quantity of user demand in the Admin Domain Tier.

So our system model is:

k
s

k
s

k
s

k duxx ,1,1,11,1 −+=+ (1)

s
k

s
k

s
k

s
k Luuxx ,1,2,21,2 −+=+ (2)

where L=

mnmm

n

n

ll

lll

lll

L

LLLL

L

L

21

22221

11211

, .,,2,1;,,2,1,0 njmilij LL ==≥ 1=
m

i
ijl

L’s row vector (inii lll ,,, 21 L) is a weight vector. It represents proportion of n us-

ers request in i node of the Admin Domain Tier.
Equation (1) denotes dynamic process in Grid Service Tier. Equation (2) denotes

dynamic process in Admin Domain Tier. They are presented by matrix formal:

k
s
k

s
k

s
k dBuxx ++=+1 (3)

where
−

=
IL

I
B

0
,

−
=

0
,1 k

k

d
d

When the user’s requests change, kw , the variety moves down from user tier to

node tier, further, it will be greater. So, the state equation may be presented as:

kk
f

k
s
k

f
k wdBuxx +++=+1 (4)

where kd is part of the certainty of the users’ demand, n-vector, kw is part of the

uncertainty of users’ demand, n-vector. Because of the change of the users’ demand,

the state variable, s
kx , and the control variable, s

ku produce variety. They turn

into f
kx , f

ku respectively.

Now, we define the offset as follows:

s
k

f
kk xxx −= (5)

s
k

f
kk uuu −= (6)

Here, the system offset equation is:

kkkk wBuxx ++=+1 (7)

76 Z. Tian et al.

where kw is Gauss white noise, i.e.),0(~ 2
wk Nw σ , its covariance matrix is R1.

In this hierarchical grid service system, the surplus resources offset of each tier is
obtained by observation. So, it has noise effect:

kkk vxy += (8)

where ky is an observation value, (n+m) dimensional vector; kv is white noise,
(n+m) dimensional vector, i.e. kv ~),0(2

vN σ , its covariance matrix is R2.

4.2 Quantifying for Layered Grid System

The offset is used to quantificationally describe the situation which users’ demand
change affect each tier of hierarchical grid service system. Furthermore, the offset
will be amplified from top to bottom. This is presented as follows:

k
T
k

k
T

kk
T

k

ww

uuxQx
y ,1,1,11,12

1

+
= (9)

k
T
k

k
T

kk
T

k

ww

uuxQx
y ,2,2,22,22

2

+
= (10)

where, Q is not negative definite matrix, and Q=diag(Q1,Q2), Q1, Q2 are also not
negative definite matrix. y1 denotes the effect of demand change in the Grid Service
Tier; and y2 denotes the effect of demand change in the Admin Domain Tier. The
more y1 and y2 are, the greater the effect is. The less y1 and y2 are, the smaller the
effect is.

5 Stochastic Control Strategies

The offset system equation (7), parameters y1 and y2 in equation (9), (10) have de-
scribed the effect that the change of users’ demand arouses the change of resources

requirement. We should select a control ku in order to make the effect minimum. In

particular, the users’ demand is random, and the external disturbance is also random.

Therefore, our work is how to select ku , such that:

})({min
1

1

−

=

++=
N

k
N

T
Nk

T
kk

T
k

u
QxxuuQxxEJ

k

 (11)

where Q is not negative define matrix. The objective function means how to select the

control, ku , so as to keep the surplus resources and the demand offset to a minimum .

The formulas (7), (8), (11) denote state equation, measurement equation and per-
formance index function respectively. This is a Linear Quadratic Gaussian (LQG)
model [9]. According to separate principle, the problem may be divided into feedback

 A Stochastic Control Model for Hierarchical Grid Service 77

control and state estimate. The feedback state is Kalman Filter. In order to make equa-
tion (13) minimum, the optimal control is:

1|ˆ −−= kkkk xFu (12)

where 1|ˆ −kkx denotes the estimate of state kx . The feedback control gain is:

1
1

1][+
−

++= k
T

k
T

k PBBPBIF (13)

=
+−+= +

−
+++

QP

PBBPBIBPQPP k
T
kk

T
kkkk

0

1
1

111][
 (14)

The state optimal estimate, 1|ˆ −kkx , is:

]ˆ[ˆˆ 1|1||1 −−+ −++= kkkkkkkkkk xyGuBxx (15)

The gain of Kalman Filter is:

=

+−+=

+=

−
−

−−−+

−−

00|1

1|
1

1|11|11||1

1|21|

][

][

RS

SSRSRSS

SRSG

kkkkkkkkkk

kkkkk

 (16)

where R0 is the variance of random variable x1.
Therefore, the surplus resources and the reserved resources of each tier of the hier-

archical grid service system are:

+=

+=
s
kk

f
k

s
kk

f
k

uuu

xxx
 (17)

6 Simulation Analysis

In this section, we present results from a simulation study. The results show that by
using the policy obtained from the stochastic control theory, we can not only maintain
the system stability, but also reduce the variability caused by the input disturbance. As
a result, the system can reduce the amount of uncertainty in the cost of hosting a grid
service.

We assume the system has n=5 users, m=3 grid service nodes. In the noise condi-
tion, kw submit to random normal distribution, i.e.

),0(~ 2
wk Nw σ , 01.02 =wσ . The covariance matrix:

R1=diag(0.0095,0.0088,0.0061,0.0071,0.0077,0.0102,0.0083,0.0124).
),0(~ 2

vk Nv σ , its covariance matrix :
R2=diag(0.0083,0.0123,0.0072,0.0092,0.0063,0.0108,0.0080,0.0109).

78 Z. Tian et al.

The initial condition Tx1 =(0 1 1 0 0 0 1 0), its covariance matrix
R0=diag(0.05,0.05,0.05,0.05,0.05,0.1,0.1,0.1).
L=[0.2 0.4 0.2 0 0.1;0.6 0.5 0.8 1 0.8;0.2 0.1 0 0 0.1], k=7

Fig. 2. The Curve of parameter y1 with time k

Fig. 3. The Curve of parameter y2 with time k

Figure 2 and figure 3 show how the control strategy varies with the state. The pa-
rameter y1 denotes the effect of the users demand disturbance in grid service tier, and
y2 does in AD tier. In both figures, x-axis presents time k, and y-axis presents y1 or y2.
As shown in the plot, when time, k, increases, the effect factor of the system, y1 or y2,
decreases. But the fluctuation in figure 2 is greater than that in figure 3. This shows
that the effect subjected to in grid service tier is bigger than in the AD tier, i.e. the
higher the tier is, the bigger the effect is. Therefore, we conclude that the stochastic
control approach significantly reduces the disturbance of users demand of hosting of a
dynamic grid service.

 A Stochastic Control Model for Hierarchical Grid Service 79

7 Conclusion

This work introduces a stochastic control model for deployment and hosting of a
hierarchical grid service. The objective of the model is to produce policies to keep the
costs to a minimum while maintaining the quality of service (QoS). The model is
useful for making resource deployment decisions in the face of such uncertainties as
random demand for the service. By employing a stochastic control approach, we ob-
tain a solution of how to control the total cost in case of random users demand. When
the users’ demand produces a disturbance, the orders placed by the users will change.
Meanwhile, this tier provides the downstream layer with users demand information.
Furthermore, the disturbance will increase continuously from user tier to node tier.
We quantify the effect by defining two parameters and produce a stochastic control
algorithm. At last, a simulation experiment confirms that our mode can reduce the
total cost and has a good performance.

Our work does not provide each tier of the hierarchical grid service framework
with complete access to users demand information. When all layers of the framework
share demand information, whether the effect still exists will be our future research
topic.

References

1. I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable virtual
organizations. International Journal of Supercomputer Applications, 15(3), 2001.

2. I. Foster et al. Grid services for distributed system integration. Computer, 35(6), 2002.
3. D. England and J. B. Weissman, A Stochastic Control Model for the Deployment of Dy-

namic Grid Services, 5th. IEEE/ACM International Workshop on Grid Computing. 2004.
4. J. B. Weissman, S. H. Kim, and D. A. England. A Dynamic Grid Service Architecture. in

submission, 2004.
5. J. B. Weissman and B. D. Lee. The service grid: Supporting scalable heterogenous services

in wide-area networks. In IEEE Symposium on Applications and the Internet, 2001. San
Diego, CA.

6. J. B. Weissman and B.-D. Lee. The virtual service grid: An architecture for delivering high-
end network services. Concurrency: Practice and Experience, 14(4):287.319, Apr. 2002.

7. R. Buyya et al. Economic models for resource management and scheduling in grid comput-
ing. Concurrency and Computation: Practice and Experience, 14(13-15):1507.1542, 2002.

8. R. Wolski et al. Grid resource allocation and control using computational economies. In F.
Berman, G. Fox, and A. Hey, editors, Grid Computing: Making the Global Infrastructure a
Reality, chapter 32, pages 747~769. John Wiley and Sons, 2003.

9. Guo shanglai. A Stochastic Control, Tsinghua University, Beijing, 2000: 185~203.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 80 – 83, 2005.
© IFIP International Federation for Information Processing 2005

Service-Based Grid Resource Monitoring with Common
Information Model

Hongyan Mao, Linpeng Huang, and Minglu Li

Department of Computer Science and Engineering,
Shanghai Jiaotong University,Shanghai 200030, China
{mhy, lphuang, mlli}@sjtu.edu.cn

Abstract. The monitoring of grid environments helps administrators and users
keep track of the availability and loading of resources, and the management of
resources is dependent on the monitoring of information data. There is not an
efficient and consistent monitoring mechanism to the manipulation of devices,
resources and services in Grid computing. We propose a novel monitoring
framework used to gather and retrieve monitoring information of Grid envi-
ronments. The monitoring system RMCS integrates and extends the existing
monitoring system using service-oriented mechanism and the common informa-
tion model CIM. The RMCS defines a hierarchical structure of monitoring re-
sources, and customizes the monitoring parameters and the display way. The
adoption of CIM-based monitoring service enables compatible with other grid
services such as grid portal, transaction or resource management and charging.
The investigation shows that this monitoring approach provides the scalable
monitoring capabilities, enables to exchange information in an unrestricted and
flexible way, and improves grid performance and utilization.

1 Introduction

Grid technology enables sharing and accessing distributed resources that how to man-
age the performance and status of these resources is a challenging research [1]. The
management of resources is dependent on the monitoring of information data that
displays every node status, historical cpu and memory latency and network loading.
GMA specification defines the Grid monitoring architecture in terms of the producer-
consumer model [2]. The Ganglia system gives the graphics mode for monitoring the
cpu, memory and loading performance of clusters and nodes [3]. M.A. Baker and G.
Smith implement the monitoring prototype that provides the Grid sites map and the
status of each site’s MDS server [4]. The Vega project depicts the topology structure
for the grid environments based on LDAP directory service [5]. There are limitations
about the existed monitoring system and network. Administrators and users can only
get and view the monitoring data in a fixed way, not customize the monitoring infor-
mation according to domain-specific or user-specific favor. These approaches do not
provide a general monitoring model that can be used in different scenarios and envi-
ronments. We propose a novel monitoring strategy based on the common information
model (CIM), which describes the overall management information of network and
enterprise environment including devices, systems, applications. This monitoring

 Service-Based Grid Resource Monitoring with Common Information Model 81

system RMCS built on the services-oriented policy and CIM mechanism provides a
standard and unified framework for monitoring logical and physical objects of grid
environments. The RMCS organizes the monitoring object in a hierarchy structure
that is scalable and extensible, building on which, we can set up the monitoring in-
formation according to diverse requirements.

Following the first section, section 2 briefly discusses the common information
model. Section 3 elaborates the monitoring architecture, the representation of re-
sources and the implementation mechanism. Finally, a short conclusion summarizes
the work done and proposes the future research.

2 Common Information Model

The Common Information Model (CIM) is a model for describing information of
network or enterprise environments [6]. An essential aspect of the CIM approach is
the preservation and extension of traditional information resources. The CIM schema
enables developers to describe monitoring data in a standard format so that it can be
shared among a variety of applications. The CIM-XML encoding specification uses
XML elements to represent CIM classes and instances. Aimed at particular grid envi-
ronments, we design the schema of devices, system, network and applications by
extending the core schema.

3 The Service-Oriented Resource Monitoring with CIM

3.1 The Resource Monitoring Architecture

In order to process raw information and efficiently analyze diverse network and ap-
plications, we propose a novel resource monitoring approach, which is based on CIM
to describe and monitor information data. The architecture of the monitoring system
RMCS is given in Fig.1.

There are many monitoring applications in grid and enterprise environments. The
application generates requests to the CIM object management (CIMOM). The CIM-
XML is responsible for the request and response of monitoring messages between
Client and CIMOM. The CIMOM parses and handles these requests using the schema
repository, and deals with communications between applications and providers. In the
schema, the information of monitoring environments is organized consisting of a set
of classes, properties, methods, and associations. The schema is intended as a basis
for platform and domain-specific extensions. The schema information is stored in the
repository. When the request coming, CIMOM searches the corresponding schema in
repository. The provider interacts with monitoring objects such as operating system,
network and application, and retrieves the information data. The separation of the
abstract service description from a corresponding service implementation enables
providers to realize services according to the local environment without restricting or
implying a particular implementation.

82 H. Mao, L. Huang, and M. Li

M o n ito r in g
a p p lic a tio n

C IM O M S c h e m a

P ro v id e r

M o n ito re d o b je c t

R ep o s ito ry

E n te rp r ise
a p p lic a tio n

O p era tin g
S y s te m

N etw o rk A p p lica tio n

R e p o s ito ry

C IM -X M L

Fig. 1. The resource monitoring architecture

3.2 The CIM Based Monitoring Resource Representation of Grid Environments

In grid computing, we need to monitor and manipulate a large number of hardware
and software components. Many resources possess the same properties and behaviors
so that we adopt the hierarchical structure to depict grid elements. We use classes to
describe resources, and associations to define the dependency and aggregation rela-
tionships between objects. Building on the common information model, the schema of
every element is represented such as network card, disk, router and application. Every
object is depicted using the Managed Object Format (MOF) description language [7,
8]. However CIM does not provide all the classes of various applications, so we have
to extend CIM schema by adding new subclasses and associations with properties and
methods to express the monitoring resources.

3.3 The Mapping Between Monitoring Object and CIM Schema

The operating system is investigated to show how to describe the monitoring object,
and define the mapping from objects to CIM schema. The operating system is de-
scribed a series of classes that Cpu, Memory and Process are subclass of Operating
system. The Managed Object Format (MOF) files contain the definitions of class and
instance, which are automatically imported into the CIMOM by management tool.
The repository allows the extract from repository to MOF format containing usable
monitoring data. CIMOM searches the registry information in the CIM schema re-
pository.

3.4 The Implementation of RMCS

We have described the monitoring object and the schema, and then build the devel-
opment in linux platform that uses Apache server as web server and Pegasus as CIM
server. Pegasus is an open-source object manager for CIM objects. It includes the
object manager, a set of defined interfaces, and SDKs for client, providers, and ser-
vices extensions. The various monitoring services are automatically mapped to

 Service-Based Grid Resource Monitoring with Common Information Model 83

resource instrumentations. The provider returns the values of the monitoring compo-
nent according to users’ customized parameters and it contains a list of resources
instances. The RMCS makes administrators and users define a wide variety of moni-
toring resources, specify the monitoring parameters and the display way.

4 Conclusions

We present a novel approach with CIM for the resource monitoring of grid environ-
ments. The resource monitoring system RMCS built on CIM and service is given that
provides a general monitoring model for different scenarios and environments. It uses
the hierarchical structure to define and represent the monitoring elements as classes
and associations. The RMCS integrates the existing monitoring architecture, allows
exchanging information in a flexible way. As well, the adoption of CIM-based moni-
toring service enables compatible with other grid services. In future, we will dedicate
the perfection of the RMCS such as addressing the recovery of CIMOM failure, and
apply to more grid and enterprise environments.

References

1. B. Bartosz, B. Marian Bubak, F. Włodzimierz et al. An infrastructure for Grid application
monitoring. LNCS, Vol 2474 2002.

2. B.Tierney, R. Aydt, D. Gunter et al. A Grid Monitoring Service Architecture. Global Grid
Forum White Paper, 2001.

3. M.L. Massie, B.N. Chun, D.E. Culler. The Ganglia Distributed Monitoring System: Design,
Implementation, and Experience. Parallel Computing 30, pp 817–840, 2004.

4. M.A. Baker and G. Smith. A Prototype Grid-site Monitoring System. Version1. DSG Tech-
nical Report, January 2002.

5. http://www.vaga.com, VEGA GOS V1.1 manual.
6. Common Information Model (CIM) Specification. Distributed Management Task Force

Version 2.2, 1999.
7. K. Alexander, K. Heather, S. Karl. Towards a CIM Schema for RunTime Application Man-

agement. 12th International Worshop on Distributed Systems: Operations and Management,
France, 2001.

8. Specification for the Representation of CIM in XML Version 2.0. Distributed Management
Task Force, July 1999.

Distributed Gridflow Model and Implementation

Cheng Bo, Qihe Liu, and Guowei Yang

College of computer science and engineering,
University of Electronic Science and Technology of China,

Chengdu 610059, P.R. China

Abstract. In this paper, we proposed distributed and adaptive grid
workflow net model. Which applies the Coloured Petri net as the formal-
ism to describe grid process, and proposed the formal method for grid
services to composite the gridflows. And also proposed the multi-agent
based implementation for gridflow net model.

1 Introduction

The Open Grid Service Architecture (OGSA) tries to address the challenge to in-
tegrate services spread across distributed, heterogeneous, dynamic virtual orga-
nizations [1]. Which required to composite grid services into gridflows to gain grid
goals. Gridflow faces many uncertain factors such as unavailability, incomplete
information and local policy changes [2]. Therefore, we proposed the coloured
petri net based adaptive gridflow net model.

2 CPN Based Gridflow Net Model

CPN [3][4] which extends the formalism of classical Petri net [5] by allowing
a token to be of a specific distinguished colour. The sound mathematical foun-
dation behind the CPN makes it a very useful tool for model distributed systems.

Definition 1. (Coloured Petri Net, CPN) A CPN is a tuple,

CPN = (Σ,P, T,A,N,C,G,E, I) (1)

(1) Σ is a finite colour set specifying the type of tokens.
(2) (P, T,A) means basic Petri Net. P is the places set, T is the transitions set,

A ⊆ T × P ∪ P × T is the acres set.
(3) N is a node function defined from A into P × T ∪ T × P .
(4) C is a colour function defined from P into C.
(5) G is a guard function from T to expression as such,

∀t ∈ T :[Tpye(G(t)) = Boolean ∧ Type(V ar(G(t))) ⊆ C]
(6) E is an arc function from A to expression as such,

∀a ∈ A:[Tpye(E(a)) = C(p(a)) ∧ Type(V ar(G(a))) ⊆ C]
(7) I is an initialization function from A into expression as,

∀p ∈ P : [type(I(p)) = C(p)MS]
where,C(p)MS denotes the multi-set over a set,Type(v) denotes the type of
a variable , var(exp) denote the type of variable in expression.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 84–87, 2005.
c© IFIP International Federation for Information Processing 2005

Distributed Gridflow Model and Implementation 85

Definition 2. (Gridflow Net, GFN) A Distributed Gridflow Net is a tuple,

GFN = (CPN, i, o) (2)

(1) IN and OUT are subsets of P , IN which has one element is a set of workflow
start places, and OUT which may have one or many elements is a set of
terminal places formal description. IN,OUT ∈ P : | IN |= 1, | OUT |≥ 1,
and ∀i ∈ IN,• i = Φ;∀o ∈ OUT, o• = Φ.

(2) ∀x ∈ P ∪ T ∧ x ∈ IN ∧ x ∈ OUT, x is on the path from i ∈ IN to o ∈ OUT .

3 The Algebra of Gridflow Composition

Basic gridflow structure as sequence, parallelism, choice and iteration are foun-
dations to composite the gridflow. The grammar is as such,

Grammar ::= GS ∝ GS|GS ◦ GS|GS ‖ GS|λGS (3)

where, GS represents a atomic grid service. GS ∝ GS represents sequence struc-
true which is defined as an ordered series of grid services. GS ◦GS represents a
choice structure which is selected to execute grid services at run-time when its
associated conditions are true. GS ‖ GS represents a parallel structure which
means the grid services are performed concurrently. λGS represents a iteration
structure which means to perform a grid service for certain number of times. The
basic gridflow structure can be used to construct many complex grid workflows.

4 Formal Composition for Grid Services

Grid service can be mapped into a Petri net [6]. The basic control flows of grid
services composition is represented as sequential,parallel, choice and repetition.

i T
i

Gs
1

i
1

o
1

T
o

o

i
2

o
2

Gs
2

Fig. 1. The parallel composition for grid services

The parallel grid services composition GS ‖ GS is as in Figure 1. Defined as,

GS1 ‖ GS2 = (ID,GSD,GSP,GRS,GFN) (4)

86 C. Bo, Q. Liu, and G. Yang

where ID is the parallel grid workflow symbol. GSD is the grid services domain.
GSP is the grid services prividers. GRS = GR1∪GR2 is the resources set which
required by parallel grid workflow. GFN = (CPN, i, o) , where Σ = S1 ∪ S2,
P = P1 ∪ P2 ∪ {i, o},N = N1 ∪ N2, T = T1 ∪ T2 ∪ {Ti, To}, A = A1 ∪ A2 ∪
{(i, Ti), (Ti, i1), (Ti, i2), (o1, To), (o2, To), (To, O)}

5 Gridflow Net Model Implementation

Multi-agent based gridflow implementation built on Globus Toolkit and Aglet
platforms. Globus Toolkit based on open-standard grid services which provide for
resource monitoring, discovery, and management, security and so on. Aglets is a
Java environment for mobile agents [7] development and implementation which
is designed to exploit the strengths of platform independence, secure execution,
dynamic class loading, multithreaded programming and object serialization[8].
The gridflow net implementation is as Figure 2.

Gca represents gridflow composition agent. Which is responsible to composite
formal grid services into gridflow based on colour petri net, and also contains all
necessary related information to be required by the grid workflow control agent.
Mma represents monitoring mobile agent. Which is responsible for monitoring
the grid nodes fault status periodically. The planning and checking algorithm [9]
is embeded into Mma to detect the grid nodes fault status and share the status
among grid domains. Wca represents gridflow control agent. Which is respon-
sible for scheduling and rescheduling grid services to re-composite the gridflow
dynamically. When demands from predefined gridflow occur, monitoring mobile
agent can detect the deviations, then migrate to workflow control agent server
to negotiate and decided which grid services should be invoked with the DAML-

public private

Grid

Services

Grid

Services

Grid

Services

Mma

OntologyOntology

Main ontology

Oma

Mma

Oma

Mma

Oma

Mma

Grid Process

Grid Domain

Request

Dma

Dma

Dma

Dma

Oma

Open grid services architecture

Registry

Dma

Grid Domain

Ontology Ontology

Oma

Mma

Grid Domain Grid Domain

Gca Wca

Fig. 2. Gridflow Net Model Implementation

Distributed Gridflow Model and Implementation 87

S based ontology to adapt the dynamic changing grid. Then pass the related
information to dispatch mobile agent. Dma, represents dispatch mobile agent.
Which is responsible for interpreting the gridflow definition and controls the in-
stantiation of gridflow processes. Which can migrate from one grid domain to the
other domain to execute the corresponding grid services specified by Gca. Oma,
represents ontology mobile agent. Different grid domain has different ontology.
Oma can translate the similar concepts among grid domains. Oma can move to
different grid domains to exchange and share the domains knowledge to make
the simlar concepts understandable in different grid domains.

6 Conclusions and Future Work

We mainly introduce the Coloured petri net based distributed Gridflow process
model and describe the formal composition for Grid services. Also proposed
agent-based adaptive Gridflow implementation. Gridflow security is a another
key problem. In the future, we will focus on the access control for the gridflow.

References

1. Foster, I, et al: “The Physiology of the Grid: An Open Grid Services Architecture
for Distributed Systems Integration”. OGSA WG Global Grid Forum, June (2002)

2. Jia Yu and Rajkumar Buyya: “A Novel Architecture for realizing GridWorkflow us-
ing Tuple Spaces”. In proceedings of the Fifth IEEE/ACM International Workshop
on Grid Computing. (2000) 119-128

3. K. Jensen: “Coloured Petri Nets. Basic Concepts, Analysis Methods, and Practi-
cal Use”. Monographs in Theoretical Computer Science. Springer Verlag. 1-3(1992-
1997)

4. Dongsheng Liu: “Modeling workflow processes with colored Petri nets”. computers
in industry. 49(2002) 267-281

5. Zhijie Guan, Francisco Hernandez, and Purushotham Bangalore: “Grid-Flow: A
Grid-Enabled Scientific Workflow System with a Petri Net-Based Interface”. Ac-
cepted for publication in Concurrency and Computation: Practice and Experience,
Special Issue on Grid Workflow. 2005

6. Rachid Hamadi, Boualem Benatallah: “A Petri Net-based model for Web service
composition”. In Proceedings of the 14th Australasian Database Conference. Aus-
tralian Computer Society. February (2003) 191-200

7. Juan R. Velasco1 and Sergio F. Castillo: “Mobile agents for Web service compo-
sition”. In Proceedings of 4th International Conference on E-Commerce and Web
Technologies. Lecture Notes in Computer Science. september (2003) 135-144

8. Ian Gorton, Jereme Haack, and David McGee,et al: “Evaluating Agent Architec-
tures: Cougaar, Aglets and AAA”. Lecture Notes in Computer Science. Springer-
Verlag. 2490(2004) 264-278

9. Alexander Lazovik: “Planning and Monitoring the Execution of Web Service Re-
quests”. Proceedings of international conference of Service-Oriented Computing.
June (2003) 335-350

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 88 – 96, 2005.
© IFIP International Federation for Information Processing 2005

A Secure P2P Video Conference System for Enterprise
Environments

Fuwen Liu and Hartmut Koenig

Brandenburg University of Technology Cottbus,
Department of Computer Science,

PF 10 33 44, 03013 Cottbus, Germany
{lfw, koenig}@informatik.tu-cottbus.de

Abstract. Many emerging group oriented and collaborative applications such as
audio/video conferences use the peer-to-peer (P2P) paradigm. Confidentiality is
an often demanded feature for such applications, e.g. in business meetings, to
provide group privacy. How to build a secure P2P video conference system is
still an open issue. In this paper several possible solutions are discussed. We
present a security architecture used for P2P video conferences that ensures con-
fidential talks in an enterprise environment whose branches might be geo-
graphically dispersed.

1 Introduction

Video conference technology has been well studied and standardized by ITU-T in the
H.323 recommendation [1]. H.323 based systems adopt the client-server communica-
tion model in which two centralized servers are applied to supporting group meetings:
the gatekeeper for the group management and the MCU (multipoint control unit) for
the distribution of the media streams. Although these systems are widely available,
they possess several technical drawbacks. They are subject to a single point of failure
and might become a performance bottleneck. Moreover, they are still pretty expensive
what limits their wide deployment.

A P2P conference system as alternative approach is characterized by a distributed
approach. All group management and media distribution functions of the system are
assigned to the peers. The communication runs directly between the peers without
passing a server. Thus, the drawbacks of H.323 based systems are basically elimi-
nated. Peer-to-peer conference systems are well suited to setting up spontaneous con-
ferences, because they do not depend on a certain infrastructure. So far only a few
P2P video conference approaches have been reported like BRAVIS [2], DAVIKO [3],
and the P2P-SIP architecture [4].

Security is of primary concern for such conference systems which are mainly de-
ployed in closed environments, e.g. an enterprise whose branches are geographically
dispersed, where they are usually used to discuss or to negotiate business topics. To
protect H.323 based systems ITU-T released the recommendation H.235 [5] which
specifies a security framework. This framework is not applicable to P2P conferences.
Approaches dedicated to securing P2P conference systems have not emerged, yet. In
this paper, we propose such a security architecture and show how it can be incorpo-

 A Secure P2P Video Conference System for Enterprise Environments 89

rated into a P2P conference system using our video conference system BRAVIS as
example. The remainder of the paper is organized as follows. After introducing the
P2P video conference system BRAVIS in Section 2 we briefly describe the security
requirements for a P2P video conference in Section 3. Next in Section 4, we discuss
possible solutions for this issue. In Section 5 we introduce appropriate security archi-
tecture and show how it has been integrated in the BRAVIS system. Final remarks
conclude the paper.

2 BRAVIS

BRAVIS [2] is a P2P multiparty video conference system designed for supporting
collaborative groups in closed environments over the Internet. The essential technical
features of BRAVIS system are following.

Hybrid P2P Model
The P2P communication model distinguishes between pure and hybrid P2P models
[6]. BRAVIS uses a hybrid P2P model. A SIP registrar is integrated in the system to
allow peers registering their current IP address and retrieve the current IP addresses of
the other peers for invitations. The hybrid model was chosen for two reasons. (1) No
central authority is responsible for security related management functions like the
identity management and the public key management in pure P2P systems what
makes them prone to Sybil attacks [8], i.e. identity forgery. This allows an attacker to
use different identities to attend conferences. To address this problem, a certificate
authority (CA) was introduced in our system to centrally control the identities and the
public keys. (2) Only one lookup operation is needed to locate a user when using the
hybrid P2P model. In contrast, a pure P2P model like Chord [7] requires O(logN)
lookup operations for the same purpose.

Fig. 1. Decentralized group management in the BRAVIS system

Figure 1 shows a four peer conference example and system structure at each peer.
All peers of the group are assigned identical capabilities and properties. They use the
same system structure, i.e. all system control modules (group management module,
floor control module, QoS module), and the media modules (video manager, audio

90 F. Liu and H. Koenig

manager, and whiteboard) are available at each peer. Thus each peer has the ability to
supervise the composition of the group, to control the access to shared resources, and
to tune QoS parameter without calling any additional server. Furthermore, media data
transmissions take place among the peers involved in the current conference directly.

The system control modules run on top of the decentralized group communication
protocol GCP [9] [10] which ensures the consistency of the conference control data
among the peers. Based on this all peers possess the same view on the actual group
state and can uniquely decide all group related issues by themselves, e.g. QoS pa-
rameter settings or floor assignments. GCP achieves this by providing virtual syn-
chrony [11] to the upper layer modules. It assures that no data are lost, that data are
delivered in the order as they are sent, and that all peers are updated equally.

3 Security Requirements

Like other commonly used applications in the Internet, e.g. E-mail, a secure P2P con-
ference has to support the well-known basic security features: confidentiality, integ-
rity, authentication, and access control. Due to its decentralized structure and the real-
time communication, a secure P2P conference system should meet some additional
requirements beyond these basic demands:

End-to-End Security
Usually two kinds of security services can be offered in an enterprise network: end-to-
end security, or site-to-site and site-to-end security, respectively. The so-called end-
to-end security means that messages are securely delivered from the sender’ host to
the receiver’s host and that they are not accessible to any intermediate node or server
along the transmission path. Site-to-site and site-to-end security mean that messages
are merely protected during WAN transmission, while they are transmitted in the
plaintext form within the site scope.

It is obvious that P2P conferences have to apply end-to-end security for several
reasons: (1) Security threats occur not only during WAN transmission but also at local
site as indicated in [12]. A significant number of threats originate from insiders. (2) In
order to protect enterprise business secrets, enterprises demand that business informa-
tion should be only accessible to group members but not to people outside the group,
even if they belong to the same enterprise.

Group Key Management
In a secure P2P conference usually more than two participants are involved. A group
key management protocol rather than a two-party key exchange protocol has to be
applied to securing group communication. Two-party key exchange protocols are
inefficient for group communication, because each member has to negotiate an indi-
vidual key with the other group members. Each message sent to the group has to be
separately encrypted with the respective keys of the group members, i.e. n-1 encryp-
tions are required. A group key needs only one encryption.

Flexible Security Policy Enforcement
The security policy determines the desired protection level of a conference and speci-
fies the security algorithms to be applied. The security policy of a P2P conference
should be determined by the participants themselves rather than by a dedicated net-

 A Secure P2P Video Conference System for Enterprise Environments 91

work administrator when running the conference, since a P2P conference is autono-
mous and consists of a transient group. The applied policy should be allowed to be
attuned in the course of the conference to provide more flexibility for users.

Efficiency
Security always imposes additional processing burdens on the system. These burdens
may pose a negative impact on the quality of service (QoS). For example, a secure
conference incurs longer end-to-end communication delays due to message encryp-
tion/decryption. Therefore, the deployed algorithms and protocols should be efficient
enough to meet the strict QoS requirements of real-time communication.

4 Overview of Possible Solutions

Nowadays virtual private networks (VPNs) are mostly applied for securing the com-
munication across public networks. VPN functions can be introduced at different
levels of the layered structure of the TCP/IP protocol stack. Correspondingly, there
exist four kinds of VPNs: data link layer VPN, IPsec VPN, SSL VPN, and application
layer VPN as shown in Figure 2.

Fig. 2. Kinds of VPNs

Data Link Layer VPNs
Data link layer VPNs could be constructed using one of three protocols: Point-to-
Point Tunneling Protocol (PPTP) [13], Layer 2 Forwarding (L2F) [14], and Layer 2
Tunneling Protocol (L2TP) [15]. They were commonly applied to dial-up communi-
cations between a mobile user and the gateway of its enterprise network to provide
site-to-end security rather than end-to-end security when they are used with IPsec
together.

IPsec VPNs
IPsec VPNs are enterprise networks which are deployed on a shared infrastructure
using IPsec technology. The most important advantage of IPsec is that it is transparent
to applications. Any IP based applications without modifications can get total protec-
tion when it is deployed. However, several disadvantages inherently exist when it is
used for a P2P conference.

 Inflexible security policy enforcement
Prior to the deployment of an IPsec VPN, the associated security policies must
be manually configured in the related IP nodes. This specific task is usually only
allowed for the network administrator but not for general users, because IPsec is
implemented in the kernel [16].

92 F. Liu and H. Koenig

 Difficulty to offer end-to-end security
IPsec VPNs operate at the network layer which is the lowest layer to provide
end-to-end security in theory, but in practice IPsec VPNs rarely adopt a host-to-
host architecture to provide end-to-end security for data transmission. This is
because the configurations (e.g. security policy enforcement) on each host have
to be manually carried out by the network administrator. This is an unbearable
burden for the system administrator, especially for a large number of users [17].

 Inefficient group communication
Currently IPsec does not support a group key management but only a two-party
key management.

SSL VPNs
SSL VPNs are based on the commonly used protocol SSL (Secure Socket Layer) for
secure data transmissions at the transport level. It was standardized by IETF where it
is called TLS [18]. SSL VPNs are extensively used in HTTP-based applications to
provide end-to-end protection between client and server. Like IPsec VPNs, there are
problems for their use in P2P conferences:

 Inefficient group communication
This is simply because the handshake protocol of SSL deals with the key man-
agement only for two parties rather than for the whole group members.

 Merely supporting TCP-based applications
SSL merely supports TCP based applications, since its design assumes that the
underlying layer offers a reliable transport. If SSL is applied in connection with
UDP based applications, packet losses are viewed as security breaks that force to
release the communication [18].

Application Layer VPNs
Application layer VPNs use the security functions embedded in the respective appli-
cations. Due to its embedded implementation it can provide a more tailored protection
compared to the underlying layer VPN technologies. Moreover, appropriate security
algorithms and protocols such as a group key management protocol could be readily
integrated into the system to meet the security requirements mentioned in Section 3.
The major drawback of application layer VPNs is that some modifications have to be
made in the applications to add these security functions. The designed security archi-
tecture is solely available for the designed application.

Table 1. Comparisons of VPNs

 Security requirements

Date link
layer VPN

IPsec
VPN

SSL
VPN

Application
layer VPN

Basic security services Yes Yes Yes Yes
End-to-end security No Difficult Yes Yes
Group key management No No No Yes
Flexible security policy enforce-
ment

No No Difficult Yes

Supporting TCP and UDP-based
applications simultaneously

Yes Yes TCP only Yes

Transparent to applications Yes Yes Yes No

 A Secure P2P Video Conference System for Enterprise Environments 93

Summary
Table 1 shows that Data link layer VPNs and SSL VPNs are inappropriate for P2P
conferences, because the first one does not provide end-to-end security and the latter
one does not support UDP based applications. A straightforward solution would be
the direct use of existing IPsec VPN infrastructure to support a P2P conference. Un-
fortunately, IPsec VPN is scarcely used in a host-to-host fashion to support the end-
to-end security. Moreover, missing group key management and inflexible security
policy enforcement make it difficult for IPsec VPNs to supporting P2P meetings in a
dynamic and efficient manner. To fully meet the security requirements of P2P confer-
ences the design of dedicated security architecture seems the most appropriate way,
even it is more costly.

5 Secure BRAVIS System

In this section we introduce the security architecture designed for our P2P conference
system BRAVIS. Our aim is to ensuring confidential P2P meetings on an end-to-end
basis. For this purpose, a security layer has been inserted in the BRAVIS architecture
presented in Section 2. It has been placed between the application and the communica-
tion layer. The resulting structure of the secure BRAVIS system is depicted in Fig. 3.

Fig. 3. Secure BRAVIS system

The security layer is composed of several modules. Each module fulfills a dedi-
cated security function. They are shortly explained in the sequel.

Security Policy Module
This module decides which security level and what kind of security algorithm are
enforced for the conference. Four security levels are distinguished. A level zero con-
ference corresponds to a normal conference, where no special security function is
applied. In a level one conference the joining of the group involves a mutual authenti-
cation, but the data exchange is not further protected. A level two conference besides
the mutual authentication encrypts all signaling data and one or two media streams
(video, audio, or whiteboard). Level three conferences are the most secure ones. All
exchanged data are protected. The entrance into the conference is only allowed after

94 F. Liu and H. Koenig

the successful mutual authentication. In addition, two different operation modes for
managing the security policy were introduced: moderation and voting. In the modera-
tion mode, one participant is designated as moderator who solely decides all security
demands. When the moderator leaves the conference, he/she can hand over the mod-
eration right to one of the remaining members. In the voting mode all group members
share the same right to decide about the security policy. The security policy used in
the conference is determined by voting.

Access Control Module
In BRAVIS the entrance into the meeting is by invitation. Each participant in the
meeting can invite a new partner based on a social agreement with the other partners.
No constraint is imposed on the callers for their calling activities, but an access con-
trol is applied to the invitee. Each participant on its own decides who can invite it.
This is achieved by the use of an access control list (ACL) which is maintained by
each participant. When a participant receives an invitation message, the required mu-
tual authentication procedure is invoked. If this authentication is successful, the par-
ticipant will check its ACL to examine whether the inviter has the right to call
him/her. If true, it may accept this call.

Group Key Management Module
A decentralized group key exchange protocol used by group members to manage the
group key themselves should be deployed to match the P2P communication model.
Several protocols are available for this purpose such as TGDH [19], the protocol
proposed by Rodeh et al. [20], and others. However, they still possess shortages in
the respect of security and efficiency. To overcome these shortages we designed and
implemented an efficient and secure decentralized group distribution protocol for our
system, called VTKD (virtual token based key distribution) [21]. VTKD consists of
two parts: a mutual authentication of the partners and a secure key renewal. The
latter is triggered when the group composition changes, i.e. when members join or
leave the group. The public key signatures based mutual authentication between the
inviting group member and the invitee is invoked when a new member joins. This
ensures that the group key is only delivered to an authenticated member, while the
new member can be sure that the received key is in fact shared with the inviting
parties.

Data Security Module
The data security module is used to ensure the data confidentiality and integrity
during a conference. The participant can separately select different security algo-
rithms for the protection of the four kinds of data (video, audio, whiteboard, signal-
ing). Standard encryption algorithms are used to process audio, whiteboard, and
signaling data in real-time due to their small data size. For the real-time video trans-
mission, a specific encryption algorithm is needed to meet the stringent QoS re-
quirements and to handle the large amounts of video data (the bit rate of a MPEG2
video stream typically ranges between 4 and 9 Mbps [22]). The end systems in a
multiparty P2P video conference have to simultaneously compress/decompress and
encryption/decryption the outgoing video stream and all incoming video streams in
real-time. This imposes a high processing burden. Therefore, we developed a novel

 A Secure P2P Video Conference System for Enterprise Environments 95

video encryption algorithm [23] which is fast enough to meet real-time demands
with a sufficient security.

6 Final Remarks

P2P conference systems represent a new trend in the development of video confer-
encee systems. They provide a couple of interesting advantages compared to the tradi-
tional server based H.323 systems. Security is of primary concern for these systems to
ensure the confidentiality of the talks, especially when applied in enterprise environ-
ments. In this paper we analyzed the feasibility of VPN technologies to secure P2P
conferences. We showed that lower layer VPN technologies are not flexible enough
for P2P conference applications. We argued that a security architecture especially
designed for a P2P conference system (i.e. an application layer VPN) is a more ap-
propriate solution to meet the stringent security and efficiency requirements. As ex-
ample for such a security architecture, we presented the security solution applied in
our P2P video conference system BRAVIS [2].

References

1. ITU-T: Recommendation H.323 v5--Packet based multimedia communication systems.
July 2003.

2. The BRAVIS peer-to-peer video conference system. http://www.bravis.tu-cottbus.de.
3. The DAVIKO system. http://www.daviko.com.
4. D. A. Bryan and B. B. Lowekamp: Standards-Based P2P Communications Systems, Pro-

ceedings of the 2005 Virginia Space Grant Consortium Research Conference, April 2005
5. ITU-T: Recommendation H.235v3-- Security and encryption for H-series (H.323 and

other H.245-based) multimedia terminals. May 2003.
6. D. S. Milojicic, V. Kalogerali, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S. Rollins,

Z. C. Xu: Peer-to-Peer Computing. HP white paper HPL-2002-57, March, 2002.
7. I. Stocia, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan: Chord: A scalable

peer-to-peer lookup service for internet applications. In Proc. of ACM SIGCOMM 2001,
pp 149-160, 2001.

8. J. R. Douceur: The Sybil Attack. IPTPS’02, March 2002.
9. E. C. Popovici, R. Mahlo, M. Zuehlke, and H. Koenig: Consistency Support for a Decen-

tralized Management in Closed Multiparty Conferences Using SIP. In Proc. of IEEE
ICON 2003, pp. 295 – 300.

10. M. Zuehlke and H. Koenig: A Signaling Protocol for Small Closed Dynamic Multi-peer
Groups. In Z. Mammeri and P. Lorenz (eds.): HSNMC 2004, Springer LNCS 3079, pp.
973 – 984, 2004.

11. G. V. Chockler, I. Keidar, and R. Vitenberg: Group communication specifications: A
comprehensive study. ACM Computing Suryes 4 (2001) 427-469.

12. ITU-T manual: Security in Telecommunications and Information Technology. December
2003.

13. K. Hamzeh, G. Pall, W. Verthein, J. Taarud, W. Little and G. Zorn: Point-to-Point Tun-
neling Protocol (PPTP). RFC 2637, July 1999.

14. A. Valencia and T. Kolar: Cisco Layer Two Forwarding (Protocol) "L2F", RFC 2341.
May 1998.

96 F. Liu and H. Koenig

15. W. Townsley, A. Valencia, A. Rubens, G. Pall, G. Zorn and B. Palter: Layer Two Tunnel-
ing Protocol "L2TP", RFC 2661. August 1999.

16. R. Perlman and C. Kaufman: Key Exchange in IPsec: Analysis of IKE. IEEE Internet
Computing 2000

17. S. Frankel, K. Kent, R. Lewkowski, A. D. Orebaugh, R. W. Ritchey and S. R. Shama:
Guide to IPsec VPNs. NIST Special Publication 800-77, January 2005.

18. T. Dierks and C. Allen: The TLS protocol Version 1.0. RFC 2246, January 1999.
19. Y. Kim, A. Perrig, and G. Tsudik: Simple and fault-tolerant key agreement for dynamic

collaborative groups. ACM CCS 2000, pp. 235–244.
20. O. Rodeh, K. P. Birman, D. Dolev: Optimized Group Rekey for Group Communication

Systems. In Proc. NDSS 2000, pp. 39-48.
21. F. Liu and H. Koenig: An efficient key distribution protocol for small closed peer groups.

GI/ITG-workshop on peer-to-peer systems and applications. LNI Proceedings V.P-61, pp
163-167, 2005.

22. B. G. Haskell, A. Puri, and A. N. Netravali: Digital Video: An Introduction to MPEG-2. Klu-
wer Academic.

23. F. Liu and H. Koenig: A Novel Encryption Algorithm for High Resolution Video. In Proceed-
ing of ACM NOSSDAV’05, Stephenson, WA, USA, June 2005.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 97 – 104, 2005.
© IFIP International Federation for Information Processing 2005

Adaptive Query-Caching in Peer-to-Peer Systems*

Zuoning Yin, Hai Jin, Chao Zhang, Quan Yuan, and Chucheng Zhao

Cluster and Grid Computing Lab,
Huazhong University of Science and Technology, Wuhan, 430074, China

znyin@hust.edu.cn

Abstract. Peer-to-Peer (P2P) architectures are very prevalent in today’s
Internet. Lots of P2P file sharing systems using Gnutella protocol emerge out
and draw attractions of millions of people. The “flooding” search mechanism of
Gnutella makes it easy to be deployed, but also spawns numerous messages
which leads to serious scalability problems. However, the locality discovered in
both user’s share files and queries, enables us to use query-caching to shorten
the search length and reduce the messages traffic. This paper makes an
extensive study of query-caching in P2P systems and proposes an adaptive
query-caching mechanism to manage the cached query reply messages
according to the heterogeneity of the uptime of different peers. Along with
several other techniques we proposed, our approach achieves a 30% reduction
of average search length and a 61% reduction of query message traffic
comparing with the previous query-caching mechanisms in the simulation,
which indicates that our approach makes Gnutella more scalable.

1 Introduction

There are mainly two kinds of P2P systems: unstructured [1] and structured [2][3],
characterized by the search mechanism and the organization of peers. Due to the
simplicity of the flooding search and loosely coupled structure, the unstructured P2P
systems are more widely deployed than the structured ones. However the flooding
search also spawns numerous messages, making the system not scalable. Lots of
efforts have been made to tackle this problem, such as to limit the broadness of the
searching, such as random k-walker [4] and routing index [5], to use expanding ring
[4] and iterative deepening [6] to shorten the depth of the searching, to adjust the
topology in order to reduce the message traffic [7]. Besides, replication [8] is used to
enable peer to find desirable resources more quickly in time and shorter in distance.
To achieve this, query-caching [9][10] caches query reply messages in a passive way.

In query-caching, peers cache the query reply messages they received. When a peer
receives a query request, it searches its local share files as well as the cache.
According to previous researches [11] on Gnutella workloads, the locality is a distinct
characteristic in both users’ queries and share files, which enables a considerable
amount of queries hit in the cache. Hence the total message traffic and average search
length can be reduced.

* This paper is supported by National Science Foundation of China under grant 60433040.

98 Z. Yin et al.

However the current query-caching techniques [9][10] are rather simple and
unfledged. The cache management policy is mainly controlled by a fix period of time.
If a query reply message has stayed in the cache more than a threshold, the message is
evicted from the cache. In Gnutella, the uptime of peers is heterogeneously
distributed. Therefore, treating all cached query reply messages with the same
deadline is too simple to match this heterogeneity, which leads to an ineffective
exploitation of the contribution of query-caching. In this paper, we propose a new
mechanism called Adaptive Eviction to take peers’ heterogeneity of uptime into
consideration and to evict a cached query reply message (a cached record) according
to each peer’s uptime. Besides, we propose some additional techniques, such as
Exclude List and Cache Transfer. Exclude List is used to reduce the message
duplication and Cache Transfer prolongs the use of valid cached records.

This paper is organized as follows. In section 2, we discuss all the issues related to
the design of query-caching. In section 3, we perform the simulation to evaluate the
performance. Finally, we conclude in section 4.

2 Design of Query-Caching

We made modifications on the client of Limewire [12] to turn it into a crawler of the
Gnutella network. The crawling lasted for three weeks from April 5th to April 26th.
After the crawling, we found some supportive evidences to query-caching:

1) The uptime of a peer is growing longer. Only 25% of total peers have a short
uptime less than 30 minutes. Peers that have an uptime ranging from 1 hour to 8
hours account for 46% of total peers. The average uptime is 4.08 hours. This is
very significant to the deployment of query-caching, because the longer the
uptime of peers is, the better the overall performance of query-caching will be.

2) During one full session, peers seldom delete their shared files. More than 97%
peers will not delete their shared files during one full session (from the join of a
peer till its leave). Hence we can approximately regard that a peer will not delete
its shared files during its current session. Therefore the life cycle of files can be
ignored to simplify our design of the query-caching.

2.1 Design Considerations

Peers in Gnutella show a heterogeneous characteristic in uptime. Hence the design of
query-caching should consider this heterogeneity. Previous techniques employ a fix
time eviction policy. This strategy does reduce the average search length and the total
message traffic, but due to its simple design, it has two primary drawbacks: 1) To
those peers whose uptime is below the threshold, a cache hit gives false guidance,
because the origin peer of the cached record may have already left the network. 2) To
those peers whose uptime is beyond the fixed threshold. Eviction of such records
limits their contribution in the future.

The previous approaches neglect the duplication of query reply messages
generated by the cache. In Gnutella, a peer will not respond to the same query with
duplicate reply. With cache support, the duplication may happen. Those duplicated
messages increase the traffic on network, waste the processing capacity of peers and
eventually dispel the benefit of query-caching.

 Adaptive Query-Caching in Peer-to-Peer Systems 99

A peer’s cache will be inaccessible when the peer leaves the network. While the
cached records may still be useful, how to make full use of these valuable records is
also not addressed in previous approaches.

Our design tackles these problems, and Adaptive Eviction, Exclude List and Cache
Transfer are proposed to deal with the above three issues respectively.

2.2 Adaptive Eviction

Adaptive Eviction is the core part of our design. The word “adaptive” means that the
eviction is conducted according to each peer’s uptime, rather than treating every peer
uniformly. However, in the real environment, it is hard to attain the accurate uptime.
So we try to predict the uptime of a peer’s current session instead.

Every peer keeps track of the dynamic of its uptime. Then we get a sequence
Uptime1, Uptime2, Uptime3, ……, Uptimei, representing its uptime in different days.
We define transition Tr as a 2-tuple (Uptimei, Uptimei+1), where Uptimei and
Uptimei+1 are the uptime of two consecutive days (two consecutive sessions). If
Uptimei>Uptimei+1, the transition is regarded as a decrease change. Otherwise the
transition is regarded as an increase change. The value of a transition VTr is

i 1
Uptime Uptime

i
− + . A peer calculates the value of Decrease Change Ratio

(RatioDC) and Average Decrease Change Range (AvgRangeDC) as follows:

RatioDC =
the number of decrease changes

the number of all transitions

AvgRangeDC=
(decrease changes)

the number of decrease changes

V Tr
Tr

∈

A peer’s uptime of current session Uptimecurrent is predicted based on the peer’s
uptime of last complete session Uptimelast, AvgRangeDC, and RatioDC as follow:

Uptimecurrent = Uptimelast×(1-RatioDC×AvgRangeDC) (1)

The Uptimecurrent is always no more than Uptimelast in Eq.1. But in many cases, the
actual uptime of current session is longer than Uptimelast. Hence Eq.1 is a pessimistic
prediction.

Based on our trace data, we study the transition of about 190,000 peers and find
among all 13,467,602 transitions, over 65% are increase changes, 35% are decrease
changes. The distribution of the RatioDC is shown in Fig.1.

Fig.1 demonstrates that increase changes are more usual than decrease changes.
Therefore, the Uptimecurrent predicted in Eq.1 is a very conservative prediction and the
probability that the Uptimecurrent is longer than the accurate uptime can be low. Fig.2
shows the distribution of AvgRangeDC. There are over 30% peers with an AvgRangeDC
less than 0.3 and the average AvgRangeDC is about 0.5.

Furthermore, we can predict the uptime more conservatively as follow:

Uptimecurrent‘ = Uptimelast×(1-AvgRangeDC) (2)

100 Z. Yin et al.

 Fig. 1. The Distribution of RatioDC Fig. 2. The Distribution of AvgRangeDC

We use the real trace data to evaluate our prediction. We predict the uptime of the
last 3 days based on the statistics of the uptime of the first 18 days. By using Eq.1,
there are 22.7% predictions (totally 37,034,503 predictions) to be false predictions
(the predicted uptime is longer than the actual uptime). While using Eq.2, there are
only 10.3% predictions to be false predictions. This result proves that our
conservative prediction is feasible, especially by using Eq.2. By using Eq.2, we also
find that the average of predicted uptime is promising. The average of accurate
uptime is 6.56 hours, while the average of predicted uptime is 3.92 hours.

Adaptive Eviction is enforced as follow:

1) When a peer receives a query to be responded, it calculates the time (Tvalid) for
the validation of a query reply according to the predicted Uptimecurrent and the
current on-line time Uptimenow as Tvalid = Uptimecurrent - Uptimenow. Then it adds
Tvalid to the query reply message.

2) When this query reply message is received, if Tvalid is beyond a threshold h, the
message will be cached. The use of threshold h is to avoid caching those
messages with very small value of Tvalid. Obviously, those query reply messages
with a negative value of Tvalid will not be cached, because their original peers are
predicted to have left the network. The default threshold value here is set to half
minute.

3) Peerj periodically examines the cached records. The Tvalid of each record will be
subtracted during every check operation. If Tvalid is less then the threshold h, the
corresponding record will be evicted.

2.3 Exclude List and Cache Transfer

Duplicating query reply messages caused by query-caching may increase the message
traffic. So we add an exclude list to the query message. If a query is hit in a peer’s
cache, before the peer continues to flood the query to its neighbors, it adds the peers
with corresponding records in the cache into the exclude list. Thus when the query is
forwarded to next peer, the peers in the exclude list will be excluded from the
searching scope. Although this approach could not solve the message duplication
completely, it does provide an effective and light-weighted way to reduce a large
fraction of duplication. Exclude List eliminates the message duplication in a depth-
first way. To reduce duplication in a breadth-first way, random k-walker can be used
together with Exclude List.

 Adaptive Query-Caching in Peer-to-Peer Systems 101

When a peer is about to leave the network, the information in its cache may still
be valuable. So we can transfer the information of cache to some other peers that are
still online in order to prolong their contribution. However we must take care of the
choice of the destination of the transfer. We choose peers with a longer uptime.
Because when the cache information is transferred to a peer that is ready to leave, we
will face next transfer soon. Besides we should choose a peer with more connections.
A peer with more connections usually has more queries through it. This enables the
information to serve more queries. When most peers leave the network gracefully,
that is, their leaves are under controlled and not caused by power failure, the Cache
Transfer approach is a good supplement to query-caching.

2.4 Theoretical Analysis of Performance

We build a model to analyze the performance of query-caching. We use average
search length to evaluate the performance. The average search length also influences
the amount of message generated. We only consider a stable Gnutella network. We
do not consider the initial stage of the establishment or the final stage of the demise
of a Gnutella network. Due to the paper limitation, we only give the conclusions
directly.

The average search length for fixed time eviction is:

2
T

L
T

= −
∆

(3)

The average search length for adaptive eviction is:

{ } { }
(1)1 0 1 2 2

(1) 0

t N T
L P L P L dt

t t tN T

+ +
= = + =

+

�

�

{ } { }1 (1) 1 2 20(1)
N T P L P L dt

t tN T
+= = + =

+
�

�

(4)

T is the interval between the entering to a peer cache of two consecutive query
reply messages containing the same keyword. N is a value determined by

() (1)valid, , ,1 2

N T max T K N TjP P PK K Km

≤ < +� �
L

, where Pki stands for the peers whose shared

files contain keyword K and Tvalid is the time a record being cached. Pt{L=1} stands
for the probability that the search length is 1.

It can be observed that when the size of Gnutella network is big enough,
Pt{L=1}↑→1, Pt{L=2}↑→0. While for Eq.3, L0↑→2.

Therefore, Adaptive Eviction mechanism achieves considerable improvement
over the performance of fixed time eviction. The larger the Gnutella network is, the
more obvious the improvement is. However, the upper bound of the improvement is:

(2 1) /(2) 50%
MT T

T T

→ ∞
− − − ↑ →

∆ ∆

102 Z. Yin et al.

3 Simulations

In order to further evaluate our algorithm, we have designed a simulation. We set up a
network with 600 peers. 100 peers are ultra-peers and the rest are leaf nodes. The
ultra-peers are organized in a random graph. This setting is very similar to the real
setting of Gnutella network, the only deference is that all the parameters are reduced
by a ratio. Therefore, though a small peer size, our simulation can also represent the
condition of a network with a larger size.

Other parameters are set as follow: the number of files of a peer is conformed to
the Zipf(1.5, 25); the number of queries a peer issued is conformed to Zipf(2.0, 20);
the class level of keywords is conformed to Zipf(1.8, 40); the uptime of peers is
conformed to Zipf(1.2, 86400).

The simulation is set to last for a virtual time of 24 hours. During the simulation,
when a peer leaves, we add a new peer at the position where the previous peer was.
This provides a simple way to keep the network with a stable peer size, meanwhile
reflecting the dynamic of the Gnutella work. When a query has received 50 query
reply messages from 50 different peers, we think the query is satisfied and then stop
flooding of the query. Otherwise we continue flooding the query until the TTL of the
query becomes zero.

We have done six different experiments based on six different situations. They are:
1) Basic (without query-caching); 2) Fixed Time Eviction with a 5 minutes threshold;
3) Fixed Time Eviction with a 10 minutes threshold; 4) Adaptive Eviction; 5) Adaptive
Eviction plus Exclude List; 6) Adaptive Eviction plus Exclude List plus Cache Transfer.

As shown in Fig.3, the average search length of the basic algorithm (without
query-caching) is 3.114 hops. When adopting the fixed time eviction with a 5 minutes
threshold, the average search length drops to 1.749. However, when the threshold is
set to 10 minutes, the average search length decreases to 1.614, which is only a 7.7%
improvement. So for fixed time eviction, the performance bonus decrease with the
increasing of the threshold. After the threshold reaches a certain value, continuous
increasing it will not improve the performance much. This is because that when
increasing the threshold, though the cache can store more query reply messages, it
suffers more from the penalties which is to compensate the invalid records in the
cache. With Adaptive Eviction, we can achieve an average search length of 1.128,
which is a 30.1% reduction from the fixed time eviction with a 10 minutes threshold.
This result demonstrates that Adaptive Eviction has considerable advantages over
fixed time eviction. When adopting Cache Transfer, the average search length can be
further reduced, while the reduction is not obvious, only 3.8%.

With the same parameters, we use Eq.3 and Eq.4 to calculate the theoretical value
of average search length. We get T=1904.4 seconds. Therefore when adopting the
fixed time eviction with a 5 minutes threshold:

300
2 2 1.845 min 1904.4

T
L

T
= − = − =

∆

When the threshold is 10 minutes,

600
2 2 1.67

10min 1904.4

T
L

T
= − = − =

∆

 Adaptive Query-Caching in Peer-to-Peer Systems 103

Fig. 3. Average Search Length Fig. 4. Average Messages Processed Fig. 5. Average Memory
 Size

When adopting Adaptive Eviction, we get N as 4, and L 1.1172. The improvement
rate here is about 33.10%. The experimental data is very close to the theoretical value.

Fig.4 shows the messages processed per peer for different algorithms. The
message here only includes query request and query reply messages. When
adopting the basic algorithm, the average query messages processed per peer AvgQM
is 3352.2. When adopting the fixed time eviction, without using of Exclude List,
AvgQM increases to 3970.8 with a 5 minutes threshold. The AvgQM continues
increasing to 4245.5 with a 10 minutes threshold. However, when adopting the
technique of Exclude List, the AvgQM reduces to 1658.0. This is a 50.5% reduction
from the basic algorithm and a 60.9% reduction from the fixed time eviction with a
10 minutes threshold, which indicate that Exclude List is very efficient in the
reduction of message traffic.

Fig.5 shows the average memory a cache consumed. When adopting the fixed time
eviction with a 5 minutes threshold, the average memory needed is about 575KB.
With a 10 minutes threshold, the memory needed increases to 1265KB. When
adopting Adaptive Eviction, the memory needed increases to 3146KB. Though
Adaptive Eviction needs more memory for caching, a 3~4MB memory demand can
be fulfilled easily for a state-of-art PC.

4 Conclusions and Future Works

Query-caching is an effective way to reduce the average search length and overall
message traffics. However fixed time eviction mechanism has drawbacks and can not
take full advantages of query-caching. By considering the heterogeneity of uptime,
Adaptive Eviction is a more efficient approach to provide better performance. With
the support of Exclude List and Cache Transfer, Adaptive Eviction is a good solution
to query-caching.

In the future, we are looking forward to adopt our design in real environment in
order to evaluate the practical effect to Gnutella. We are also trying to optimize our
algorithm in order to make more accurate prediction of a peer’s uptime, which will
eventually give further improvement to the performance of system.

104 Z. Yin et al.

References

1. M. Ripeanu, “Peer-to-Peer Architecture Case Study: Gnutella”, In Proceedings of the
International Conference on Peer-to-Peer Computing (P2P2001), Linkoping, Sweeden,
Aug. 2001, pp.99-100

2. A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object Location and Routing
for Large-scale Peer-to-Peer Systems”, In Proceedings of the 18th IFIP/ACM
International Conference on Distributed Systems Platforms (Middleware 2001), Nov.
2001, pp.329–350

3. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A Scalable
Peer-to-Peer Lookup Service for Internet Applications”, In Proceedings of ACM
SIGCOMM 2001, San Diego, CA, Aug. 2001

4. Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and Replication in Unstructured
Peer-to-Peer Networks”, In Proceedings of the 2002 International Conference on
Supercomputing, June 2002, NY, USA, pp.84-95

5. A. Crespo and H. Garcia-Molina, “Routing Indices for Peer-to-Peer Systems”, In
Proceedings of the 22nd International Conference on Distributed Computing Systems
(ICDCS'02), July 2002, Vienna, Austria, pp.23-34

6. B. Yang and H. Garcia-Molina, “Efficient Search in Peer-to-Peer Networks”, In
Proceedings of the 22nd International Conference on Distributed Computing
Systems(ICDCS'02), July 2002, Vienna, Austria, pp.5-14

7. Y. Chawathe, S. Ratnasamy, L. Breslau, and S. Shenker, “Making Gnutella-like P2P
Systems Scalable”, In Proceedings of ACM SIGCOMM 2003, Aug. 2003, pp.407–418

8. E. Cohen and S. Shenker, “Replication Strategies in Unstructured Peer-to-Peer Networks”,
In Proceedings of the ACM SIGCOMM 2002, Aug. 2002, PA, USA, pp.177-190

9. K. Sripanidkulchai, “The Popularity of Gnutella Queries and Its Implications on
Scalability”, http://www-2.cs.cmu.edu/~kunwadee/research/p2p/gnutella.html

10. E. P. Markatos, “Tracing a Large-Scale Peer to Peer System: An Hour in the Life of
Gnutella”, In Proceedings of 2nd IEEE International Symposium on Cluster Computing
and the Grid (CCGrid 2002), May 2002, Berlin, pp.65-74

11. K. P. Gummadi, R. J. Dunn, S. Saroiu, S. Gribble, H. M. Levy, and J. Zahorjan,
“Measurement, Modeling and Analysis of a Peer-to-Peer File-Sharing Workload”, In
Proceedings of the 19th ACM symposium on Operating Systems Principles (SOSP03),
pp.314-329

12. Limewire, http://www.limewire.org/

Design and Deployment of Locality-Aware Overlay
Multicast Protocol for Live Streaming Services�

Xuping Tu, Hai Jin, Dafu Deng, Chao Zhang, and Quan Yuan

Cluster and Grid Computing Lab,
Huazhong University of Science and Technology, Wuhan, China, 430074

hjin@hust.edu.cn

Abstract. This paper presents the design and deployment of a locality-aware
overlay multicast protocol called Anysee. The key idea of Anysee is to use the
geometrical information of end hosts to construct the locality-aware overlay data
delivery tree such that nearby users in the underlying network can be organized
into nearby subtrees. The prototype of Anysee has been widely used in CERNET.
Logging traces obtained from broadcasting 2004 Athens Olympic Games over
16 days have shown that the performance of Anysee, such as end-to-end delay
and absolute data delivery delay, significantly outperforms that of randomly con-
structed overlay multicast.

1 Introduction

Network-level IP multicast [1] [7] was proposed over a decade ago. It seems (or, at
least, was designed) to be the idea solution for efficiently disseminating real-time media
content over Internet. However, the lack of high level features such as reliability, quality
of service (QoS) control, and security, as well as the necessary of changes at the Internet
infrastructure level make it very difficult to be widely deployed.

As a result, application level multicast protocols [2] [4] [5] [8] [9] [12] have gained
tremendous momentum in recent years. In particular, for high-quality video streaming
service, routing overhead is a key performance metric for the overlay video data dissem-
inating tree since each stream tends to consume large amount of underlying bandwidth.
If the overlay tree is constructed randomly, e.g. Coopnet [11], nearby hosts in the over-
lay tree may actually be far away in the underlying network. In this method, the QoS
requirements for media data delivery is very difficult to be guaranteed.

End System Multicast (ESM) and its extension [4] [5] [6] give out Narada protocol
and deployment for broadcasting video conference streams to a small (or moderate)
group users. The main idea of ESM is that end-hosts exclusively exchange group mem-
bership information and routing information, build a mesh, and finally run a DVMRP-
like(Distance Vector Multicast Routing Protocol) protocol to construct a overlay data
delivery tree. ESM focuses on the out-going bandwidth limits of end hosts and the re-
duction of source to user latency. However, it does not address on large-scale issues.

Other schemes, such as Overcast [9], NICE [2], Zigzag [13], Scattercast [3], and
TAG [10], present different optimization methods to extend the system to larger-scale

� This work is supported by National Science Foundation of China under grant No.60433040.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 105–112, 2005.
c© IFIP International Federation for Information Processing 2005

106 X. Tu et al.

cases under different conditions. However, as to our understand, all of them have not
been widely deployed.

In this paper, we give out the design and deployment of a locality-aware multicast
protocol called Anysee. Anysee is tailored to broadcast high-bandwidth video streams
to a lager amount of users with low latency. The rest of this paper is organized as
follows. Section 2 describes the locality-aware multicast protocol of Anysee, together
with the prototype of Anysee, and gives out its performance analysis. Section 4 ends
with conclusions.

2 Locality-Aware Overlay Multicast

The key idea of Anysee is to use the geometrical information of end hosts to construct
the locality-aware overlay data delivery tree such that nearby users in the underlying
network can be organized into nearby subtrees. It also supports Network Address Trans-
later (NAT) traversals.

2.1 Tree Organization

To organize the overlay multicast tree into the locality-aware fashion, Anysee uses a
L-parts Global Unique Identify (GUID) to identify the network position of an end host,
where each part of the GUID value corresponds to the network and geometrical in-
formation. For example, we can statically divide the entire Internet to five-levels: the
inter-country level, inter-ISP (Internet Service Provider) level, MAN (Metropolitan-
Area Network) level, WAN (Wide-Area Network) level, and LAN (Local-Area Network)
level, respectively. For each level, a corresponding part of GUID value of an end host is
generated by the geometrical or network (i.e. ISP) information of that host.

Corresponding to the L-part GUIDs, the overlay multicast tree is also organized as
a L-level hierarchy of subtrees. A subtree at level i is comprised of end hosts whose ith

Fig. 1. An example of 3-layer hierarchy of subtrees

Design and Deployment of Locality-Aware Overlay Multicast Protocol 107

part of GUID values are different from each other, and their jth(i < j ≤ L − 1) part
GUID values are the same as each other. Each host at layer i(0 < i ≤ L − 1) must
reserve one out-degree for severing another host with the same ith part GUID value.

Fig.1 illustrates an example of 3-level hierarchy of subtrees. In this case, hosts H2,
H3, H4, and S have the same inter-ISP level GUID value (i.e. H2, H3, H4, and S are
severed by the same ISP). Since they are located at different cities and have different
MAN-level GUID values, they are organized into a subtree B at the MAN-level layer.

2.2 Tree Management

Initially, the entire tree contains a single subtree at the highest layer, consisting of a
source host. The layer number of the source node is initialized as the serial number
of the highest layer. To effectively construct and manage the overlay tree, an end host
should maintain a small amount of state information–IP addresses and port number,
layer number, connectivity constraints, and the GUID value of itself, its parent, grand-
parent, source host and children hosts.

New Host Joins: In our solution, we simply use the absolute difference value between
GUIDs of any two hosts to predict their network distance. Given a new host X , it begins
its join process by sending the ”Join” message to the source node, where the ”Join”
message contains its GUID value and connectivity constraints information. Once an
existing host Y at layer i(0 < i ≤ L − 1) receives the ”Join” message sent by the new
host, it uses the following rules to admit X and determine its level number. 1) If Y is
the nearest host to X (comparing with its children), X will be admitted as a child of
Y . In this case, the layer number of X is determined by the ith part GUID of X and
Y . If the ith part GUID value of X is equal to that of Y , the layer number of X is
assigned to i − 1. Otherwise, the layer number of X is equal to i. 2) If Y is not the
nearest host but it has enough upload bandwidth to serve X , X will be admitted as a
child at current level. 3) If Y has not enough remaining upload bandwidth to sever X
and it has a child Z which is the nearest one to X , it sends ”Redirect” message to the
new host to redirect it to Z . 4) If X receives a ”Redirect” message, it resents the ”Join”
message to the redirected host. The process repeats until X finds out its nearest parent.
An except holds when the redirected one is a freerider. In this case, the new host is
inserted between the existing host and the nearest free-rider. If the ”Join” message is
sent to a host located at layer 0, it simply uses the First-Come-First-Sever (FCFS) with
randomly redirecting method to admit the new host.

Fig.2 shows an example of a join process. In this figure, the ISP-part, MAN-part,
and WAN-part GUID values of the new host is 1, 2, and 3, respectively. It first contacts
the source host S to initialize the join process. S finds out that the new host and its
child H1 are in the same ISP network. Thus, it redirects the new host to H1. Based on
the nearest parent selection principle, the new host will be redirected to H5 and H7,
respectively, until it finds out the nearest parent H11.

Host Departs: Host departure due to purposely leave or accidently failure can be de-
tected by its children since the video data stream will be interrupted. Children of the
departed host send ”Parent-Leave” messages to their original grandparent to launch a

108 X. Tu et al.

Fig. 2. An example of join process

recovery process. If unfortunately, the grandparent leaves at the same time, children
should send ”Join” message to the source node to rejoin the overlay tree.

Recovery from the departure of a host at layer 0 is trivial. The parent of the de-
parture host randomly admits a grandchild to be its new child and redirects others to
the admitted one. We propose the recovery process from the departure of a host at
high layers. In this case, the parent of departed host sends a ”Probe” message to that
child. A non-leaf host forwards the message while the leaf node responses an ”Probe-
Response” message. Finally, the parent redirects other children of departed host to the
promoted one.

Freeriders Supports: Freeriders can be detected by the rendezvous point (RP) when
it requests the IP address and Port number of the source host. In particular, users be-
hind NATs can be detected by comparing their public IP addresses and their private IP
addresses (the private IP address is contained in their request message). This will be
beneficial to admit more NAT-users since hosts behind the same NAT can be grouped
into the same branch.

2.3 Prototype

The entire system is comprised of four components: a rendezvous point (RP), media
sources, a monitor, and end systems. Source hosts are responsible for receiving the en-
coded video stream and promulgating them to end hosts. Each end system first accesses
the RP machine to obtain the IP address and port number of source host and detect
the connectivity constraints (i.e. whether the end host is behind NAT and firewall).
Then, it joins the overlay network and periodically reports performance information to
the monitor. The monitor is responsible for logging the performance information of
joined hosts.

We implemented Anysee, and released the first version (v.1.0Beta) on August 12,
2004. This version runs on CERNET1. Each copy of end system software has combined

1 CERNET stands for China Education and Research Network. It covers over 1000 colleges (or
institutions) in China. More information can be found at http://www.cernet.edu.cn/

Design and Deployment of Locality-Aware Overlay Multicast Protocol 109

a pre-built IP-to-GUIDs database that contains all class C and class B IP addresses in
CERNET.

The system has been used by HUSTOnline (http://www.hustonline.net) for broad-
casting high-quality TV streams (near 512kbps bit-rate) to students. We have analyzed
logging traces gathered from 13/8/04 to 29/8/2004. During this period, the 2004 Athens
Olympic Games is broadcasted via four source hosts. Each of them corresponds to a
unique TV channel.

2.4 Metrics

The metrics we are interest in the performance analysis are:

Control Overhead: This is measured by the time consumption of join processes, and
time consumption of recovery processes.

Quality of Data Path: We evaluate the network proximity performance via the End-to-
End Delay (EED) and the Absolute Delay Penalty (ADP) in the overlay multicast tree.
EED is the round-trip time (RTT) between a parent and a child in the overlay multicast
tree. It reflects QoS issues when a considerable end system buffer (20 seconds) has been
used. ADP is defined as the cumulative latency to promulgate a data packet along the
overlay path from the source host to an end host.

2.5 Analysis Methodology

Logging traces shows that almost 7200 users distributed among 40 colleges in 14 cities
have enjoyed our contributions. The number of maximum concurrent users supported
by the entire system is 3749, and the number of maximum concurrent users supported
by a single overlay multicast tree is 1162. We use the tree with size of 1162 users for
performance analysis. Fig.3 shows the changes of the number of maximum concurrent
users over 16 days. We choose 10 different time intervals (length of each time interval
is 40 minutes) to reconstruct the overlay multicast tree for detail analysis, while the

Fig. 3. The tree size vs. Time interval

110 X. Tu et al.

tree sizes (i.e. numbers of concurrent users) at these time intervals are between 100 and
1162.

We choose the random construction method for comparison. In each time interval,
we first compute the average end-to-end RTT and the average data promulgating delay
between any two intra-region hosts and between any two inter-region hosts based on the
measured latency information. Then, according to the real-life user accessing sequence,
we reconstruct the overlay tree in the random fashion, where free-riders are processed
by the method described in section 2. Finally, corresponding to the geometrical infor-
mation of joined hosts, we assign the average end-to-end RTT value and the average
data promulgating delay to neighbor hosts on randomly constructed trees to evaluate its
data path quality.

2.6 Performance Results

Table 1 shows basic performance results of Anysee system. From this table, it can be
seen that the join and recovery overhead of Anysee system is very low. Users can quickly
find out their nearest parents for requesting video data. Theoretically, if the average
number of hosts in a subtree of Anysee system is m and all joined hosts are uniformly
distributed in different subtrees, we have

∑L
i=1 mi = N , where N is total number of

joined hosts. Thus, m ≤ L
√

N . Since the average height of a subtree is in order of
O(log m), the amortized height of the entire overlay tree is in order of O(L log L

√
N).

Consider that the ”Join” message and ”Probe” message will traverse the branch with
maximum path length (i.e. tree height) in the join algorithm and the recovery algorithm,
respectively. Thus, the time complexities of both join and recovery procedure are upper-
bounded by O(L log L

√
N). As shown in Table 1, the mean time for join processes

and recovery processes is less than 2 seconds. And the latter is larger than that for
join processes. The main reason of this scenario is that lots of users tends to leave the

Table 1. Basic performance results, where m/n in the NAT column represents that m NAT-users
come from n different NATs

Size Date Height Mean join Mean recovery EED (ms) ADP (ms) NAT Firewall

overhead (ms) overhead (ms) users users

106 14/8/04 5 690 2,112 7.3 57.2 21/18 28

198 15/8/04 5 693 1,966 7.0 71.2 22/14 37

301 17/8/04 6 1,027 1,312 11.3 90.2 33/28 46

405 18/8/04 6 1,050 2,004 28.1 88.6 35/32 46

504 19/8/04 7 1,058 1,897 35.4 80.9 29/23 56

604 22/8/04 7 719 876 46.4 80.5 35/29 48

709 20/8/04 7 519 935 23.0 96.6 89/65 64

859 21/8/04 7 520 900 61.4 100.2 95/70 79

1038 24/8/04 7 1,018 2,338 62.7 114.3 108/76 103

1162 26/8/04 7 658 1,031 47.4 110.6 123/85 120

Design and Deployment of Locality-Aware Overlay Multicast Protocol 111

Fig. 4. Comparison of data-path quality between locality-aware overlay multicast and randomly
constructed overlay multicast

overlay in a short time interval when the interested media content has finished. In this
case, children of leave hosts will rejoin the overlay tree.

Fig.4 (a) shows the comparison of cumulative distribution function of end-to-end
delay between the locality-aware overlay and the randomly constructed overlay, with
the overlay tree size 1162 users. In this figure, for locality-aware multicast, the end-to-
end delays for almost 95% parent-to-child pairs are less than 100 ms. However, for ran-
domly constructed overlay tree, almost 93% end-to-end delay values are within range
[100ms, 300ms]. Fig.4 (b) shows clearly that the average end-to-end delay in locality-
aware overlay tree is far less than that in randomly constructed tree.

As shown in Table 1, heights for locality-aware multicast trees with size between
106 and 1162 users are larger than or equal to 5. Obviously, the height of randomly
constructed overlay tree is less than log5 N , where 5 is the out-degree of an end host
and N is the amount of joined hosts. Thus, for randomly constructed overlay trees with
size less than 1162, the corresponding height is also less than log51162 ≤ 5. Clearly,
the larger height of locality-aware overlay multicast tree is resulted from which some
out-degrees of inner-hosts are reserved for severing future nearest hosts and not used in
the practice.

However, as shown in Fig.4 (c) and (d), the absolute delay penalty of locality-aware
overlay tree is far less than that of randomly constructed overlay tree. In Fig.4 (c), for
the tree with size 1162 users, the absolute delay penalties for most users in the locality-
aware overlay tree are between 100ms and 400 ms, while the absolute delay penalties
for most users in the randomly constructed overlay tree are between 200ms and 600ms.
Fig.4 (d) shows a clear comparison of average absolute delay penalty between locality-
aware overlay multicast tree and randomly constructed overlay multicast tree. From this
figure, it can be seen that the average absolute delay penalty for randomly construction
method is as three times as that for locality-aware construction method when the tree
size is larger than 1000 users.

Network Address Translator (NAT) partially solves the address exhaustion problem
of IPv4 and firewall gives out a solution for security issue. However, they create many
challenges to peer-to-peer overlay applications since hosts behind NAT gateways or

112 X. Tu et al.

firewalls are often restricted to serve as receivers only, not suppliers. As our log indi-
cates (shown in Table 1), near 20% ∼ 45% Anysee users are behind NATs or firewalls.
In our implementation, we use the inserting mechanism to make hosts behind NAT or
firewalls as leaves of the overlay multicast tree. In additional, users behind same NAT
gateway can be organized into the same subtree.

3 Conclusion

In this paper, we present a live streaming system called Anysee. Anysee uses a locality-
aware overlay multicast protocol to broadcast high-quality video streams to large amount
of users. It also supports NAT(or firewall)-traversals. We have studied the performance
of Anysee based on logging traces of broadcasting 2004 Athens Olympic Games on
CERNET.

References

1. T. Ballardie, P. Francis, and J. Crowcroft, ”Core Based Trees (CBT): An Architecture for
Scalable Multicast Routing”, In Proc. of ACM Sigcomm, 1995.

2. S. Banerjee, B. Bhattacharjee, and C. Kommareddy, ”Scalable application layer multicast”,
In Proc. of ACM Sigcomm, Aug. 2002.

3. Y. Chawathe, ”Scattercast: An Architecture for Internet Broadcast Distribution as an Infras-
truture Service”, PH.D. Thesis, University of California, Berkeley, Dec. 2000.

4. Y.-H. Chu, S. G. Rao, and H. Zhang, ”Enabling Conferencing Applications on the Internet
Using an Overlay Multicast Architecture”, In Proc. of ACM Sigcomm, Aug. 2001.

5. Y.-H. Chu, S. G. Rao, and H. Zhang, ”A Case for End System Multicast”, In Proc. of ACM
SIGMETRICS, June 2000.

6. Y.-H. Chu, S. G. Rao, and H. Zhang, ”Early deployment experience with an overlay based In-
ternet Broadcasting System”, In Proc. of USENIX Annual Technical Conference, June 2004.

7. S. Deering and D. Cheriton, ”Multicast Routing in Datagram Internetworks and Extended
LANs”, In ACM Transactions on Computer Systems, May 1990.

8. P. Francis, ”Yoid: Extending the Multicast Internet Architecture”, White paper,
http://www.aciri.org/yoid/, 1999.

9. J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and J. O’ Toole, ”Overcast: Reliable Mul-
ticasting with an Overlay Network”, In Proc. of the 4th Symposium on Operating Systems
Design and Implementation, Oct. 2000.

10. M. Kwon and S. Fahmy, ”Topology-aware Overlay Networks for Group Communication”,
In Proc. of ACM NOSSDAV’02, May 2002.

11. V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai, ”Distributing Streaming
Media Content Using Cooperative Networking”, In Proc. of NOSSDAV’02, USA, May 2002.

12. D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel, ”ALMI: An Application Level Multi-
cast Infrastructure”, In Proc. of 3rd Usenix Symposium on Internet Technologies & Systems,
March 2001.

13. D. A. Tran, K. A. Hua, and T. T. Do, ”A peer-to-peer architecture for media streaming,” In
IEEE J. Select. Areas in Comm., Vol. 22, Jan. 2004.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 113 – 122, 2005.
 © IFIP International Federation for Information Processing 2005

Dynamic Thread Management in Kernel Pipeline
Web Server*

Shan-Shan Li, Xiang-Ke Liao, Yu-Song Tan, and Jin-Yuan Liu

School of Computer, National University of Defense Technology,
ChangSha, China, 410073

{littlegege, xkliao}@263.net
{pine_tan, yuanchuangliu}@yahoo.com.cn

Abstract. With the development of high-speed backbone network, more and
more traffic load is pushed to the Internet end system. The satisfactory execution
of common business applications depends on the efficient performance of web
server. In this paper, we propose a pipeline multi-thread kernel web server open
KETA which divides the processing of a request into several independent phases.
This architecture reduces parallelism granularity and achieves inner-request
parallelism to enhance its processing capability. Furthermore, a thread allocation
model is used to manage threads effectively in this special architecture. This
model can adjust the thread allocation based on the server load and the work
character of each phase so that the thread resource of web server can be utilized
properly. Experimental result shows the capability of this web server and the
zeffectiveness of the thread allocation model.

1 Introduction

Internet is undergoing substantial change from a communication and browsing
infrastructure to a medium for conducting business and selling a myriad of emerging
services. Because of the complexity of the web infrastructure, performance problems
may arise in many aspects during a Web transaction. Although both network and server
capacity have improved in recent years, the response time continues to be a challenge to
the research on Web system. Some statistic shows that an e-commercial web site should
guarantee its response in 7 seconds or it will lose more than 30% customers [1]. Recent
measures suggest that web servers contribute for about 40% of the delay in a Web
transaction and this percentage is likely to increase in the near future [2]. Some
prediction estimated that network bandwidth would triple every year for the next 25
years. So far, this prediction seems to be approximately correct [3], while the Moore
law estimates “just” a doubling of system capacity every 18 months. So we can see that
the bottleneck is likely to be on the server side.

In order to solve above problem, some improvement should be made on web servers.
There are mainly three ways to achieve this [4]:

* This work is supported by HI-TECH Research and Development Program of China (863

Program) under Grant No.2002AA1Z2101 and No. 2003AA1Z2060.

114 S.-S. Li et al.

 Improve the performance of a web server node at the software level, namely
software scale-up.

 Upgrade web server’s hardware such as CPU, memory and network interfaces to
improve processing capability. This strategy, referred to as hardware scale-up,
simply consists in expanding a system by incrementally adding more resources to
an existing node.

 Deploy a distributed web system architecture consist of multiple server nodes
where some system component such as a dispatcher can route incoming requests
among different servers. The approach in which the system capabilities are
expanded by adding more nodes, complete with processors, storage, and
bandwidths, is typically referred to as scale-out.

Here we concentrate on the first method, software scale-up. Through comparison
and analysis among some popular web servers’ architecture and processing
mechanism, we put forward a kernel pipeline web server open KETA (KErnel neTwork
geAr). This web server divides the processing of a request into four phrases. Different
phases of different requests can be executed concurrently like a pipeline on condition
that there are no data or structure dependency. This architecture can reduce parallelism
granularity effectively so that the resources of a web server can be utilized fully.
Furthermore, the thread number of each phase is adjusted according to the server load
dynamically in order to manage and schedule thread effectively.

The rest of this paper is organized as follows. In Section 2, we briefly describe some
related work on the mainstream web server nowadays. The framework of open KETA
and the thread management in open KETA are described in Section 3 and Section 4. In
Section 5, some experimental results are presented.

2 Related Work

In view of the architecture, the mainstream web server can be classified into three
categories: Single Process (SP), Symmetrical Multiple Threads (SMT) and
Asymmetrical Multiple Threads (AMT).

In SP web server, a single process is responsible for the whole processing of all
requests, including listening to the port, setting up connection, analyzing and
processing requests, sending responses, etc. Some representative examples are
µserver[5] � Zeus[6] and kHTTPd[7]. This kind of web server always uses
non-blocking systems calls to perform asynchronous I/O operation. SP server is able to
overlap all the operations associated with the serving of many HTTP requests in the
context of a single process. As a result, the overheads of context switching and process
synch- ronization in the MT and MP architectures are avoided. However, relied on
operating system’s well support for asynchronous disk operations, SP web server may
only provide excellent performance for cached workloads, where most requested
content can be kept in main memory.

On workloads that exceed that capacity of the server cache, servers with MT or MP
architecture usually perform best. SMT web server employs multiple threads to process
requests. Some representative examples are KNOT[8] and Apache[9]. SMT web server
can overlap the disk activity, CPU processing and network connectivity concurrently so
that it improves the server’s parallelism capability. However, SMT web server ignores

 Dynamic Thread Management in Kernel Pipeline Web Server 115

that the processing of a request also can be divided into several phases among which
there are some potential parallelism.

AMT web server allocates different tasks to different thread. Flash [10] and Tux [11]
are examples for this kind. They use one thread to process all connections and several
helper threads to deal with the I/O operation. They decrease blocking time and improve
the efficiency of the service. However, it increases IPC cost between threads and helper
threads and can not utilize system resource fully like SMT architecture.

From the discussion above, we can see that most web servers have some parallelism
capability and their parallelism granularity is request. Once a request is blocked on
some operation, the thread will stop. It’s well known that thread resource is limited and
costly in web system so this paper tries to find a way to reduce parallelism granularity
and achieve inner-request parallelism. Open KETA divides the processing of a request
into four phrases. Thread in different phases performs different function and doesn’t
intervene with each other just like different pipeline phase. In this frame, even if a
request is blocked in one phase, threads in other phases still can process other requests.
So the whole system performance is improved. In the following section, framework of
open KETA is presented in Detail.

3 Framework of Open KETA

Open KETA is a kernel web server, the original developing intention of which is to
improve web server’s performance by transferring the processing of static requests
from user space to kernel space. When overloaded, performance of web server in user
space is not so well due to much copy and syscall cost. Now many web servers are
implemented in kernel space, such as kHTTPd and TUX. Considering system stability,
kernel space web server only processes static requests instead of complex dynamic
requests, and that dynamic requests are redirected to user space web server such as
Apache. What’s more, measurements [12, 13] have suggested that the request stream at
most web servers is dominated by static requests. Serving static requests quickly is the
focus of many companies. Figure1 shows the processing flow of open KETA. For
Linux already has a kernel web server TUX to accelerate requests processing, FreeBSD
doesn’t have yet, open KETA is implemented in FreeBSD kernel.

As introduced above, Open KETA divides the processing of request into four
phrases: Accept Connection (accept), Socket Recv (receive), Data Process and Send
Response (send) each of which has its own thread pool. Threads of different phases run
in a pipeline-like manner. Partition of pipeline phases is not at random but with some

Fig. 1. Processing flow of open KETA

116 S.-S. Li et al.

Fig. 2. Framework of open KETA

principle. Firstly, coupling degree of different phase should be relatively low so that
threads in different phases could run concurrently. Secondly, depth of pipeline should
be proper because too flat can’t bring much parallelism and too deep will cause much
scheduling cost.

Open KETA uses a managed buffer (MB) to transfer some control structures among
all the phases. Furthermore, a software cache data cache (DC) is used to cache objects
to reduce the times of disk access. DC and MB are initialized by a main thread as open
KETA is loading. The framework of open KETA is presented in Figure 2.Main task of
each phase is stated as followed:

 Accept phase is responsible for listening to the port. Applied with HTTP 1.1, once
it finds a new arrived request which doesn’t belong to an existing socket, it will
create a new socket and set up connection, else if the socket is still keep alive, the
request will stride over the accept phase and go to receive phase directly.

 Receive phase checks the completeness of http request and judges whether it’s a
static request. If not it will be redirected to web server in user space such as
Apache. Here the socket the request belongs to is thrown to the socket list of user
space web server directly in order to avoid the cost of recreating and destroying
socket. If the arrived request is a static one, it is inserted to the task list of data
process phase.

 Data process phase first validates requests and then judges whether the object
requested is in DC or not by a hash map, if yes the response message is generated.
It is worth saying that the response head is stored in DC as long as the object is in
DC so that the response message can reuse the response head. Once the object is

 Dynamic Thread Management in Kernel Pipeline Web Server 117

not hashed in DC, get it from disk. If the conflict list of hash table is full or DC
doesn’t have enough space, some object will be washed out from DC.

 Just as its name implies, send phase sends the object requested back to clients.
Open KETA utilizes Zero Copy which FreeBSD supports to reduce copy times
and improve sending efficiency.

Owning to the Asymmetrical thread character, thread management is very important
in open KETA. When should these threads be created, how to activate threads in each
phase and how many threads should be allocated to each phase? The thread
management will be presented in the following section.

4 Thread Management in Pipeline Architecture

4.1 Creation and Activation of Thread

In order to guarantee the real time service, all thread pools are initialized by a main
thread when open KETA is loading. The number of thread is set empirically in a
configuration file. As to the activation of threads, there are two ways in common: One
is that a scheduler is specialized in this work in each thread group. After the execution,
thread in previous group passes the result to the scheduler in this group. The scheduler
will choose a thread based on some special rules. This method is extendable in
implementation but the scheduler may be the bottleneck. Another way is that thread
chooses the next-phase thread itself based on some rules. The advantage of this method
is that cost of copy and control can be reduced but thread scheduling of each group is
not transparent to other groups. Considering that open KETA is implemented in kernel,
efficiency may be more important, so the latter is chosen and MB is used to transfer all
control structures. When a thread has finished one task, it will check whether there are
some unsettled tasks, if yes the thread continues to process another task else it will sleep
and not wake up until thread in previous phases activate it.

4.2 Dynamic Tread Allocation

In section 3 the main task of each phase has been introduced respectively, from which
we can see their burden is different owing to different length of execution code,
different resource they mainly use, etc. With the changing of load, optimal thread
number allocated to different phases is different. In this section, a feedback control
model is proposed to control the thread allocation of each phase. First, we will analyze
the runtime burden of each pipeline phase, from which thread allocation policy can be
set with pertinence.

Burden Analysis. In web requests processing, CPU, memory and network bandwidth
may be the consuming character of open KETA, threads in send phase may be first
blocked in overloaded condition. Threads burden in data process are not as heavy as
that in send phase since objects can be cached on DC. However, open KETA is running
in kernel whose space can be used totally is 1G, so not all objects have chance to be
cached in DC. In this case open KETA has to access disk at times to get the object
requested and replace some other objects with it in DC. Threads in accept phase may be
most light-burdened since their main task is only creating socket. Threads in receive

118 S.-S. Li et al.

phase examine socket list to see whether there are some new requests, if yes some
prearrange checks will be done on these requests. Main resource receive phase uses is
CPU. From these analysis, we can see that work process of open KETA is like a four
level funnel, work burden is more and more heavy from accept phase to send phase.
When system is overloaded, thread allocation should be adjusted based on this special
character of open KETA.

Feedback Control Model of Thread Allocation. When open KETA is loading, all
thread pools are initialized with some empirical value. Although these values can suit
many load conditions, they cannot deal with all the cases. Ideally, threads allocated to
each phase should be adjusted based on their task list and server utilization. Figure 3
presents a feedback control model to achieve this. From this figure, we can see that a
load monitor in open KETA gathers the queue length of the task list of each phase and
the server utilization periodically, based on which decision is made to adjust thread
allocation.

Fig. 3. Thread allocation feedback control model

1. Load Monitoring
The objective of load monitor is to inspect the task list of each phase and quantify
server utilization with a single value that summarizes resource consumption. The queue
length of each task list can be easily obtained. It’s noticed that the service time of a
request can be decomposed into a fixed overhead and an object size dependent
overhead [14], that is:

1 2()T x c x c= + (1)

where x is the object size, c1and c2 are platform constants

For summing the service time of n requests:

1 2
1 1

()
n n

k k
k k

T x c x kc
= =

= +

And dividing by the length of the period t we obtain the system utilization U:

 Dynamic Thread Management in Kernel Pipeline Web Server 119

1 2
1 1 1

1 2 1 2

()
n n n

k k k
k k k

T x c x kc x
k

U c c c W c R
t t t t

= = =

+
= = = + = + (2)

From the Eq. (2) we get the quantify guideline of server utilization. We can repeat
the experiment with different concurrent connections or URL sizes. Each time a
different Wmax and Rmax are recorded, every case is corresponding to a fully utilized
server. i.e., U =100%.Thus, each experiment yields a different point (Rmax, Wmax),
then using linear regression coefficient c1, c2 are found. These two constants are
obtained off-line and written into a configuration file.

2. Thread Allocation Control Module
Just as its name implies, the main task of thread allocation control module is to adjust
thread allocation based on the information load monitor provides and some special
character of open KETA. In section 4.2.1 it has been analyzed that all the pipeline
phases of open KETA make up a four level funnel like structure, bottleneck would
easily appear in send phase when overloaded, data process phase followed and then
does the receive and accept phase. The number of thread allocated to each phase should
be in accordance with this character. In order to avoid resource wasting, the initial value
should not be too large. Supposed that the maximal thread number of open KETA is M
which can be configured based on server’s hardware condition and that the initial
number of phase k is Pk (k = 0...3, 0 is accept phase, 1 is receive phase, 2 is data process
phase and 3 is send phase). When open KETA is loading, Pk is less than M. With the
increase of concurrent connection, thread number of each phase is adjusted by the
following formulas. Owning to the four level funnel structure the calculation sequence

of
1i

kP +
 is from P3 to P0:

If
3

1
1 1

0 1

()
k

i i
n n i k k i

n n k

P P T a b W M+
+ +

= = +

+ + + ∆ ≤

then
1

1 1()i i
k k i k k iP P T a b W+

+ += + + ∆ (3)

Else

1
1

0

k
i i

k n
n

P M P
−

+

=

= − (4)

3
1 1

1

i i
k n

n k

P M P+ +

= +
= − (5)

1 3
1 1

0 1

k
i i i

k n n
n n k

P M P P
−

+ +

= = +

= − − (6)

Here it means when some tasks are waiting, thread number of the corresponding

phase will be increased but the total number should not exceed M.
i

kP is the current

120 S.-S. Li et al.

thread number of phase k and 1i
kP + is the new adjusted one. 1iT + is the queue length of

the task list of phase k. 1iW +∆ represents Wi+1-Wi. If the 1i
kP + is not an interger, 1i

kP + is

taken. ka , kb can be well approached by some off-line experiment. But if
3

0
k

k

P M
=

= ,

that thread number can not be increased, threads should be transferred from phase n
(n<k) to phase k in order to release the burden of bottleneck phase. Thread number
transferred is set empirically. It is worth saying that all threads can be implemented in a
switch like manner to avoid destroying and creating thread frequently, here for limited
length we do not discussed in detail. When Wi is low which means server is not so
busy, thread number will be set back to the initial value by reducing the priority of some
threads to a lower value of kernel thread just like destroying these threads so that other
applications can utilize more system resource (because thread of other application can
be schedule preferential). When the load of web server is increased again, Eq. (3) (4)
(5) (6) are used to repeat the process.

5 Experimental Evaluation

The open KETA is implemented in FreeBSD 5.3 kernel. In order to contrast its
performance with other web servers, we have done some experiments under different
loads. In view of open KETA nature, all experiments are carried out only with static
requests. The testing environment is made up of one server and three or five clients:

Table 1. Results of 300 concurrent connections (3 clients)

Tested object Mean response
time�ms�

Weighted
bandwidth(bps�

Valid�
Invalid

Conforming Operations
per second

Apache(freebsd) 410.0 303272.69 300+0 50 761

Apache(Redhat) 382.2 313600.49 300+0 56 765

Tux 320.4 373585.24 300+0 300 907

Zeus 342.5 357853.37 300+0 300 855

Open KETA 307.0 389930.76 300+0 300 954

Table 2. Results of 600 concurrent connections (3 clients)

Tested object Mean response
time�ms�

Weighted
bandwidth(bps�

Valid�
Invalid

Conforming Operations
per second

Apache(freebsd) 719.3 166083.41 600+0 0 771

Apache(Redhat) 758.2 157416.85 600+0 0 769

Tux 456.1 261535.11 600+0 600 1296

Zeus 536.1 228577.33 600+0 600 1100

Open KETA 352.4 356495.45 600+0 600 1702

 Dynamic Thread Management in Kernel Pipeline Web Server 121

Server: SMP with two xeon 2.0G hz cpus,2GB memory, 36G SCSI hard disk and
1000M network card;

Clients: 2.4G hz cpu, 512M memory, 40GB 5400 rpm hard disk and 10-100M
adaptive network card;

A testing tool SPECWeb99 is used to test the performance of the web servers.
Platform for these web servers are Apache, open KETA in FreeBSD 5.3, Apache, tux,
Zeus in Redhat Enterprise Linux v3.0. Note that the results of Table1, 2, 3 for open
KETA do not include the thread allocation control model.

Table 3. Results of 1000 concurrent connections (5 clients)

Tested object Mean response
time�ms�

Weighted
bandwidth(bps�

Valid�
Invalid

Conforming Operations
per second

Apache(freebsd) 1077.7 110974.79 983+17 0 773

Apache(Redhat) 1247.2 95514.28 989+11 0 750

Tux 791.1 150558.99 999+1 678 1244

Zeus 992.5 126145.36 996+4 565 987

Open KETA 437.7 290117.36 1000+0 35 2285

When the concurrent connections are 1000, client may be the bottleneck (due to
10-100M network card), so more clients are used.

We can see from the results, the performance of open KETA is much better than the
web servers listed above. A simultaneous connection is considered conforming to the
required bit rate if its aggregate bit rate is more than 320,000 bits/second, or 40,000
bytes/second. Other guidelines can be easily understood by their name. Table 4
presents the mean response time of open KETA with and without thread allocation
model. Although thread adjustment brings additional system cost, we can see that the
mean response time is reduced through the action of this model from the table.

Table 4. Mean response time of open KETA with and without thread control model

Concurrent connection

Policy

300 600 800 1000

Open KETA with thread
allocation control model

307.0 352.4 391.2 437.7

Open KETA without thread
allocation control model

307.0 350.1 386.8 430.2

6 Conclusion

In this paper, we proposed the pipeline framework of a kernel web server open KETA.
This web server has a four level funnel like work flow architecture, based on which a
Feedback control model is in action to control thread allocation. This model can adjust
thread number of each pipeline phase with the change of server load. The experiment
results showed in section 5 validate the effectiveness of the control model.

122 S.-S. Li et al.

Finally, although the number of threads is allotted based on the queue length of task
list and the change of server utilization, actually this method do not handle transient
behavior very well. As a part of the future work, we will try to find the relation between
thread allocation and mean response time in different server load, through which thread
number can be adjusted to a proper value promptly.

References

1. SHAN Zhi-Guang, LIN CHuang, et. al.: Web Quality of Service :A survey. JOURNAL OF
COMPUTERS, Feb, 2004

2. C. Huitema.: Network vs. server issues in end-to-end performance. Keynote speech at
Performance and Architecture of Web Servers 2000, Santa Clara, CA.
http://kkant.ccwebhost .com/PAWS2000/huitema _keynote.ppt.

3. J. Gray and P. Shenoy.: Rules of thumb in data engineering. In Proc. of IEEE 16th Int'l Conf.
on Data Engineering, pages 3-10, San Diego, CA, Apr. 2000.

4. Valeria Cardellini, Emiliano Casalicchio.: The State of the Art in Locally Distributed
Web-server Systems. IBM research report, Computer Science, RC22209 (W0110-048)
October 16, 2001.

5. Philippe Joubert, Robert King, Richard Neves, Mark Russinovich, andJohn Tracey.:
High-performance memory-baxde Web servers:Kernel and user-space performance. In
Proceedings of the USENIX 2001 Annual Technical Conference, 2001.

6. Tim Brecht, David Pariag, Louay Gammo.: In:Proceedings of the USENIX 2004 Annual
Technical Conference:General Track, June,2004.

7. Arjan wan de Ven.: kHTTPd Linux http accelerator. http://www.fenrus.demon.nl.
8. Rob von Behren, Jeremy Condit, et. al.: Why events are a bad idea for high- concurrency

servers. In 9th Workshop on Hot Topics in Operating Systems (HotOS IX),2003.
9. The Apache Group.: Apache http server project. http://www.apache.org.

10. Vivek S.Pai, Peter Druschel, Willy Zwaenepoel.: Flash:An efficient and portable Web
server. In Proceedings of the USENIX 1999 Annual Technical Conference,
Monterey,CA,June 1999.

11. Red Hat, Inc. TUX 2.2 Reference Manual, 2002.
12. B. Krishnamurthy and J. Rexford. Web Protocols and Practices:HTTP/1.1, Networking

Protocols, Caching, and Traffic Measurement. Addison-Wesley, 2001
13. A. Feldmann. Web performance characteristics.: IETF plenary. http://www.research.att.

com/anja/feldmann /papers.html.
14. Tarek F., Nina Bhatti.: Web server QOS management by adaptive content delivery.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 123 – 131, 2005.
© IFIP International Federation for Information Processing 2005

QoS Aware Service Composition with Multiple Quality
Constraints*

Bixin Liu, Quanyuan Wu, Yan Jia, and Bin Zhou

National University of Defense Technology, Changsha, China
{bxliu, qywu, yanjia, binzhou}@nudt.edu.cn

Abstract. Service composition has been recognized as a flexible way for
resource sharing and application integration. Quality of service (QoS) is an
important issue for composite services. In this paper, we address the issue of
component services selection to ensures their composition satisfy given QoS
constraints. We propose the concept of reduction tree as a general scheme to
aggregate multi-dimensional quality. And then a heuristic algorithm
MCSC_HEU is presented to find execution plans satisfying multiple QoS
constrains, with the main idea of evaluating partial plans by a heuristic function
during the course of reduction. The time complexity of MCSC_HEU is of
polynomial level. Extensive evaluations show that MCSC_HEU succeeds in
finding feasible plans with very high probability but demands much less time
than exhausting search. So it is an efficient solution for QoS aware service
selection with multiple constrains.

1 Introduction

Recently web services have been recognized as the next generation framework for
building agile distributed applications over the Internet. Applications are provided as
web services which can be discovered and composed into more coarse-grained
services, called composite service [1]. Composite service is usually modeled as a
business process build upon it component service. Instead of pre-established
relationship between component services in the composition, service oriented
computing advocates discovering and binding to services dynamically according to
users’ requirements on functional aspects as well as non-functional aspects, especially
the quality of service (QoS).

Quality of service (QoS) of a web service typically includes a combination of
several qualities or properties [2], such as service time, service cost, success rate and
etc. Since QoS of a composite service is determined by the QoS of its underlying
component services [3], the dynamic nature of composite services offers a good new
chance to provide quality guarantee and service level agreement by selecting proper
component services according to preferences and quality requirements set by the
users. It has a good reason to believe that the quality aware service selection

* This work is supported by the National High-Tech Research and Development Plan of China

under Grant No. 2004AA112020, No. 2003AA115210, 2003AA115410 and the National
Natural Science Foundation of China under Grant No.90104020.

124 B. Liu et al.

mechanism will be an indispensable part for the QoS management framework for
composite services. However, to decide which candidates should be chosen so as to
satisfy the global constraints over the composite services is not an easy job, especially
when multiple QoS dimensions are considered.

Issues of quality of a business process have been addressed in some earlier work on
workflow, among which the METEOR system [5] has given a major contribution. A
stochastic workflow reduction algorithm to compute multi-dimensional QoS of
workflows has been proposed in METEOR and later extended to web service
processes [6]. But service selection problems is absent from their research. Some
recent work on web services composition has addressed the issue of QoS aware
service selection. An extensible quality model has been proposed and a preference
oriented service ranking approach has been presented in [4]. But they only concern
selecting the best-qualified service for an activity. Such a local strategy can not
handle the global constraints and preferences for the composite services. Limited
work has addressed service selection issue in the global or end-to-end sense. A global
planning approach based on multi choice decision making and integer programming
has been studied in [7], with the objective to maximize the user preference. No
domain specific efficient algorithms have been investigated. Similarly, [8] has
proposed a utility based approach for service selection to ensure end-to-end response
time constrain while maximizing the system benefit and minimizing the overall cost.
It is solved by modeling the problem as a multiple choice knapsack problem. A
simulated annealing approach for optimizing the performance cost ratio of composite
services has been discussed in [9] with the background of grid computing. However
the simulated annealing approach is usually not time-efficient.

 In this paper, we investigate the issue of quality driven service selection for
composite services to ensure multiple global QoS constraints. Compared with other
work, the contribution of our research is as follows:

1. We have defined the generic quality-driven service selection problem as multi-
constrained service composition (MCSC) problem, which is proved to be an NPC
problem.

2. To aggregate the multi-dimensional QoS of composite services, we have explored
a reduction based approach and proposed the reduction tree as a general QoS
aggregation scheme for processes-based application. This concept can be easily
extended to various quality metrics and process structures.

3. Based on the concept of reduction tree, we have proposed a heuristic which utilized
a non-linear heuristic function to approximate the feasibility of execution plans.
Time complexity of the heuristic algorithm MCSC_HEU is polynomial.
Evaluations show that MCSC_HEU performs well both in its effectiveness and
efficiency.

The rest of this paper is organized as follows. We present firstly the premises of
our study and define the MCSC problem in section 2. Then in section 3, we introduce
the concept of reduction tree and present the heuristic algorithm MCSC_HEU with its
principle and complexity analysis. Extensive evaluations are presented in section 4.
At the end, section 5 concludes the paper.

 QoS Aware Service Composition with Multiple Quality Constraints 125

2 Premises and Problem Statement

Firstly, we assume that the composite service model is structured. That is to say the
composite service model can be decomposed into substructures recursively according
to predefined composition pattern, such as sequence, and-branch and or-branch, until
all the substructures are atomic activities. Major composite service modeling
languages provide building blocks for structured modeling, such as WSBPEL.

Secondly, general quality metrics are discussed. We consider n independent quality
metrics)()2()1(, nqqq L . So the QoS of every candidate service s is represented as a

quality vector (1) (2) ()() (), () ()=< >L nq s q s q s q s . We notice that some QoS metrics

could be negative (the higher the value, the lower the quality), such as response time
and cost, and others could be positive, such as success rate. The positive criteria can
be converted to equivalent negative one or vice versa by using the reciprocal of its
original value. So we assume all the QoS metrics are negative in the following
discussion.

Thirdly, it is rational suppose that the quality of a structure in a composite service
can be computed by aggregating the quality of its low-level substructures. The
aggregation manner usually depends on both quality metrics and composition
patterns, which has been discussed in [7,8]. We will not repeat to study specific
aggregation rules, however, aggregation functions () () ()

1 2(, , ,)Lx x xf pat q q for metric x

are utilized to abstract the aggregation manners, where pat is flag of composition
pattern , () ()

1 2,x xq q are the quality in dimension x for two low-level substructures, and

L represents other potential parameters such as the execution probability of
substructures . We demand that every ()xf is monotonous for all composition patterns:

() ()
1 1

x xq q′≥ implies () () ()
1 2(, , ,)∗ Lx x xf q q () () ()

1 2(, , ,)′≥ ∗ Lx x xf q q and () ()
2 2

′≥x xq q implies
() () () () () ()

1 2 1 2(, , ,) (, , ,)′∗ ≥ ∗L Lx x x x x xf q q f q q .

Now we define the problem formally.

Definition 1. Consider a composite service with activity set { }1 2, ,..., NA a a a= and

their corresponding candidate sets {S1,S2,..,SN}, its partial execution plan p is a partial
function from A to

1

N

iSU satisfying p(ai)∈ Si (i=1..N). If Dom(p)=A, we say p is an

execution plan.
Because the QoS of composite service is related to specific execution plan, we

denote the quality vector of a composite service with respect to (partial) execution
plan p as ><)()(),()()2()1(pqpqpq nL .

Definition 2. Given a constrain vector >=<)()2()1(, nccccons L , where)...1()(nic i = is

a real number, execution plan p is said to satisfy cons (or cons is satisfied by p) if for
all i=1..n)()()(ii cpq ≤ .

Definition 3. Given a composite service with activity set A={a1,a2,..,aN}and
corresponding candidate sets {S1,S2,..,SN}, the multi-constrained service composition
problem (MCSC problem) is to find an execution plan p that satisfies the given
constrain vector cons.

126 B. Liu et al.

Theorem 1. The MCSC problem is NP-Complete.
Theorem 1 can be proved by converting a special case of MCSC problem which

concerns sequentially connected activities to a typical scenario considered in the
literature of QoS routing. Thus the problem becomes to find a path in a network of
M*N nodes that satisfies the given constraints, namely Multi-Constrain Path (MCP)
problem [10], which has been proved to be NP-complete. So MCSC problem is NP-
Complete too. Details are omitted for space limit.

3 Service Selection Algorithm for QoS Aware Service
 Composition

Before the service selection algorithms is presented, we introduce the concept
reduction tree at first which acts as the QoS aggregation scheme for composite service
and basic data structure in the algorithms.

3.1 Reduction Tree

Reduction tree is developed based on the reduction concept introduced in [5]. For
composite services with well-structured model, once all the substructures’ qualities in
a structure are known, the quality of their composition can be calculated according to
simple pre-defined rules. This procedure is called reduction. Reduction can be carried
out repeatedly on two substructures in the reverse direction to decomposition and
ends when the top structure, the whole process, is reached. Reduction tree captures
the reduction procedure of a composite service.

Definition 4. The reduction tree (R-Tree) of a composite service is a binary tree in
which the degree of each node is either 0 (leaf node) or 2 (non-leaf node). Leaf nodes
represent activities of the process, and non-leaf nodes, annotated with workflow
pattern flags denotes a substructure in the process. Every node in the R-Tree is
weighted by a real number

uprob which is the probability that the substructure

denoted by u is visited if its parent is entered.

Reduction tree can be derived from the composite service model and the execution
history of the service. Given the R-Tree of a composite service, we can compute its
QoS w.r.t an execution plan by attaching a quality vector (1) (2) ()(,)= L n

u u u uq q q q to

every node in the post order. Firstly, vectors of leaf nodes are set respectively to the
quality vector of its assignment in the execution plan. Then vectors of those non-leaf
nodes are determined by aggregating the vectors of their children according to pre-
defined reduction rules. After the procedure is executed at the root, quality vector of
the root is the quality of the process.

The left part of Fig.1 depicts an example R-Tree. Flags of “�”, “ ∧ ”and “ ∨ ” in
the non-leaf nodes represents sequence, AND-split/join and OR-split/join
respectively.

 QoS Aware Service Composition with Multiple Quality Constraints 127

11

1

1 0.40.6
(11 2

3 4 5

6

∧

∨|

|

|

1

1

1

1

1

Fig. 1. Example of reduction tree

3.2 Heuristic Algorithm for Service Selection

Based on the concept of R-Tree, an exhausting search algorithm can be developed
that every possible pair of partial plans are merged at every non-leaf nodes so that all
the possible plans can be generated at the root. This simple algorithm is effective but
not efficient enough because of its exponential complexity.

So we propose a heuristic algorithm MCSC_HEU that can solve the problem in
polynomial time. The main idea of MCSC_HEU is to evaluate partial plans at non-
leaf nodes by a heuristic function instead of comparing every pair of possible partial
plans to decide which are the most promising combinations leading to the feasible
solutions. The heuristic function to evaluate the favorableness of partial plan p on

non-leaf node is defined as follows:

() ()

1
() ()

=
= ∏n i i

i
h p q p c

Explanation of h(p) is given in Fig. 2 which shows a simple case with only two
dimensions. The square area (F) represents the feasible region in the 2D space and the
black dot represents a partial plan with normalized weight on each dimension. Every
partial plan p determines a rectangle (D) with the origin and two axes, filled with bias
as shown in the Fig.2. In 2D space, the area of D indicates the cost of a partial plan
with respect to h(p). For n-dimensional cases, D is a n-dimensional hypercube and
h(p) represents the volume of the hypercube. So it is reasonable to suppose that the
smaller D is, the better.

Because g(p) is an approximation of the likelihood that a partial plan will be
extended to a feasible plan, it is inevitable that the heuristic may fail in some cases.
To improve performance MCSC_HEU search for the best k partial plans with respect

(1)

(1)

()q p

c

p

0

(2)

(2)

()q p

c

 1

 1

F

D G

F

Fig. 2. Explanation of the cost function

128 B. Liu et al.

Fig. 3. Algorithm MCSC_HEU

to the heuristic function instead of the best one. When partial plans are merged at non-
leaf nodes in the reduction procedure, k plans with minimum g are preserved and then
contribute to their parents. Others are considered to be not good enough and
discarded. The algorithm MCSC_HEU is presented in Fig. 3.

In MCSC_HEU k2 partial plans are generated at each non-leaf node and the best k
plans are selected by sorting technique. Because the time complexity for the best
sorting algorithm is)log(2 nno where n is the number of items to be sorted, the time

complexity of MCSC _HEU is)log(2
2 kNko . Intuitively the efficiency of

MCSC_HEU is related to k. The bigger k is, the less partial plans that may lead to
feasible solutions will be dropped. But it is a contradiction that big k will increase the
complexity. Fortunately, our evaluation experiments in section 4 show that a small k
(k=4 for instance) is enough for MCSC_HEU to find the right solution with very high
probability.

4 Evaluations

The goal of experiments is to evaluate how well MCSC_HEU algorithm performs
regarding to various conditions. We compare the performance of MCSC_HEU with

MCSC_HEU (Candidates[1..N],cons)
FOR all leaf node i in R-Tree
 FOR all

ijs in Candidates[i]

 iP .insert({<i,
ijs >},

ijq)

FOR all non-leaf node j in R-Tree

nullP j =

REDUCE (RTree.root);
IF p in rootP and p<cons RETURN p.

REDUCE (u)

IF u is a leaf node RETURN
REDUCE (u.leftchild);
REDUCE (u.rightchild);
FOR all

mp in lP of u.leftchild

FOR all
np plan in rP of u.rightchild

 up = planpplanp nm .. ∪

FOR every metric x () () () ()(, (), (),)= Lx x x x
u m nq f flag q p q p ;

uP .insert(
up)

sort entries in uP with increasing order w.r.t g(p)
keep the first k entries in uP and delete others

 QoS Aware Service Composition with Multiple Quality Constraints 129

the exhausting search algorithm and define the comparative ratio as the performance
metric which is the ratio that the feasible plan is found by the heuristic and exhausting
search.

4.1 Experiments Setup

We study a special case of the 3-dimensional MCSC problem which considers three
generic quality metrics: service time, service cost and success rate. Semantics of these
quality metrics and their reduction rules can be referred to [5,7].

Experiments are conducted on composite service process templates generated at
random. The QoS parameters for candidate services are generated stochastically too.
Values of these quality parameters are uniformly distributed in [1,100], [101,200] and
[0.1,1.0] respectively. Constraints () () ()(, ,)t c rc c c are randomly generated as follows:

() () ()*max((), ())t t t
c rc coef q p q p= , () () ()*max((), ())c c c

t rc coef q p q p= , () *rc coef=
() ()max((), ())r r

t cq p q p , where
tp ,

cp and
rp are respectively the best plans w.r.t

response time, cost and success rate, and coef∈[0.5,1,5] is the adjustable relaxation
coefficient that determines the feasible region. It can be understood that the smaller
coef is, the less possibly that the satisfying plan exists. The constraints selection

scheme guarantees that at least one feasible plan exists when coef is over 1.0.

4.2 Effectiveness and Scalability of MCSC_HU

The first experiment investigates effectiveness of the heuristic by changing the scale
coefficient coef and k. We construct process with 10 activities and 5 candidates for
each activity. In the experiments coef is set initially to be 0.5 and increased in step of
0.05. For every coef, the experiment results are collected by running two algorithms
1000 times with random reduction tree topologies, candidates’ QoS parameters and
corresponding constraints. The experiment are repeated several times with k= 1 to
128. Curves for comparative ratio are depicted in Fig. 4.

An approximate increasing trend with increasing coef can be discovered in Fig.4.
Due to the heuristic nature of MCSC_HEU, one can expect few anomalies in the
general trend. Take the case that k is 4 for example. The comparative ratio is 0.925
when coef is 1.0. So we can claim in the case that each non-leaf node maintains the
best 4 plans, if only there is a plan satisfying given constraints, the probability that
MCSC_HEU can find the solution is about 92%. It increases as the constraints are
relaxed. We get nearly 100% comparative ratio when coef is 1.5 which tells the fact
that the heuristic performs almost as well as the exhausting search if the constraints
are relaxed to a moderate level. Experiments with other k discover similar trends for
comparative ratio in spite of some differences in detailed data.

Fig.4 also shows that the comparative ratio is closely relevant to the value of k.
Generally speaking the bigger k is adopted, the better performance we get. For
example, the comparative ratio is 87.8% when k =1 and coef =1.0 while it goes up to
98.6% when k =128 and coef =1.0. However we noticed that the performance
improvement achieved by increasing k is distinct when k is below 8. It becomes
unattractive if k increases to 16 or more although we can expect that the curve will

130 B. Liu et al.

���

���

���

���

���

���

���

��	

��
��
��
��
�

��	������������

����

�
�
�
�
�
�
�
�
�
�
	

�
�
�
�
�

��� ���

��� ��	

���
 ����

��
� ����	

Fig. 4. Performance of MCSC_HEU

�

�

�

�

�

�

�

�

�

	

��

� � � � � � � � 	 ��

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������	
������

��������

�����������������

�

�

�

�

��

��

� �� �� �� �� �� �� �� �� ��

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������	
���������������

�����������������

Fig. 5. Time cost comparison of exhausting search and MCSC_HEU

overlap that for the exhausting search algorithm if is k is set to be infinite. This
inspires us that we should take a moderate table size in application to get satisfying
performance and, at the same time, limit the complexity to a moderate level.

To test the time cost of MCSC_HEU regarding the scale of the problem, we set
coef =1.2 and change the values of N and M. Fig. 5 shows the result. The curve for the
exhausting search approach exhibits obvious exponential increase in its time cost
while the curve for the heuristic algorithm indicates approximate linear increase with
increasing N. Curves for different M also shows that MCSC_HEU demands much less
time than the exhausting search does. When the problem scales, the advantage of
MCSC_HEU in the execution time becomes more notable.

5 Conclusions

The emergence of web services has created unanticipated opportunities for
establishing agile distributed applications by composing services dynamically to
provide new functionality. We have addressed the issue of QoS aware service
composition in this paper and raised the MCSC problem aiming at selecting proper
component services to ensure their composition satisfy specified QoS constraints.
Based on the concept of reduction tree, a heuristic service selection algorithm
MCSC_HEU has been developed to solve the MCSC problem with polynomial time
complexity. Experiments show that the heuristic performs well both in its

 QoS Aware Service Composition with Multiple Quality Constraints 131

effectiveness and efficiency. Furthermore, the approach presented is general and can
be easily extended to deal with much wider scenarios.

References

1. B. Benatallah, M. Dumas, M.-C. Fauvet, F.A. Rabhi, Quan Z. Sheng. Overview of Some
Patterns for Architecting and Managing Composite Web Services. ACM SIGecom
Exchanges, Vol. 3, No. 3, (August 2002), Pages 9-16

2. Daniel A.Menascé, QoS Issues in Web Services, IEEE INTERNET COMPUTIN,
NOVEMBER • DECEMBER 2002, Published by the IEEE Computer Society

3. Daniel A.Menascé ,Composing Web Services: A QoS View, IEEE INTERNET
COMPUTIN, NOVEMBER • DECEMBE,R 2004, Published by the IEEE Computer
Society.

4. Yutu Liu,Anne H.H. Ngu,Liangzhao Zeng�QoS Computation and Policing in Dynamic
Web Service Selection, WWW2004, New York, New York, USA.

5. Cardoso, J., A. Sheth and J. Miller. Workflow Quality of Service. International Conference
on Enterprise Integration and Modeling Technology and International Enterprise Modeling
Conference (ICEIMT/IEMC’02), Valencia, Spain, Kluwer Publishers.

6. Jorge Cardoso, Amit Sheth, John Miller, Jonathan Arnold, and Krys Kochut�Quality of
Service for Workflows and Web Service Processes�Journal of Web Semantics, 2004

7. Liangzhao Zeng, Boualem Benatallah,Anne H.H. Ngu, et. al, QoS-Aware Middleware for
Web Services Composition, IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,
VOL. 30, NO. 5, MAY 2004

8. Tao Yu, Kwei-Jay Lin, Service Selection Algorithms for Web Services with End-to-end
QoS Constaints, in Proc. of the IEEE International Conference on E-Commerce
Technology, 2004

9. H. Jin, H.H. Cheng, Z.P. Lu,X.M. Ning.Qos Optimizing Model and Solving for Composite
Service in CGSP Job Mananger. Chinese Journal of Computers, Apr.2005, Vol 28. No.4.
P578-588

10. Yuan, X., Liu, X. Heuristic algorithms for multi-constrained quality of service routing, In
Proceedings of the IEEE INFOCOM 2001. Piscataway, NJ: IEEE Communication Society,
2001. 844~853.

Performance Modelling and Optimization of Memory
Access on Cellular Computer Architecture Cyclops64

Yanwei Niu, Ziang Hu, Kenneth Barner, and Guang R. Gao

Department of ECE, University of Delaware, Newark, DE, 19711, USA
{niu, hu, barner, ggao}@ee.udel.edu

Abstract. This paper focuses on the Cyclops64 computer architecture and
presents an analytical model and performance simulation results for the preload-
ing and loop unrolling approaches to optimize the performance of SVD (Singular
Value Decomposition) benchmark. A performance model for dissecting the total
execution cycles is presented. The data preloading using “memcpy” or hand opti-
mized “inline” assembly code, and the loop unrolling approach are implemented
and compared with each other in terms of the total number of memory access cy-
cles. The key idea is to preload data from offchip to onchip memory and store the
data back after the computation. These approaches can reduce the total memory
access cycles and can thus improve the benchmark performance significantly.

1 Introduction

The design concept of computer architecture over the last two decades has been mainly
on the exploitation of the instruction level parallelism, such as pipelining,VLIW or
superscalar architecture. For the next generation of computer architecture, hardware
threading multiprocessor is becoming more and more popular. One approach of hard-
ware multithreading is called CMP (Chip MultiProcessor) approach, which proposes a
single chip design that uses a collection of independent processors with less resource
sharing. An example of CMP architecture design is Cyclops64 [1,2,3,4,5], a new ar-
chitecture for high performance parallel computers being developed at the IBM T. J.
Watson Research Center and University of Delaware. More details of Cyclops64 archi-
tecture are described in Section 2.

This paper focuses on the Cyclops64 computer architecture and presented perfor-
mance model and simulation results for the preloading and loop unrolling approach to
optimize the performance of SVD benchmark. The key idea is to preload data from
offchip to onchip memory and store the data back after the computation. The contri-
butions include: (1) a performance model for dissecting the total execution cycles; (2)
detailed analysis of the tradeoff of the data preloading approaches using “memcpy” or
hand optimized “inline” assembly code, and the loop unrolling approach.

The remainder of this paper is organized as follows. The target platform Cyclops64
will be introduced in Section 2. The SVD benchmark and the GaoThomas algorithm are
presented in Section 3. Different memory access approaches are introduced in Section 4
and detailed analysis of these approaches in Section 5. Simulation results and validation
of the analysis are shown in Section 6. The conclusions are summarized in Section 7.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 132–143, 2005.
c© IFIP International Federation for Information Processing 2005

Performance Modelling and Optimization of Memory Access 133

2 Cyclops64 Hardware and Software

Cyclops64(C64) is a petaflop supercomputer project under development at IBM re-
search Laboratory. The Cyclops64 project is a renovative idea to explore the thread-
level parallelism. Figure.1 shows the hardware architecture of a Cyclops64 chip, the
main component of a Cyclops64 node. Each Cyclops64 chip has 80 processors, each
consisting of two thread units, a floating-point unit and two SRAM memory banks of
32KB each. A 32KB instruction cache, not shown in the figure, is shared among five
processors. In a Cyclops64 chip architecture there is no data cache. Instead a half of
each SRAM bank can be configured as scratch-pad memory. Such a memory provides a
fast temporary storage to exploit locality under software control. The latency of onchip
scratch-pad memory is 2 cycles. Cyclops64 system also has offchip memory modules.
The default offchip latency is 36 cycles. It could become larger when there is heavy
load of memory accesses from many thread units. This parameter can be preset in the
Cyclops64 simulator. In this paper, we preset the offchip latency to be 36 or 80.

M
em

or
y

O
ff−

ch
ip

M
em

or
y

O
ff−

ch
ip

M
em

or
y

O
ff−

ch
ip

M
em

or
y

O
ff−

ch
ip

TU

FP

SP SP

TU TU

FP

SP SP

TU TU

FP

SP SP

TU TU

FP

SP SP

TU

GM GM GM GM GM GM GM GM

Chip
A

−
sw

itc
h

Processor

Board

et
he

rn
et

G
ig

ab
it

HD

3D
−

m
es

h

ATA

Crossbar Network

Fig. 1. Cyclops64 Chip

On the software side, one important part of the Cyclops64 system software is the
Cyclops64 thread virtual machine. CThread is implemented directly on top of the hard-
ware architecture as a micro-kernel/run-timesystem that fully takes advantage of the Cy-
clops64 hardware features. Cyclops64 thread virtual machine includes a thread model, a
memory model and a synchronization model. The details of those models are explained
in [6]. Suffice it to say that, the Cyclops64 chip hardware supports a shared address
space model: all on chip SRAM and off-chip DRAM banks are addressable from all
thread units/processors on the same chip.

3 SVD for Complex Matrices

In our implementation, we will focus on the one sided Jacobi SVD method since it is
most suitable for parallel computing. The idea is to generate an orthogonal matrix V
such that the transformed matrix AV = W has orthogonal columns. Normalizing the
Euclidean length of each nonnull column of W to unity, we will get the relation:

W = UΣ, (1)

134 Y. Niu et al.

where the U is a matrix whose nonnull columns form an orthonormal set of vectors and
Σ is a nonnegative diagonal matrix. Since V HV = I , where I is the identity matrix,
we have the SVD of A given by A = UΣV H .

Hestenes [7] uses plane rotations to construct V . He generates a sequence of matri-
ces {Ak} using the rotation

Ak+1 = AkQk (2)

where the initial A1 = A and Qk is a plane rotation matrix. The post-multiplication by
Qk affects only two columns, denoted by u and v, for real matrices, we have:

(u′, v′) = (u, v)
(

c s
−s c

)
. (3)

For complex matrices, we have

(u′, v′) = (u, v)
(

ejβ 0
0 1

) (
c s
−s c

) (
e−jβ 0

0 1

)
. (4)

where the angel β is from w: w = |w|ejβ , the formulas to get c and s are:

α =
y − x

2|w| , τ =
sign(α)

|α| + √
1 + α2

c =
1√

1 + τ2
, s = τc. (5)

We set c = 1 and s = 0 if |w| = 0. The peudocode of the one-sided Jacobi routine for
complex matrices is show in Listing.1.1, which we refer to as “basic rotation routine”.

1 R o t a t i o n o f t w o c o l u m n (co lu , c o l v)
2 {
3 /∗ c o l u and c o l v ar e two columns o f complex numbers ∗ /
4 w= i n n e r p r o d u c t (co lu , c o l v) ;
5 i f (|w| <= d e l t a) {conve rged <− t r u e ; re turn ;} ;
6 x= i n n e r p r o d u c t (co lu , c o l u) ;
7 y= i n n e r p r o d u c t (co lv , c o l v) ;
8
9 compute r r o t a t i o n p a r a m e t e r c , s from w, x , y a c c o r d i n g t o E q u a t i o n 5 ;

10 u p d a t e co lu , c o l v a c c o r d i n g t o r o t a t i o n E q u a t i o n 4 ;
11 }

Listing 1.1. Rotation of two column of complex numbers

3.1 GaoThomas Algorithm

The plane rotations have to be applied to all column pairs exactly once in any sequence
(a sweep) of n(n − 1)/2 rotations. Several sweeps are required so that the matrix con-
verges. A simple sweep can be a cyclic-by-rows ordering. For instance, let us consider
a matrix with 4 columns, with the cyclic-by-rows order, the sequence of a sweep is:

(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4). (6)

Performance Modelling and Optimization of Memory Access 135

1 R o t a t i o n o f t w o c o l u m n (co lu , c o l v)
2 {
3
4 A l l o c a t e l o c a l c o l u , l o c a l c o l v
5 on t h e s c r a t c h−pad ;
6
7 memcpy (l o c a l c o l u <−c o l u) ;
8 memcpy (l o c a l c o l v <−c o l v) ;
9

10 c o n d u c t t h r e e i n n e r p r o d u c t s and
11 column r o t a t i o n on l o c a l c o l u , l o c a l c o l v
12 as i n L i s t i n g . 1.1
13
14 memcpy (c o l u <−l o c a l c o l u) ;
15 memcpy (c o l v <−l o c a l c o l v) ;
16 }

Listing 1.2. Basic rotation routine with preloading using “memcpy”

It is easy to see some pairs are independent and may be executed in parallel if we
change the order in the sequence. Another possible sequence for a sweep can group
independent pairs and executes them in parallel:

{(1, 2), (3, 4)}, {(1, 4), (2, 3)}, {(1, 3), (2, 4)}, (7)

where the pairs in curly brackets are independent.We call each of these groups a step.
In this research, we implemented the GaoThomas algorithm. This algorithm com-

putes the pairs of n elements on n/2 processors when n is a power of 2. A sweep is
composed of n − 1 steps, each step consisting of n/2 pairs of rotations. Therefore,
one sweep consists of n(n− 1)/2 rotations. In our shared memory implementation, the
number of slave threads p can be set to be equal to the number of available processors.
All the column pairs in one step can be treated as a work pool, the works in this work
pool are shared among the p slave threads, where 1 ≤ p ≤ n

2 .
GaoThomas algorithm can compute n(n−1)/2 rotations of a matrix with n columns

on n/2 processors. When the size of the matrix increases, group based GaoThomas
algorithm can be adopted. For instance, when the matrix size is now 2n and we only
have n/2 processors, we can group two columns together and treat them as one single
unit. Generally speaking, for a matrix with n columns, if we group g columns together
as a group, then we have n/g groups and can use the basic GaoThomas algorithm for
n/g elements, except now each element is a group. For a matrix with n columns and
group size g, one sweep contains n/g − 1 steps, each step contains n/2g instances of
a rotation of two groups, which can run in parallel on maximum n/2g processors. The
rotation of two groups includes the rotation of all possible pairs of matrix columns in
these two groups.

4 Optimization of Memory Access

4.1 Naive Approach

The default memory allocation using “malloc()” in the Cyclops64 simulator is from
the offchip memory, while the local variables are allocated from the stack located on

136 Y. Niu et al.

the onchip scratch-pad memory. Assuming that the matrix data originally reside on
the offchip memory, we implemented an SVD program where all the memory ac-
cesses are from the offchip memory. This implementation is referred to as the naive
version in the following discussions. Also, the loop within the inner product compu-
tation of the rotation routine is implemented without any loop unrolling in the naive
approach.

4.2 Preloading

In order to reduce the cycles spent on memory accesses, we can preload the data from
the offchip memory to the onchip scratch-pad memory. Thus the data accesses in the
computation part of the rotation routine are directly from the onchip memory. The up-
dated data are then stored back to the offchip memory.

There are two ways to preload data. The simplest way is to use the “memcpy”
function from the C library. The pseudo-code for the “memcpy” preloading in the two-
column rotation routine is shown in Listing 1.2. We refer to the code segment from
the line 10 to line 12 as the “computation core”, which consists of the computation
of three inner products and a column rotation. Preloading for the group based rotation
routine is similar, except that two “groups” of columns are preloaded. The “memcpy”
function based preloading has the problem of paying extra overhead of function calling.
Additionally, the assembly code of the “memcpy” function is not fully optimized, which
is shown with analysis in the next section.

To overcome these two problems, we implement preloading by using an optimized
inline assembly code instead of a function call. We refer to this approach as the “inline”
approach. For this approach, each “memcpy” function call is replaced with a segment
of inline assembly code. The assembly code segment for the “memcpy” and “inline”
preloading approaches (either group based rotation routine or basic rotation routine)
are shown in Listing 1.4 and Listing 1.5. From the listings, we can see that memcpy and
inline approaches have different instruction scheduling. The effect of different ways of
instruction scheduling on the total memory access cycles is analyzed in Section 5.

4.3 Loop Unrolling of Inner Product Computation

There are three inner product function calls in the rotation routine. We implemented
two versions of loop unrolling for the loop in the inner product computation: unrolling
the loop body 4 times or 8 times. The idea is that loop unrolling makes it possible
to schedule instructions from multiple iterations, thus facilitating the exploitation of
instruction level parallelism.

5 Performance Model

5.1 Dissection of Execution Cycles

We begin with a simple execution trace example in Listing 1.3 to illustrate how to
dissect total execution cycles into several parts. In the listing, the first column is the

Performance Modelling and Optimization of Memory Access 137

current cycle number. We notice that at cycle 98472, there is a note “DLL = 1”, which
means that there is a one-cycle latency related to memory access. The reason is that at
cycle 98472, the instruction needs the operand R9, which is not ready at cycle 98472
because the LDD instruction at cycle 98470 has two cycles of latency. Similarly, at cycle
98475, the FMULD instruction needs the input operand R8 generated by the FDIVD
instruction at cycle 98469. R8 is not ready at cycle 98475 and needs an extra latency
of 25 cycles since the FDIVD instruction has 30 cycles of latency from the float point
unit. Counting the total number of cycles from cycle 98469 till cycle 98501, there are
33 cycles which include 7 instructions, 1 cycle of “DLL” and 25 cycles of “DLF”. The
integer unit may also cause certain latency called “DLI”, which is similar to the “DLF”
in the trace example. Therefore, we have the following equation:

Total cycles = INST
+ DLL + DLF + DLI,

(8)

where the “ INST” part stands for the total number of instructions, “DLL” represents the
cycles spent on memory access, “DLF” represents the latency cycles related to floating
point instructions, and “DLI” represents the latency cycles related to integer instruc-
tions.

98469 FDIVD R8 , R60 , R8
98470 LDD R9 , R3 , 9 6
98471 ORI R21 , R0 , 0
98472 FDIVD R20 , R9 , R62 DLL = 1
98474 LDD R60 , R3 , 1 0 4
98475 FMULD R6 , R61 , R8 DLF = 25
98501 STD R8 , R3 , 1 6 0

Listing 1.3. Example of dissection of execution cycles

5.2 Analysis of Naive Approach

All memory accesses in the naive approach are from the offchip memory and the com-
putation core part has a large number of “DLL” latency cycles. We denote the size of the
matrix as n× n. Each element of this matrix is a double complex number. We focus on
one sweep that consists of

(
n
2

)
basic rotations for either the non-group based approach

or the group based approach. A basic rotation, as shown in Listing 1.1 consists of two
different parts, the inner product part and the column rotation part. We analyze the total
“DLL” latency cycles for both of them in this subsection.

First, there are three inner product function calls in the basic rotation routine. Each
one of them consists of n iterations, each iteration producing a multiplication of two
complex numbers and adding it to the sum. From the trace of the innermost iteration
(the offchip latency is set to be 80 cycles), we see that the innermost iteration has a
“DLL = 76”. In general, if we preset the offchip latency to be L cycles, then the total
number of “DLL” cycles in each iteration is L − 4. Therefore, in one sweep, the total
number of “DLL” cycles within the inner product part is:

DLLinnerproduct =
(

n

2

)
× 3 × n × (L − 4), (9)

138 Y. Niu et al.

Second, for the column rotation part in the basic rotation routine, we conduct a
similar analysis. The total number of “DLL” cycles of this part is:

DLLcolumn rotation =
(

n

2

)
× n × (L − 4). (10)

Therefore the total number of “DLL” cycles in the naive implementation of GaoThomas
algorithm (either group based or non group based, just one sweep) including both inner
product and column rotation is:

DLLnaive = DLLinnerproduct + DLLcolumn rotation

=
(
n
2

) × n × (4L − 16). (11)

5.3 Analysis of “Memcpy” Approach

Using either the “memcpy” or “inline” preloading approach, the computation core ac-
cesses data from the onchip memory. The “DLL” part in the computation core is roughly
zero due to the overlap of the short onchip memory access latency (2 cycles) with the
float point unit latency. Therefore, from the program without preloading to the program
with preloading, the decrease of the total number of “DLL” cycles in the computation
core is DLLnaive, which is the cycles we save by using preloading, and thus the gain
we expect to get.

Moving data from the offchip memory to the onchip memory results in an extra cost,
which consists of two parts: the first part is the total “DLL” cycles in the code segment
that is responsible for moving data, and the second part is the extra instructions incurred.
The equation for the first part is derived as follows.

First, we derive the total number of “memcpy” function calls (which are responsible
for loading data “in”). For the basic non-group-based GaoThomas algorithm, there are
totally

(
n
2

)
basic rotations (shown in Listing 1.1) in one sweep. A basic rotation needs

to load in two columns, each of length n. Loading a double complex number needs two
“LDD” instructions. Therefore, the total number of “LDD”s for preloading data is:

LDDmemcpy no group =
(
n
2

) × 2 × n × 2
=

(
n
2

) × 4n,
(12)

where the first “2” stands for loading “two” columns, n is that the length of the column,
and the second “2” means that loading a double complex number needs two LDDs.

For the group based algorithm, if the group size is g, there are totally
(
n/g
2

)
group

based rotations. At the beginning of each group based rotation, we need to load in two
groups of columns (i.e, 2× g columns) and each column needs n× 2 LDDs. Therefore,
the total number of LDDs for preloading data during one sweep is:

LDDmemcpy =
(
n/g
2

) × 2g × n × 2
=

(
n/g
2

) × g × 4n.
(13)

If we treat the non-group-based GaoThomas algorithm as a group-based algorithm with
group size one, then we can use (13) for either the group based algorithm or non-group-
based algorithm.

Performance Modelling and Optimization of Memory Access 139

Second, we compute the latency incurred by the LDDs. The execution trace seg-
ment of the assembly code for the “memcpy” function is shown in Listing 1.4, with the
offchip latency set to be 80. From the Listing 1.4, we observe that each LDD instruc-
tion causes a long latency of 80 cycles, which is reflected where the “STD” instructions
exist. If we preset the offchip latency to be L, then each “LDD” causes a latency of L
cycles. So the total number of “DLL” cycles for preloading data using “memcpy” is:

DLLmemcpy = LDDmemcpy × L

=
(
n/g
2

) × g × 4n × L.
(14)

In addition to the change in the total “DLL”s, we also observe the increase in the
total instruction count as:

Total INST increase =
(

n/g

2

)
× g × 4n × 2 × 2, (15)

where the first part
(

n/g
2

) × g × 4n is the total number of “LDD”s for preloading data.
We need a same amount of “STD”, thus a multiplication by 2. Also we need to use
“LDD” and “STD” to store data back, thus another multiplication by 2.

5.4 Analysis of “Inline” Approach

The total amount of data preloaded for the “inline” preloading approach is the same as
the “memcpy” approach. Therefore the total number of “LDD”s of the inline approach
is the same as the “memcpy” approach:

LDDinline =
(
n/g
2

) × 2g × n × 2 (16)

In the “inline” approach, 8 LDDs in a row are followed by 8 STDs in a row, as
shown in Listing 1.5. From the trace we can see that we will have one “DLL=73” every
8 LDDs if we preset the offchip latency to be 80. If the offchip latency is L cycles, there
is a “DLL=L − 7” every 8 “LDD” instructions. Therefore, the total number of “DLL”
cycles for preloading data using the “inline” approach is:

DLLinline = LDDinline/8 × (L − 7)
= 1

8 × (
n/g
2

) × g × 4n × (L − 7).
(17)

From (17), we can see very clearly that preloading data using the “inline” approach is
better than using the “memcpy” approach because DLLinline is approximately 1/8 of
DLLmemcpy.

5.5 Analysis of the Loop Unrolling

The loop unrolling method only affects the inner product routine. For unrolling 4 times,
eaczzzh inner product routine now contains n/4 iterations, each iteration consisting of
computation of the sum of 4 multiplications of complex number. Based on the trace

140 Y. Niu et al.

105375 LDD R6 , R9 , 0
105376 STD R6 , R7 , 0 DLL = 80
105457 ADDI R9 , R9 , 8
105458 ADDI R7 , R7 , 8
105459 LDD R6 , R9 , 0
105460 STD R6 , R7 , 0 DLL = 80
105541 ADDI R9 , R9 , 8
105542 ADDI R7 , R7 , 8
105543 LDD R6 , R9 , 0
105544 STD R6 , R7 , 0 DLL = 80
105625 ADDI R9 , R9 , 8
105626 ADDI R7 , R7 , 8
105627 LDD R6 , R9 , 0
105628 STD R6 , R7 , 0 DLL = 80

Listing 1.4. Trace of the memcpy approach

112688 LDD R16 , R9 , 0
112689 LDD R17 , R9 , 8
112690 LDD R18 , R9 , 1 6
112691 LDD R19 , R9 , 2 4
112692 LDD R20 , R9 , 3 2
112693 LDD R21 , R9 , 4 0
112694 LDD R22 , R9 , 4 8
112695 LDD R28 , R9 , 5 6
112696 STD R16 , R6 , 0 DLL = 73
112770 STD R17 , R6 , 8
112771 STD R18 , R6 , 1 6
112772 STD R19 , R6 , 2 4
112773 STD R20 , R6 , 3 2
112774 STD R21 , R6 , 4 0
112775 STD R22 , R6 , 4 8
112776 STD R28 , R6 , 5 6

Listing 1.5. Trace of the “inline” approach

of the innermost iteration, the “DLL” incurred inside the inner product part can be
summarized in (18):

DLLinnerproduct unroll4 =
(

n

2

)
× 3 × n

4
× (L − 8). (18)

Similar analysis of unrolling 8 times can give us:

DLLinnerproduct unroll8 =
(

n

2

)
× 3 × n

8
× (L − 13). (19)

6 Simulation Result

6.1 Cyclops64 Simulation Environment

The software tool chain of Cyclops64 platform currently provides a compiler, linker and
simulator for users. A number of optimization levels are supported by the compiler. A
multi-chip multi-threading functional accurate simulator (FAST) is also provided. We

Performance Modelling and Optimization of Memory Access 141

Table 1. Model validation

Latency=36 Latency=80
STD related Computation core STD related Computation core

DLL Latency DLL Latency DLL Latency DLL Latency

naive Measured 52416 16646112 52416 39354336
Measured 19664064 2016 42372288 2016

memcpy Change from Naive 19611648 16644096 42319872 39354336
Predicted change 18579456 16515072 41287680 39223296
Diff percentage 5.41% 0.78% 2.47% 0.33%
Measured 1943424 2016 4781952 2016

inline Change from Naive 1891008 16644096 4729536 39354336
Predicted change 1870848 16515072 4709376 39223296
Diff percentage 1.08% 0.78% 0.43% 0.33%
Measured 46368 6711264 46368 16646112

unroll 4 Change from Naive 6048 9934848 6048 22708224
Predicted change - 9676800 - 22450176
Diff percentage - 2.63% - 1.14%
Measured 46368 5114592 46368 12920544

unroll 8 change from Naive 6048 11531580 6048 26433792
Predicted change - 11273472 - 26175744
Diff percentage - 2.26% - 0.98%

developed a Trace Analyzer that can take the output trace from the simulator and gener-
ate the dissection of execution cycles and analysis of the code simulated. The analyzer
can generate statistics about the total “DLL” related to a certain instruction. For in-
stance, in the example shown in Listing 1.5, the “DLL” latencies caused by the “LDD”
instruction are reflected in the STD instruction. we call such latencies “related/associ-
ated” to the STD instruction.

6.2 Model Validation

Table 1 shows the change of total “DLL”s for different approaches with the group size
set to be one. In the table, for the preloading based approaches (memcpy or inline), the
change of the “STD associated DLL latency” is the cost we pay for preloading, as shown
in the third and fifth column of this table. The predicted value of this part is computed
using (14) for the memcpy approach, and (17) for the “inline” approach. The change
of the total “DLL”s in the computation core (inner product and column rotation) is the
gain we achieved. Without preloading the equation for this part is (11), with preloading,
the number of total “DLL” cycles in this part is approximately zero. Therefore, for two
preloading approaches, the equation for the cycles saved in the computation core is (11).

The difference percentage between the measured value from the simulation trace
and the predicted value from the equations is computed using the following equation:

Diff.Percentage =
|Measurement− Prediction|

(Measurement + Prediction)/2
. (20)

From the table, we can see the predicted value is very close to the measured value
and the difference percentage is quite small. The prediction for the “memcpy” approach
has a relatively bigger difference percentage since the extra overhead of function calling
is not accounted for in our simplified model.

142 Y. Niu et al.

0

1

2

3

4

5

6

7
x 10

7

To
tal

 ex
ec

uti
on

 cy
cle

s

 g =1

 g =2

 g =4

 g =8

 g =16

INST CNT
DLI
DLF
DLL

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

7

To
tal

 ex
ec

uti
on

 cy
cle

s

 g =1

 g =2

 g =4

 g =8

 g =16

INST CNT
DLI
DLF
DLL

(a) (b)

0

1

2

3

4

5

6

7

8

9
x 10

6

To
tal

 ex
ec

uti
on

 cy
cle

s

 g =1

 g =2

 g =4

 g =8

 g =16

INST CNT
DLI
DLF
DLL

0

1

2

3

4

5

6
x 10

6

To
tal

 ex
ec

uti
on

 cy
cle

s

 g =1

 g =2

 g =4

 g =8

 g =16

INST CNT
DLI
DLF
DLL

(c) (d)

Fig. 2. comparison of different approaches (a)Problem size 64 by 64, L=80 (b) Problem size 64
by 64, L=36, (c) Problem size 32 by 32, L=80 (d) Problem size 32 by 32, L=36

6.3 Comparison of Different Approaches

Figure. 2 shows the comparison of total execution cycles and the dissection to four
parts as in (8). Each figure is composed of five clusters of stacked bars. Within each
cluster, the leftmost stacked bar is the microlevel breakdown of the naive approach, the
second from the left shows the four times unrolling approach, the third one is the eight
times unrolling approach, the fourth one is the “memcpy” approach, the fifth one is the
“inline” approach. The first cluster shows the five approaches when group size equals
one, the second cluster has group size 2, so on so forth. Within each stacked bar, the
brown bar (the top bar) shows the total “DLL” cycles, the deep blue bar (the bottom
bar) shows the total number of instructions, the light blue bar shows the total “DLI”
latency, the yellow bar (in the middle) shows the total “DLF” float point unit latency.

There are several observations from the figures. (1) All the proposed approaches
have performance improvement over the naive approach except the “memcpy” method
(for group size 1). (2) The figure also shows how the “DLL” cycles change with the
increase of the group size. For preloading based approaches (“memcpy” and “inline”),
as the group size doubles, the “DLL” will reduce to one half. The loop unrolling based
approach does not change with the change of the group size because the loop unrolling
based approach only change the inner product routine of the basic rotation routine of
two columns and the total number of basic rotations within one sweep is not changed
when the group size changes. (3) This figure also shows the total instructions change
for different approaches. It can be seen that for preloading based approaches, the total
number of instructions increases from the naive approach due to the extra instructions
for preloading. On the other hand, the loop unrolling approach can reduce the total
instruction count from the naive approach since the loop unrolling reduces the total
numbers that the loop control statement are executed. (4) The “DLF” part in the figure
roughly does not change no matter what approach we are using. This is true because
the “DLF” is related to the floating point instructions in the computation core, which is

Performance Modelling and Optimization of Memory Access 143

kept unchanged. (5) It can be seen the “inline” preloading approach performs the best
out of all five approaches.

7 Conclusions

This paper focus on the Cyclops64 computer architecture and presented an analyti-
cal model and performance simulation results for the preloading and loop unrolling
approach to optimize the performance of SVD benchmark. The major contributions in-
clude: (1), We developed a performance model and trace analyzer to dissect the total
execution cycles. This model allows us to study the application performance tradeoff for
different algorithm or architectural design ideas. (2), We presented a clear understand-
ing of SVD benchmark. (3), We used cycle accurate simulator to validate the model
and compare the effect of four approaches on the “DLL” part and the total execution
cycle. We find the hand optimized “inline” method can improve the performance sig-
nificantly and performs best among several approaches. We would like to thank Juan
B. del Cuvillo, Fei Chen, Weirong Zhu, and other members in the CAPSL (Computer
Architecture and Parallel Systems Laboratory) group for their help.

References

1. C. Cascaval, J. G. C. nos, L. Ceze, M. Denneau, M. Gupta, D. Lieber, J. E. Moreira, K. Strauss,
and H. S. W. Jr., “Evaluation of a multithreaded architecture for cellular computing,” in HPCA,
2002, pp. 311–322.

2. G. Almái, C. Cascaval, J. G. Castaños, M. Denneau, D. Lieber, José E. Moreira, and J. Henry
S. Warren, “Dissecting cyclops: a detailed analysis of a multithreaded architecture,” SPECIAL
ISSUE: MEDEA workshop, vol. 31, pp. 26 – 38, 2003.

3. G. S. Almasi, C. Caşcaval, J. E. Moreira, M. Denneau, W. Donath, M. Eleftheriou, M. Gi-
ampapa, H. Ho, D. Lieber, D. Newns, M. Snir, and J. Henry S. Warren, “Demonstrating the
scalability of a molecular dynamics application on a petaflop computer,” in ICS ’01: Proceed-
ings of the 15th international conference on Supercomputing. New York, NY, USA: ACM
Press, 2001, pp. 393–406.

4. J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao, “Fast: A functionally accurate simulation toolset
for the cyclops-64 cellular architecture,” in Workshop on Modeling, Benchmarking and Simu-
lation (MoBS), held in conjunction with the 32nd Annual Interantional Symposium on Com-
puter Architecture (ISCA’05), Madison, Wisconsin, June 4 2005.

5. ——, “Tiny threads: a thread virtual machine for the cyclops64 cellular architecture,” in Fifth
Workshop on Massively Parallel Processing (WMPP), held in conjunction with the 19th Inter-
national Parallel and Distributed Processing System, Denver, Colorado, April 3 - 8 2005.

6. J. B. del Cuvillo, Z. Hu, W. Zhu, F. Chen, and G. R. Gao, “Toward a software infrastructure for
the cyclops64 cellular architecture,” 2004, CAPSL Memo 55, Department of ECE, Universisty
of Delaware.

7. M. R. Hestenes, “Inversion of matrices by biorthogonalization and related results,” J. Soc.
Induct. Appl. Math., vol. 6, pp. 51–90, 1958.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 144 – 152, 2005.
© IFIP International Federation for Information Processing 2005

TCP-ABC: From Multiple TCP Connections
to Atomic Broadcasting*

Zhiyuan Shao, Hai Jin, Wenbin Jiang, and Bin Cheng

Cluster and Grid Computing Lab,
Huazhong University of Science and Technology, Wuhan, 430074, China

zyshao@mail.hust.edu.cn

Abstract. In this paper, we propose a novel scheme, named as TCP-ABC, which
replicates the server side TCP connections among multiple server nodes of a
cluster. By guaranteeing atomic request delivery, and consensus on responses,
this scheme provides the legacy server applications running on the server nodes
with multiple active backups in a transparent fashion. By failing the connections
over healthy units, the scheme enhances the service and data availability of the
cluster. By conducting experiments on the prototype system of a cluster up to
four nodes, we find TCP-ABC results in small performance lost while greatly
enhances the service and data availability.

1 Introduction

With the popularity of using clusters built with COTS components, more and more
efforts need to be done to enhance the availability of the cluster systems. For the con-
siderations of cost and portability, clusters always adopt mature legacy server applica-
tions, such as Apache, Q-Mail, to provide the services. Most of these applications
follow the client/server model, and use TCP to implement their communication mod-
ule. However, few of these applications provide active or standby backups to tolerate
the faults so as to enhance the availability of a cluster. Although achieving
fault-tolerance of the application by totally replacing its communication module sounds
feasible, it involves huge effort. The most ideal way to improve fault-tolerance of the
application and availability of the cluster is to employ solutions transparent to these
legacy applications.

Generally, the availability of a cluster system has two aspects: the service avail-
ability and the data availability. Nowadays, front-end solutions, such as LVS [13], are
used to achieve the service availability of a cluster, and a series of TCP fault-tolerance
schemes [2][7][9], are proposed to do it at finer granularity, i.e., TCP connections.
However, few legacy application transparent solutions are forwarded to enhance the
data availability for the share-nothing clusters.

Active and semi-active replications methods [12] provide strong data consistency
among the copies, which are the most ideal choices to implement the data availability
of the clusters. However, both classes of these schemes require support from the

* This paper is supported by National 863 Hi-Tech R&D Project under grant No.2002AA1Z2102.

 TCP-ABC: From Multiple TCP Connections to Atomic Broadcasting 145

communication layer, i.e., atomic multicasting (broadcasting) [1][4]. In order to be
transparent to the legacy applications, converting the TCP connections at the server
side to atomic multicasting is the prerequisite of deploying these replication methods.

In this paper, we propose a novel scheme, namely TCP-ABC, which replicates the
server side TCP connections among multiple server nodes of a cluster. By guaranteeing
atomic request delivery, and consensus on responses, this scheme provides the legacy
server applications running on the server nodes with multiple active backups in a
transparent fashion. By failing the connections over healthy units, the scheme enhances
the service and data availability of the cluster.

We organize this paper as the followings. In section 2, the scenario of research is
presented. In section 3, we discuss the mechanisms employed by TCP-ABC during the
failure-free phase, and consider the possible failures in section 4. To evaluate this
scheme, we conduct experiments on real implementations, and present the results in
section 5. In section 6, we present a briefly survey of the related works and conclude the
paper in section 7.

2 Scenarios of Research

We take the share-nothing cluster shown in Fig. 1 as the scenario of our research.
Among the server nodes, there is a unique primary server and multiple backup servers.
The primary server possesses the Portal IP of the cluster. All the server nodes in the
cluster have their own IP addresses (IP1, IP2 …. IPn), which belong to a same private
subnet. The switch (or router), which connects the server nodes of the cluster with the
outside world, supports IP multicasting (which is widely supported by varieties of
network standards today) as well as point-to-point communication.

Primary Server Backup Server1 Backup Server2 Backup Server n

......

Client

Portal IP
IP1 IP2 IP3 IPn

Switch/ Router

Fig. 1. Scenarios of Research

Data on the server nodes can only be modified by the server side applications by
processing the requests of the clients. After processing each request, the server side
application sends a response back to the client to indicate the result of the operation
(Interactive Communication), and the requests and responses are sent via the estab-
lished TCP connections. In this paper, we only consider the TCP connections initiated
by the clients to the cluster. Regarding the server side applications, we consider only
those processing the incoming requests in a non-stop fashion, i.e., the request messages
are delivered in the order they are received.

146 Z. Shao et al.

For convenience of discussion, we assume the execution of the application is de-
terministic (Deterministic), and the server node delivers the received messages if it
does not fail (Self-delivery). We assume the network is always available and will not be
partitioned. Messages sent from one server node to another will eventually arrive at its
destination (Live Network). Moreover, we assume the failures are crashes (Failure
Stop) of the server nodes, and after failure, they will never come back. As our scheme
can adopt any independent failure detector, we assume the failure detector used in our
scheme is eventually perfect [5], i.e., it can diagnose the faults correctly.

3 Failure-Free Phase

Although the servers can obtain the incoming request messages at ease by simply
programming the switch [7], guaranteeing the atomicity of request delivery turns dif-
ficult. In TCP-ABC, incoming requests are sequenced at the primary server and then
propagated, while the responses from the server nodes converge at the primary server to
form a unique response. The communication paradigm of TCP-ABC is shown in Fig. 2,
where Pi (i =1~8) and Bj (j =1~9) are the processing steps at the primary and backup
respectively.

Primary
Server

Backup
Server

Incoming
Requests

IP Multicast Tunnel

Relayed packet

Message
Ordering(MO)

Response
Control(RC)

Outgoing
Response

Application

Response

Connection Management(CM)

Relayed packet

Application

Response

Connection Management(CM)

Message
Ordering(MO)

Response
Control(RC)

P2 P3

P4 P5

P6 P7

P8P1

P4 P5 B1

B2 B3

B4 B5

B6 B7

B8

Client

Fig. 2. Communication Paradigm of TCP-ABC

From Fig. 2 we can see that each server node of the cluster consists of Connection
Management (CM), Message Ordering (MO) and Response Control (RC) module.

When the primary server receives an incoming TCP request packet from one of the
clients, its CM module intercepts the packet and conducts legality check on the packet
according to the connections. After that, the packet is given a global ordering number
by MO module of the primary server, and then relayed to the backup servers. Section
3.1 will explain the ordering and delivery mechanisms in detail.

When responses are generated, they will be intercepted by the local CM modules
and further handled by RC modules to figure out to the ordering number of the in-
coming request packet the response is for (the response number). Then, the response
together with the response number will be sent to the primary server, which will decide
the final version. Section 3.2 will explain this procedure in detail.

 TCP-ABC: From Multiple TCP Connections to Atomic Broadcasting 147

3.1 Message Ordering and Delivery Strategy

In TCP-ABC, each incoming TCP request packet from the clients is ordered by MO
module of the primary server. To explain the ordering method, we illustrate the mes-
sage exchange pattern of a typical TCP connection [10] in Fig. 3.

…

sy n

sy n & a c k
a c k

f in

a c k & fin

f in

C lie n t S e rv e r

re q ue s t

a c k & fin

re sp on se

re q ue s t

re sp on se

a c k

c 1

c 2

c 3

c 4

c 5

c 6

c 7

s1

s2

s3

s4

s5

a c k

s6

Fig. 3. The Message Exchange Pattern of a Typical TCP Connection

During the connection, MO module of the primary server gives the request packets
(c1, c2 … in Fig. 3) from the client the ordering numbers provided they are not the
retransmitted packets or pure ACKs. In TCP-ABC, the ordering number grows
monotonically and re-folds at a boundary, and fragments of the same request packet are
given the same ordering number.

Regarding the pure ACK request packets, such as c5 in Fig. 3, we give them a special
ordering number that does not fall in the range of ordinary ordering numbers. When
received by the server nodes, they are simply delivered if no request packets are
pending before them. MO module of primary server will have the FIN packets as c6 in
Fig. 3 ordered before dissemination. If a server node receives the final request packet,
i.e., c7 in Fig. 3, and makes sure that all other nodes have also received the packet, the
resources used by the corresponding connection will be reclaimed.

After being properly ordered, each incoming TCP request packet (except for the
pure ACK and c7) forms a decision message as <n, m, p>, where n denotes the ordering
number allocated by the primary, p denotes the request packet while m denotes the
connection number the packet belongs to. The backup servers in TCP-ABC receive the
decision messages by a monotonically increasing order. If decision message is received
in disrupted order, the backup server will stop message delivering and send NAK
messages to the primary server for retransmissions, which requires the primary to log
incoming requests. As communication is interactive, the size of buffer used for logging
on the primary should be the number of connections, and this buffer is replicated
among all the backup servers to tolerate faults.

In TCP-ABC, all the server nodes of the cluster only deliver the decisions by a
monotonically increasing order. Before delivering, the server nodes should make sure
the decision is stable, i.e., all the others have received the decision. TCP-ABC requires

148 Z. Shao et al.

all the backups to send a positive ACK message with the ordering number to other
nodes after having received a decision. Each node delivers the decision only after
having gathered all corresponding positive ACKs from the backups. As receiving ACK
message with higher ordering number from a backup, each backup employs a simple
time-out mechanism to retransmit the positive ACK message with the latest ordering
number to guarantee the reliable dissemination of its positive ACK messages.

Theorem 1. TCP-ABC guarantees the atomicity of message delivery for request
packets at the server nodes.

Proof. A multicast protocol is atomic if it satisfied three properties: Self-delivery,
All-or-nothing and Message ordering. Self-delivery is assumed in section 2. Since a
fixed sequencer (i.e., the primary) is used to order all incoming requests, which means
TCP-ABC satisfied FIFO ordering. In case a decision message is lost at some nodes,
the rest of the server nodes can delivery this decision only after the decision is received
by all the server nodes, as they cannot receive all the positive ACKs. If one of server
nodes crashes on the fly, the employed failure detector will eventually confirm the
failure, exclude the server node from the cluster, and awake the rest of the server nodes.
By this way, the all-or-nothing property is satisfied.

3.2 Response Control (Consensus)

In active replication schemes (e.g. [3]), with the deterministic assumption, server nodes
always send their responses directly back to the clients, and the client picks up the
fastest one. This method, however, does not fit TCP-ABC, as if it was employed, the
processing and communication speed will be decided by the fastest node, and the
slower nodes will lose pace. In TCP-ABC, a consensus on the responses at each turn of
the iterations of communication is required to synchronize the server nodes.

Response numbers are used to differentiate the iterations. TCP-ABC computes the
response number by comparing the ACK number of the response packet and the se-
quence number of the request packets in history. Response packets of the server nodes
together with their individual response numbers will converge at the primary, which
decide the final version of response for each response number by comparing the re-
sponse packets with the same response number. TCP-ABC drops the pure ACK re-
sponses of the backups, and sends only those of the primary back to the clients.

With this consensus stage, TCP-ABC actually implements a semi-active replication
mechanism to guarantee the data consistency of the replicas [12].

4 Failures

There are two typical types of failures in our scheme: failure of backup server and that
of the primary. Crash failure of one of the backups makes the cluster stop working
temporarily, since the rest healthy server nodes cannot receive the positive ACKs for
the decisions and the responses from the failed backup. System continues to work until
the failure detector diagnoses the failure, and after that, server nodes in the cluster will
not wait messages from it anymore.

 TCP-ABC: From Multiple TCP Connections to Atomic Broadcasting 149

TCP-ABC handles the failure of primary by electing a new primary server among
the healthy backups. The one with highest ordering number will be chosen as the new
primary so as to keep the existing ordering number of the decisions. If more than one
backup satisfy this criteria, the one with the smallest private IP address wins the elec-
tion. Portal IP address of the cluster will be bound to the NIC of the new primary
(IP-takeover). The retransmission mechanism of TCP assures that the unacknowledged
requests of the clients will arrive at the new primary.

5 Performance Evaluation

To evaluate performance of TCP-ABC, we implement a prototype with a cluster up to
four server nodes. In section 5.1, we will discuss the penalty on communication. In
section 5.2, we will discuss the performance of MySQL cluster, which employs
TCP-ABC to achieve high availability. The server nodes of the cluster are PC servers
running Redhat Linux with kernel version 2.4.7-10, the hardware configuration is Intel
Pentium III 1GHz CPU, 512MB Memory and 100Mbps Intel EEPro NIC. The client
machines are PCs running Windows 2000 Professional (service pack 4) with hardware
of Intel Celeron 1.7GHz CPU, 512MB Memory and RTL8139A NIC. We use 3COM
100Mbps switch to connect the clients and the server nodes.

5.1 Communication Penalty

In Fig. 4, we compare the performance of TCP connections under different cluster
configurations. TCP-ABC is used when there is more than one server node. The round
trip time (RTT) between the client and the cluster is used to demonstrate the latency of
communication, and Netpipe-2.4 [11] is used as the benchmark.

0 150 300 450 600 750 900 1050 1200 1350 1500

0.5

1

1.5

2

2.5

PacketSize(Bytes)

R
T

T
(m

s)

Standard TCP
Two Nodes
Three Nodes
Four Nodes

Fig. 4. Communication Penalty of TCP-ABC

From Fig. 4, we can see that when there are two server nodes in the cluster, the la-
tency increases about 20~30% compared with that of the standard TCP. The latency
increase is due to message ordering operations on the primary and the time paid at
waiting for the positive ACKs and responses from the backup.

When the number of server nodes increases to four, the latency turns higher than that
of two. But from Fig. 4, we can observe that compared with that of two nodes, the la-

150 Z. Shao et al.

tency of four nodes only increases about near 10%. The increment is resulted for more
time spent on waiting for the positive ACKs and responses from the backup servers.

5.2 Performance of MySQL Cluster

As an open source database management system, MySQL server [8] has been gaining
more and more users around the world. In common installations, it is used as backend
server providing data to the other server nodes. However, the crash of MySQL server
will result in unavailability of the whole cluster. Build-in program of MySQL package
can provide the users with a standby backup, and the failover mechanism is not auto-
matic and seamless. We use TCP-ABC to provide multiple active replicas for MySQL
server. In our experiment, MySQL server 3.23.41 runs on the server nodes, and the
client machine connects to the cluster with MySQL ODBC 3.51.10.

A thread is invoked at the client to create and drop 1000 tables, each of which has ten
integer fields. A test table with ten integer fields is created for further experiments. We
invoke another thread to insert and delete 10000 rows into and out from the test table.
The performance of update is obtained by updating a random row within the test table
for 1000 times. For all these tests, average response time is obtained to indicate the
performance, shown in Fig. 5.

0

0.5

1

1.5

2

2.5

3

Create Table Drop Table Insert Row Delete Row Update Row

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Single Node

Two Nodes

Three Nodes

Four Nodes

Fig. 5. Performance of MySQL Cluster on Update Operations

Fig. 5 shows that creating of table is the most time consuming. This is because
MySQL server needs I/O operations when creating new files to hold newly created
tables. The other update operations cost less time since the file is always open before
operation. Larger sacrifice on the performance of the update operations consuming less
time than those consuming more can be observed. Since penalty put on communication
can be better masked by the time consumed on the operations. This means, to the
complex operations (e.g., updates on multi-table), the sacrifice is less than that of the
simple ones in the experiments.

6 Related Works

Atomic Multicast schemes [1][4] and View Synchronous Communication [6] are two
important communication abstractions that have been extensively considered in the

 TCP-ABC: From Multiple TCP Connections to Atomic Broadcasting 151

context of asynchronous fault-tolerant distributed systems. However, besides the dis-
advantages for practical applications, such as heavy-weighted, prolonged delivery time
and complexity, both of these two abstractions take stateless communication protocols
(i.e. UDP) as their basis. This inevitably jeopardizes the transparency if they are applied
to the legacy applications using TCP.

TCP Fault-tolerance Schemes [2][7][9] were proposed within the past a few years.
Most of them were implemented by providing primary server that actually handled the
connection with an active fully replicated backup. However, these schemes suffered
some common drawbacks, such as long failover time [2], unreasonable assumption on
the processing speed of replicas [7], heavy load on the primary [9]. Moreover, these
schemes considered only the service availability.

7 Conclusions

In this paper, we propose a scheme to replicate the server side TCP connections among
multiple server nodes of a cluster so as to make failover at TCP connection granularity
possible. By guaranteeing atomic request delivery, and consensus on responses, a
semi-active replication mechanism is formed to guarantee the data consistency of the
server nodes. By conducting experiments on the prototype system of a cluster up to four
nodes, especially the MySQL cluster, we find our scheme results in small performance
lost while greatly enhances the service and data availability.

References

1. D. A. Agarwal, L. E. Moser, P. M. Melliar-Smith, and R. K. Budhia, “The Totem multi-
ple-ring ordering and topology maintenance protocol”, ACM Transactions on Computer
Systems, May 1998, 16(2):93-132

2. L. Alvisi, T. C. Bressoud, A. El-Khashab, K. Marzullo, and D. Zagorodnov, “Wrapping
Server-Side TCP to Mask Connection Failures”, In Proceedings of IEEE INFOCOM, An-
chorage, Alaska, USA, 2001, pp.329-337

3. Y. Amir, D. Dolev, P. M. Melliar-Smith, and L. E. Moser, “Robust and Efficient Replication
using Group Communication”, Technique Report CS94-20, Institute of Computer Science,
Hebrew University, 1994

4. K. Birman, A. Schiper, and P. Stephenson, “Lightweight Causal and Atomic Group Mul-
ticast”, ACM Transactions on Computer Systems, 1991. 9(3):272-314

5. T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable distributed systems”,
Journal of the ACM, March 1996, 43(2):225-267

6. G. V. Chockler, I. Keidar, and R. Vitenberg, “Group Communication Specifications: A
Comprehensive Study”, ACM Computing Surveys, December 2001, 33(4):1-43

7. M. Marwah, S. Mishra, and C. Fetzer, “TCP Server Fault Tolerance Using Connection
Migration to a Backup Server”, In Proceedings of the 2003 IEEE International Conference
on Dependable Systems and Networks (DSN), San Francisco, CA, USA, 2003, pp.373-382

8. MySQL server, http://www.mysql.com
9. Z. Shao, H. Jin and B. Chen, J. Xu, and J. Yue, “HARTS: High Availability Cluster Ar-

chitecture with Redundant TCP Stacks”, In Proceedings of the International Performance
Computing and Communication Conference (IPCCC), Phoenix, Arizona, USA, 2003,
pp.255-262

152 Z. Shao et al.

10. W. R. Stevens, TCP/IP illustrated. Volume 1: The protocols, Addison-Wesley, 1994
11. Q. O. Snell, A. Mikler, and J. L. Gustafson, “Netpipe: A Network Protocol Independent

Performace Evaluator”, In Proceedings of IASTED International Conference on Intelligent
Information Management and Systems, June 1996, pp.196-204

12. M. Wiesmann, F. Pedone, A. Schiper, and B. Kemme, “Understanding replication in data-
bases and distributed systems”, In Proceedings of the 20th IEEE International Conference
on Distributed Computing Systems (ICDCS), Taipei, Taiwan, 2000, pp.264-274

13. W. Zhang, “Linux Virtual Server for Scalable Network Services”, In Proceedings of Ottawa
Linux Symposium, Ottawa, Canada, 2000, pp.212-221

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 153 – 162, 2005.
© IFIP International Federation for Information Processing 2005

A Parallel File System Based on Spatial
Information Object

Keying Huang1,2, Guoqing Li2, Dingsheng Liu2 , and Wenyi Zhang2

1 Graduate School of the Chinese Academy of Sciences (GSCAS)
kyhuang@ne.rsgs.ac.cn

2 Key Laboratory, China Remote-Sensing Satellite Ground Station,
Chinese Academy of Sciences

{gqli, dsliu, wyzhang}@ne.rsgs.ac.cn

Abstract. In this paper we introduced a parallel file system based on the spatial
information object storage, the PIPFS system. PIPFS is a special-purpose
parallel file system which designed in view of the remote sensing image
processing. It uses the server/client pattern and bases on the metadata
mechanism. It simultaneously accesses disks on several nodes for application
I/O operations, which improves the efficiency of the operation on large scale
data. A high performance is shown on high-data-complexity application, such
as remote sensing image processing.

1 Introduction
1.1 Spatial Information Data Characteristics
Remote sensing technology is developing on the filed of spatial resolution, spectrum
resolution, time resolution and weather condition, model, rate of observation, with
which the data scale is expanding rapidly. A single scene of TM image with 7 bands
can reach 280MB. The large mosaic image can be several gigabytes[1]. Different from
general file data, the image data structure of remote sensing is quite complicated. The
data type which is used to save pixel of remote sensing image data may be 8bit
integrated, 16bit integrated, 32bit integrated or complex number and the
organizational form may be BIP, BIL or BSQ. Moreover, a group of remote sensing
image data often contains the same spatial attribute information.

The traditional file system is unable to combine and save the remote sensing
images with their attribute information. They can be only saved separately as different
files. In the remote sensing image processing process, we should keep the maximum
spatial information which the image contained in order to keep the high-usability of
the spatial data. Because each pixel in the image represents some spatial information,
the image processing is aim at the raw form image. This limits the use of image
compression technology, especially the loss-compression technology. Therefore, the
remote sensing image data characteristics and data processing force us to face the
problems of computing and saving the magnanimous special structure data.

154 K. Huang et al.

1.2 The Storage Pattern Used in High Performance Computing
Facing the computing and saving problems of magnanimous spatial information data,
high performance computing has took one good way which applied in spatial
information processing and service. In high performance computing, data storage
pattern affects the overall performance directly. General high performance computing
storage pattern mainly includes two kinds of network storage system: (1) parallel and
distributed file system, (2) data and computation separated system. The architecture of
parallel and distributed file system is mainly based on computing servers. In other
words, the storage and the computing are both in the same group servers. The
representatives of this storage pattern are2 message sharing mechanism such as
NFS3

�Coda4
�XFS5 and storage sharing mechanism such as VMS6 and SFS7. There

are two kinds of mainstream network storage construction. They are distinguished by
the command collection8. One kind is the high-bandwidth, low-detention but high-
price and bad-extension SAN�Storage Area Network) structure. The other is good-
extension, low-price, easy-manage but high-protocol-spending, low-bandwidth and
heavy-delay NAS�Network Attached Storage) Structure.

In view of the insufficiency of above storage pattern, the research aim at a new
Linux cluster file system, object storage file system, has been launched.

1.3 From the File System Angle to Accelerate the Remote Sensing Image
Parallel Processing

When the remote sensing image parallel processing algorithm executes on traditional
file system, the data operation model is distribution - computing - collection. With
this model, data distribution and collection process is the bottleneck of entire
procedure. For example, in the image rotate algorithm which using small buffer, data
I/O cost takes almost 60% of the whole time used by application9. Using the
traditional file system and existing parallel computing model can not solve this
problem. Therefore, the key job is to study a file system which adapts the
characteristics of remote sensing image parallel process. This new parallel file system
saves the remote sensing image data in cluster according to some distribution rules
and manages the relevant spatial information and physical data distribution
information in unison. In the process, through the algorithm control, the majority of
data which each computing node needs can be read from local hard disk, thus reduces
the network transmit time which cased by using traditional file system. The new file
system can effectively accelerate the data accessing speed and the application
execution.

2 PIPFS: A Parallel File System Based on the Spatial Information
Object Storage

PIPFS�Parallel Remote Sensing Image Processing File System) is a parallel file
system on Linux cluster, which based on spatial information object storage. In the
following, we will introduce PIPFS system from tow aspects: the system structure and
its support to the remote sensing image parallel process.

 A Parallel File System Based on Spatial Information Object 155

2.1 System Structure

As figure 1�PIPFS adopts client-server pattern based on metadata. File metadata
information is managed by metadata server. Physical data is stored with distributed
mode. Physical files distributed on different nodes are looked as a whole logic file.
This can shield the network transfers to developers and reduce the complexity of
programming and file management. PIPFS system contains three parts: metadata
server, storage servers and the clients.

Fig. 1. Structure of PIPFS System

2.1.1 Metadata Server
The management daemon Mgrd�Metadata Manager daemon) is running on the
metadata server. It is responsible for storing and managing the ordinary metadata and
the spatial information metadata, doing any kind of operations on metadata, such as
create, read or modify. Ordinary metadata includes the physical distributing
information of image data which is distributed stored. Spatial information metadata
includes the spatial attribute information that the remote sensing image has. In PIPFS,
we adopt metadata centralized management--there is a unique metadata server in
cluster. On one hand, it can apply a foundation for cluster to distributed store and
read remote sensing data. On the other hand, it can apply convenience for users to
unified manage the image data.

2.1.2 Storage Servers
In PIPFS, the physical data is distributed in storage servers which named I/O servers.
The physical data management daemons Iod (�/O daemon) are running on these

156 K. Huang et al.

servers. They are responsible for real read and write operations on local files and
communication with clients. In fact, these servers create new files on local file system
and access files with common operations, such as read(), write() and mmap(). It
means that any local file system can store PIPFS files, such as ext2, ext3 and so on.
Furthermore, we can realize fault tolerance by hard RAID or soft RAID which can
create extern large file system.

2.1.3 Clients
The clients include the kernel interface module and the application program library
(the application program interfaces APIs).

The kernel interface module is the interface between PIPFS system and file system
manage module in Linux kernel. With this module, there are two advantages. One is
that PIPFS system can be mounted as same directory in different clients. Then the
users can use the files in the same directory at different clients. After installed the
kernel interface module, the user may use the familiar command, such as ls, cd, rm,
etc. to manage files. Most of present parallel file systems can not be visited via
different operation system. Another advantage is that the directory which attached to
PIPFS system can be visited by using samba protocol from windows system.

The application program library has provided the function interfaces which can be
called by application programs. Application programs access all kinds of data in
PIPFS through the APIs. The operations mainly consist of three kinds: operating on
ordinary metadata, on spatial information metadata and accessing distributed physical
data. Visiting files through the file system manage module increases the time
expenses of kernel. But in PIPFS, the application program library provides a shortcut
for programs to visit storage servers directly. It saves more resources for the
computation. Application program library is analogous to the file system interface
function library of UNIX\Linux system. This has facilitated users to develop
application programs based on PIPFS system.

2.2 Support to Remote Sensing Image Parallel Processing
2.2.1 To Parallel Processing
In PIPFS, the storage server is also the computing server. In this way, the application
programs can get distribution information of physical data through the metadata and
control the parallel processing. As a result, the majority of data that each computing
server needs can gain from local hard disk, little part of data gains from other storage
servers via PIPFS. Thus, it reduces the time spend in data distributing and collecting,
which caused by using traditional file system and the distribution – computing –
collection pattern. Parallel programs furthest use the data exchange and manage
protocol of PIPFS to improve the efficiency. The parallel disk I/O operations in
different nodes accelerate accessing data in file system. Therefore, PIPFS can
improve the application performance.

2.2.2 To Spatial Information Object
The spatial information object is PIPFS system fundamental unit. An object is a
combination of some spatial attribute information and remote sensing image data
files. But in traditional system, the file and the block are basic storage units. Users

 A Parallel File System Based on Spatial Information Object 157

should track the relevant spatial information while access the images. But in PIPFS
system, the spatial information objects manage their attribute information via file
system. And all spatial information objects have a unique object marking. Through
the object marking, the users can access and operate the spatial information objects
easily. Besides the I/O function interfaces which are analogous to UNIX\Linux
system, PIPFS also provides some new functions which fit the remote sensing image
processing:

1. Read-write data by block. Traditional file system read/write function only can
read/write continual data that starts from an assigned address. A remote sensing image
actually is a two-dimensional or multi-dimensional array. It frequently uses BIL or
BSQ as its data organization form. Read and write data by block is the basic data
accessing mode. In this mode, the efficiency of read function in traditional file system
is very low. It leads to frequent I/O operations and memory redundancy. Using the
read/write functions by block that provided by PIPFS system, users can access the
assigned region data easily.

2. Distribution strategy control. In common parallel file system, the users almost
can not control the distribution strategy of a file. They only can make some
adjustments in the file distribution number or the partition size but unable to control
the storage location of block data. In PIPFS system, there is a default distributed
strategy, but users are able to control the distribution through APIs, too.

3. Sampling reading. For better supporting remote sensing image processing
application, PIPFS system also add some commonly used functions, such as image
sampling, to the file system. Users can gain the sampling date but need not to read the
distributed date to local node. This facilitates developers and enhances the system’s
efficiency. It also avoids the frequency I/O operations and lightens the load of master
node.

4. Support to save large size spatial information object. Because the using of
advanced remote sensing technologies, for example high spectrum, high resolution
and so on, now the single spatial information object size may amount to several
hundred Megabyte. The size of spatial information object that has been processed is
possible to reach several Gigabyte even dozens of Gigabyte. On the traditional file
system, it is difficult to save or operate a file bigger than one Gigabyte. But in PIPFS
system, the physical data are distributed, so it theoretically can save and operate
arbitrary size spatial information object as will.

3 Experiments

The experimental environment is:

Meta data server is equipped with dual Xeon 2.4G processors, 2GByte ECC ram,
146GByte 1000RPM SCSI hard disk, and a 1000MBps Ethernet card.

Storage servers and computing servers constitute 8 nodes. Each node is equipped
with dual Xeon 2.4G processors, 1GByte ECC ram, 160GByte 7200RPM Ultra IDE
(ATA133) hard disk, and a 1000MBps Ethernet card.

The operating system is Redhat Linux 7.3.

158 K. Huang et al.

3.1 Throughput

There is only one application program operated the data in this test. Parallel operation
will be displayed in the expansibility test (see Sect. 3.3).
We compared the throughput of PIPFS with NFS in the testing environment.

Table 1. Throughout data ranged of PIPFS and NFS

 Unit:MB/s
Data scale

Filing system
100MB 500MB 1GB 5GB

Read-write
speed

Mean value
Reading 21.76 23.50 21.12 20.05 21.61

NFS Reads
in

43.52 36.83 37.05 34.81 38.05

Reading 21.38 22.84 22.31 21.20 21.93
PIPFS Reads

in
53.91 52.45 51.62 52.03 52.50

���������	

��

�

��

��

��

��

��

����� ����� ��� ��� �������

��� �����

Fig. 2. Read speed of PIPFS and NFS

���������	
�

�

�

��

��

��

��

��

���� ����� �� ��� �������

��� �����

Fig. 3. Write speed of PIPFS and NFS

 A Parallel File System Based on Spatial Information Object 159

From the result we can see that NFS and PIPFS can perform the full performance
on the Giga Ethernet. The result from different size of data indicated that when
handles big data the throughput of PIPFS is much better. That is because NFS only
can operate one file and PIPFS on a group of files. In the experiment we adopt NFS
version3, which is an asynchronous write mode. PIPFS is built on local ext3 file
system and applies asynchronous write mode in real write procedure. Therefore the
write speed of NFS and PIPFS is both higher than read.

3.2 Combine PIPFS with Remote Sensing Image Processing Algorithm

The experiment explained the advantages of PIPFS combined with algorithms. The
testing algorithms we chose are: (1) image rotate algorithm whose local hit rate is
small in image processing algorithms, (2) unsupervised classify algorithm which the
data needed by computing is stored in local storage.

3.2.1 Image Rotate Algorithm
In the experiment we used a single wave band TM image whose size is 5728*6920
pixels and rotated it 45 degree in the counterclockwise. The output image is an
8942*8941 pixels image. We use cubic convolution algorithm and gained two rotate
program’s run time in different parallel scales.

Table 2. Execute time of two rotate functions

Unit: Second

Parallel scale and running time
Function name

5 nodes 6 nodes 7 nodes 8 nodes

Rotate�MPI�* 79.5 71.0 64.9 61.7

Rotate�PIPFS� 25.2 23.6 19.8 18.1
* rotate�MPI) A function in PIPS system

In the experiment rotate algorithm is a reduced local retrieve algorithm. That
algorithm’s characteristic is that each computing node just deals with the local
retrieve area. That brings the treatment simpler and avoids transferring the whole
image to each computing node. But in PIPS system’s rotate algorithm, the data is
distributed by the master process through MPI. That consumes network bandwidth
and computing node’s memory. There is certain of resource waste. When dealing with
pictures oversize there is some limits. Recur to PIPFS system, we can access the
spatial information object via its global control ability. The master process’s task is
limited to little message transfer. The data operations are achieved by several storage
servers in parallel. This can radically avoid block and improve the algorithm’s
efficiency. From table 2 we can see that the rotate algorithm combined with PIPFS is
faster 2/3 running time than that with MPI to distribute data. We can conclude that
the algorithms combined with PIPFS can obviously improve the performance.

160 K. Huang et al.

3.2.2 Unsupervised Classify Algorithm
In the experiment, we used a single wave band TM image whose size is 5728*6920
pixels. We separated the image into 8 classes, iterative time is 10 and the threshold is
0.01. We compared algorithm using MPI with that combined with PIPFS in the main
procedure’s running time. Because the massage transfer time is microsecond, we
ignored it.

Table 3. Execute time of tow class functions

Unit: Second
Function name Class�MPI� Class�PIPFS�

Read/
write

0.98

Transmission 4.17
Processing 10.32 13.38

Master process

Receive 5.72
Receive
/Reads

3.89 3.60

Processing 11.35 10.06 slave process
Transmission

/Writes
6.04 1.28

total 42.47 28.32

The parallel unsupervised classify algorithm’s procedure is: The slave process
deals with the clustering center of the image area which is distributed in each
iterative. When accomplished the slaves send the result to the master. Then the master
deals with the clustering center received from each slave and returns the new center to
them. The slave deals with data according to the new cluster center. From table 3 we
can see the algorithm with PIPFS can save the master’s read/write and send/receive
time compared with that using MPI. The slave’s read/write time also smaller.
Therefore in the whole procedure we can save above 40% time using PIPFS and the
result will be much evident when dealing with bigger data.

3.3 File System Regarding Parallel Scale Extended Test
The experiment environment is:

Meta data server is equipped with two Xeon 2.4G processor, 2GByte ECC ram,
160GByte 7200RPM Ultra IDE (ATA 133) hard drive, and a 1000MB Ethernet card.
The operating system is Redhat Linux 7.3.

Storage servers and compute servers constitute 8 nodes. Each node is equipped
with two Xeon 2.4G processor, 1GByte ECC ram, 160GByte 7200RPM Ultra IDE
(ATA133) hard drive, and a 1000MB Ethernet card. The operating system is Redhat
Linux 7.3.

In remote sensing image processing, read operation is more than write. However
in parallel algorithm, parallel reading the same file in the meantime is a basic
operation. Therefore read performance, especially parallel read, is important to the

 A Parallel File System Based on Spatial Information Object 161

Table 4. Expansibility of NFS and PIPFS

Unit:MB/s
Parallel scale

Filing system
1 node 2 nodes 4 nodes 8 nodes

NFS 21.56 7.61 6.19 4.07

PIPFS 20.67 21.13 22.03 21.84

�

�

��

��

��

��

� � � �

���	
��

�
�
�
�

�� �����

Fig. 4. Read speed of NFS and PIPFS while parallel scale increase

performance of a file system. This test assumes that the number of storage servers and
computing servers is linearity grows. In this condition, compare the read speed of the
bottleneck nodes in NFS and PIPFS.

From table 4 and figure 4, the test result showed that the support of NFS to the
parallel scale extended was far inferior to PIPFS. PIPFS has used the multi-thread
response mechanism, and the data distributed to different server. So concurrently
reading can fully use the network band width. Therefore, when the parallel scale is
growing, PIPFS had a higher reading speed than NFS. This test also showed that
under the certainly parallel scale, PIPFS system has a good extension and it can
provide an effective performance platform for the remote sensing image parallel
processing.

4 Conclusion
From above tests, we can find that the efficiency of remote sensing image processing
algorithm in PIPFS system is higher than the algorithm in traditional file system,
because the algorithm used file system to control and operate the spatial information
object. Storage based on spatial information object shield physical distribution detail
and the network transmission to the developers. It greatly reduces the complexity of
programming and file management. The developer need not to consider the
distribution and parallel operations on data. The application program can execute the

162 K. Huang et al.

parallel process just by calling PIPFS system interface functions and synchronizing
the messages. So the entire development mode in PIPFS is even more similar to the
development mentality of serial programming.

What’s more, combined with Linux kernel, management of spatial information
object in PIPFS is more convenient and direct-viewing. Users can operate the data but
need not to enter each storage server. They can complete the operation through the
metadata server. At the same time, this also increased data security on the storage
server.

Reference
1. Guoqing Li, DingSheng Liu, “PIPS: A Cluster-based Parallel Remote Sensing Image

Processing System”, Journal of Image and Graphics, Vol.5 Supp. 2000
2. P. Valduriez, “Parallel Database Systems: the case for shared–something,” Proceedings of

the Ninth International Conference on Data Engineering, pp. 460-465, 1993.
3. R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh and B. Lyon, "Design and Implementation

of the Sun Network File System", Proceedings of the Summer USENIX ConferencePp. 119 -
130, 1985.

4. M. Satyanarayanan, "Coda: A Highly Available File System for a Distributed Workstation
Environment, " Proceedings of the Second IEEEWorkshop onWorkstation Operating
SystemsSeptember 1989.

5. T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and R.Wang, "Serverless
Network File System," ACM Operating Systems ReviewVol. 29, no. 5, December 1995.

6. Digital Technical Journal, VAXcluster Systems, September 1987. Special Issue - Number 5.
7. K. Matthews, “Implementing a Shared File System on a HIPPI Disk Array,” Fourteenth

IEEE Symposium on Mass Storage Systems, pp. 77-88, 1995.
8. Wu Qingbo, "Linux Object storage file system research",Http://www-900.Ibm.Com/

developerWorks/cn/linux/l-ofs/index.Shtml, 2004.10
9. Zhu Yaofei, " research and experiment in remote sensing data parallel processing file

system ", Master's degree paper, Chinese remote sensing satellite earth station, 2002.7

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 163 – 171, 2005.
© IFIP International Federation for Information Processing 2005

Topology-Aware Multi-cluster Architecture
Based on Efficient Index Techniques

Yun He, Qi Zhao, Jianzhong Zhang, and Gongyi Wu

Department of Computer Science and Technology, Nankai University,
Tianjin 300072, China

{hey1630, qizhao6688}@mail.nankai.edu.cn
{zjz, wgy}@nankai.edu.cn

Abstract. In this paper, we focus on how to construct an efficient unstructured
P2P system. The main contributions of our proposal are two-fold. First, aiming at
alleviating the topology mismatch problem between the P2P logical overlay
network and the physical underlying network, we proposed a Topology-aware
Multi-cluster Overlay (TMO) architecture where peers self-organize into clusters
based on network locality. Second, in order to further improve the search
efficiency of the TMO architecture, we present two novel index techniques,
namely, cluster-index technique and topic-index technique. The two different
techniques are highly effective in different application domains in which the
TMO architecture is deployed. The simulation results indicate that our proposed
schemes are efficient in both resource usage and data retrieval.

1 Introduction

In recent years, there has been much interest in peer-to-peer (P2P) systems because
they provide a good substrate for building large scale data sharing and content
distribution applications. P2P systems can be broadly classified into two categories:
unstructured and structured P2P systems.

Unstructured P2P systems, like Gnutella [1] and KaZaA [2], organize peers in a
random graph and use flooding on the graph to query documents stored at overlay
peers. The floods support arbitrary queries, but are not scalable because they cause
exponentially increased network traffic. In contrast, structured P2P systems are
developed to perform key queries by constructing Distributed Hash Tables (DHTs),
such as Chord [3], CAN [4], and Pastry [5], etc. Although such schemes provide good
performance for exact match queries, they almost don’t work for range, approximate, or
text queries. Thus, many agree that unstructured P2P systems are more suitable for
mass-market file sharing applications.

In traditional unstructured P2P systems, the mechanism of a peer randomly joining
and leaving causes topology mismatch between the P2P logical overlay network and
the physical underlying network [6]. This topology mismatch problem causes a large
amount of unnecessary traffic, which brings great stress on the Internet infrastructure.

The objective of this paper is to construct an efficient unstructured P2P system. We
propose an application architecture called Topology-aware Multi-cluster Overlay
(TMO), which has two levels. Peers in the lower level self-organize into clusters based

164 Y. He et al.

on network locality, aiming at alleviating the topology mismatch problem. The clusters
are organized into the upper level overlay defined by a directed graph (e.g. DTH graph)
such that the efficient routing between clusters can be easily achieved.

In order to further improve the search efficiency of the TMO architecture, we present
two novel index techniques, namely, cluster-index technique and topic-index
technique. In the cluster-index technique, each cluster has content indices from all
peers of some other clusters. When a query is submitted, full search scope can be
achieved even though some of the clusters are directly probed. In the topic-index
technique, all the documents stored in the network are classified into topics. Each
document’s index is sent to the cluster responsible for the topic that the document
belongs to. A query probes only a few clusters that have the largest number of results
under a particular topic. The two different techniques are highly effective in different
application domains in which the TMO architecture is deployed.

The rest of the paper is organized as follows. Section 2 introduces related work.
Section 3 describes the TMO architecture in details. Section 4 and Section 5 describes
the cluster-index technique and the topic-index technique, respectively. In Section 6,
the simulation results are presented, followed by conclusions in Section 7.

2 Related Work

There are several P2P systems that use indexing approaches. For example, Napster [7]
is a centralized system that uses specialized peers to maintain the indices of the
documents available in the overlay network. To find a document, the user queries an
index peer to identify peers having documents with the content of interest. KaZaA [2] is
a popular super-peer network where a super-peer acts as a centralized server to a subset
of clients. In order to process queries for its clients, a super-peer keeps an index over its
clients’ documents.

Although original Gnutella does not build indices, some indexing approaches have
been proposed to make Gnutella scalable. For example, in Local Indices policy
proposed in [9], each peer indexes the files stored at all peers within a certain radius r
and can answer queries on behalf of all of them. The work in [10] proposes 3 types of
Routing Indices (RIs), namely compound RIs, hop-count RIs and exponential RIs to
facilitate search in Gnutella. In particular, peers forward queries to their neighbors
based on their own RIs. Ways to improve searching has been extensively studied using
Search/Index Links (SIL) [8]. SIL points out that a parallel search cluster based P2P
network is superior to a super-peer network for several important scenarios. However,
the mechanism of how to break the P2P networks into multiple clusters has not been
mentioned yet.

3 Topology-Aware Multi-cluster Overlay

We begin by presenting a general framework for TMO. We assume that each
participating peer has an IP address. The peers are organized into clusters. Each cluster
has a unique cluster id. We let N denote the number of clusters, and Ci denote both
cluster i and the id of cluster i. The clusters are organized by a graph (X, U), where
X={C0, C1,…, CN-1} is the set of all clusters and U is a given set of virtual edges

 Topology-Aware Multi-cluster Architecture Based on Efficient Index Techniques 165

between the nodes (that is, clusters) in X. The edges in U may be unidirectional or not.
We believe that DHT graphs [3, 4, 5] can be efficiently used as the graph (X, U). In this
paper, we use the Chord DHT graph as an example.

TMO consists of two kinds of links. Short-distance links connect peers within a
cluster. Long-distance links connect pairs of peers from different clusters. Two peers are
short-distance neighbors if they are connected by a short-distance link. We require that if
pi is a peer in Ci, and (Ci, Cj) is a unidirectional edge in U, then pi knows the IP address of
a peer pj�Cj. With this knowledge, pi establishes a long-distance link to pj, and pj
becomes a long-distance neighbor of pi. It is important to note that pi keeps only one
long-distance neighbor in each of Ci’s neighboring clusters. In addition, if Cj is the
successor node of Ci in Chord DHT graph [3], we will say that pj is pi’s first long-distance
neighbor. Of course, each peer has only one first long-distance neighbor, which plays the
key role in the cluster-index technique that will be described in Section 4.

Figure 1 shows an example of TMO architecture. Four clusters C0, C1, C2 and C3 are
organized by a Chord graph. Each peer in cluster C0 selects a long-distance neighbor
from both C1 and C2, because the neighboring clusters of C0 are C1 and C2.

C0

C2

C4

C6

C7

C5 C3

C1

 Fig. 1. A TMO architecture (N=4) Fig. 2. A TMO-CI system (N=8, d=2)

3.1 TMO Construction

One key idea of TMO is that it partitions peers into clusters by network locality. We use
the landmark clustering method proposed in [6] to generate topology information for
clustering physically close peers. Landmark clustering method requires a set of
well-known landmark nodes spread across the Internet. A peer measures the
network-level Round-Trip-times (RTTs) to each of these landmark nodes and sorts the
landmark nodes in terms of increasing RTTs. Peers with the same or similar landmark
ordering are considered close to each other, and are expected to join the same cluster.
The interested reader is referred to [6] for these details.

When a new peer wants to join a TMO system, it first measures RTTs to all
landmark nodes to get a landmark ordering, which assigns it to a specific cluster. Then
the new peer sends a JOIN message destined for the target cluster. The message is sent
into TMO via any existing peer. Peers receiving the message use Chord routing
mechanism to forward the message via long-distance links, until it reaches a random
peer in the target cluster. A new peer can only join one cluster at the same time.

After the new peer has joined the target cluster, it gets short-distance neighbors in
the Gnutella fashion, and gets long-distance neighbors as follows. If x is the new peer in

166 Y. He et al.

cluster Ci, it will send request messages to its short-distance neighbors for the IP
addresses of their long-distance neighbors. If x gets the IP address of another peer y
belonging to cluster Cj, which is a neighboring cluster of Ci, then x will try to connect y.
If the attempt succeeds, y will become x’s long-distance neighbor for cluster Cj, or else
y will send the IP address of its short-distance neighbors to x, then x will try to connect
these peers for long-distance neighbors. It is enough for x to keep only one
long-distance neighbor in each of Ci’s neighboring clusters. But in practice, x may
cache more than one candidate peer in each cluster to improve system tolerance.

 There are two reasons for why we use the Chord graph to organize clusters. First,
using the Chord graph can maintain network connectivity and route queries in a few
hops without requiring too many long-distance links per peer. Second, the Chord graph
is able to embed the two index techniques that we will describe later.

4 Cluster-Index Technique

In this section we present an efficient index technique: cluster-index technique
(TMO-CI). Let us suppose that peer x constructs content index over its own documents
soon after it joins a cluster. The content index, which is used to assist in answering
queries, may be inverted lists of words, sets of metadata or simply a list of filenames.
The peer x will send its content index to its first long-distance neighbor. The peer that
receives x’s content index will cache the index and select its first long-distance
neighbor to relay the index. The whole process is repeated until d different peers have
received x’s content index, where d is a system-wide variable known as the depth
parameter. If these d peers receive queries, they can process the queries on behalf of x.
It is important to note that a peer does not send any content indices to other
long-distance neighbors except its first long-distance neighbor.

4.1 Select the Directly Probed Clusters

Using the cluster-index technique, a cluster can be directly probed or indirectly probed.
Figure 2 shows a TMO-CI system where the depth parameter d is set to 2. So each peer
in cluster Ci sends its content index to its first long-distance neighbor in cluster Ci+1 and
in turn to a peer in cluster Ci+2. Hence, we can deduce that the cluster Ci+2 has content
indices of all peers in cluster Ci and Ci+1. If a query is propagated in cluster Ci+2, we will
say that cluster Ci+2 is directly probed, and will say that cluster Ci and Ci+1 are indirectly
probed. For a query, it is unnecessary to require a cluster to be directly probed if it has
been indirectly probed already.

A probe to a directly probed cluster proceeds in two steps. First, the Chord routing
mechanism in system’s upper level makes sure that the query message is routed to the
target cluster. Next, an intra-cluster flood mechanism is used to further propagate the
query within the cluster. Although, we implement only the intra-cluster flood
mechanism, the TMO system can also use other search mechanisms, such as Random
Walks [11] or Gossip [12], to propagate queries within a cluster.

We propose that the selection of directly probed clusters should follow two
criterions. First, with the same number of probed clusters, minimize the number of
directly probed clusters, aiming to reduce query traffic. Second, make sure that the

 Topology-Aware Multi-cluster Architecture Based on Efficient Index Techniques 167

query messages sent from the source peer to these directly probed clusters traverse as
few long-distance links as possible, aiming to shorten the query response time.

For example, illustrating in figure 2, if a peer in cluster C0 submits a query and
requires all of the eight clusters to be probed, then the cluster C0, C2 and C5 are selected
as the directly probed clusters according to our criterions.

5 Topic-Index Technique

In this section, we present another index technique for the TMO architecture: topic-index
(TMO-TI). In the TMO-TI system, all the documents stored in the network are classified
into topics. For example, for a music sharing application, TMO-TI may create topics like
“Rock”, “Heavy metal”, “Classical” and so forth. Each document belongs to one or more
topics. For each topic, there are one or more clusters responsible for it. A cluster collects
the indices of documents belong to specific topics that it is responsible for. An index of a
document may be an inverted list of words or simply the name of the document. We let M
denote the number of topics, Ti (0 i M-1) denote topic i, and Si (0 i M-1) denote the set
of clusters responsible for Ti. It is obvious that Si ⊆ {C0, C1,…, CN-1}.

A peer will classify its own documents after it joins a cluster. If some documents do
not belong to the topics that the peer’s cluster is responsible for, the peer will send these
documents’ indices to the responsible clusters. To explain, we assume p is a peer in
cluster Ci, for each document Di stored on p, if Di�Ti and Ci∉Si, then the index of Di
will be send to a cluster Cj�Si.

A query is also classified into one or more topics, and the clusters responsible for the
topics will be directly probed. The classification of documents and queries can be done
manually or automatically. However, classifiers may make mistakes by returning the
wrong topics for a query or document. In the simulations we will study how much the
system is affected in the presence of classifier mistakes.

6 Simulations

The two types of topologies, physical topology and logical topology are needed in the
simulation. A transit-stub topology [15] of approximately 35,000 nodes is generated as
the physical topology in which the delays of intra-transit domain links, stub-transit
links and intra-stub domain links are set to 20, 5 and 2ms respectively. We generate a
flat logical topology with average connectivity degree of 6 for measuring Gnutella
search. This logical topology has 16,000 peers, each of which is uniquely mapped to
one physical node. In order to measure our TMO search, we randomly select 8 physical
nodes as the landmark nodes, and partition all the logical peers into 8-32 clusters based
on locality.

We distribute 3,000 different documents of varying popularity in the simulation. A
zipfian distribution is used to model both the replication distribution and the query
distribution to achieve results similar to the results in [13]: The most popular 10% of
documents amount for 50% of the total number of stored documents and account for
over 50% of total queries. The documents are classified into 50 different topics, each of
which only one cluster is responsible for.

168 Y. He et al.

The quality of a search mechanism is judged by the following metrics:

 Traffic cost: We define traffic cost as 1 i

N
i

m
i y s= , where Nm is the number of

messages, si is the size of message i, and yi is the delay of the link which message i
traverses. Implicit here is the assumption that links with higher delay and messages
with larger size tend to be associated with higher traffic cost.

 Hits: We define hits as the size of total result set for a query.
 Response Time: We define response time as the time that has elapsed from when

the query is submitted by the peer, to when the peer receives the first result.

6.1 Results of Gnutella Search

We conduct our simulations to evaluate the performance of TMO search against
Gnutella search. In the first simulation, we examine the performance of Gnutella search
with different TTLs. The simulation results in Table 1 indicate that increasing the TTL
of Gnutella search increases the traffic cost quickly, but results in more hits and better
response time as we model the network delay in the simulation.

Table 1. Results for Gnutella search

Scheme Cost Hits Time Scheme Cost Hits Time
TTL=7 3275376 52.76 354 TTL=5 799886 24.75 404.8
TTL=6 1955845 43.49 393.2

TTL=4 183658 7.34 406

6.2 Effectiveness of TMO-CI

In this subsection, we examine the effectiveness of TMO-CI search with different TTLs
(that is, TTLs of intra-cluster floods used within each cluster). Here we representatively
present the results based on 16 clusters only, since changing the number of clusters
produces similar results. We set the depth parameter d to from 0 (means the degenerate
TMO case without cluster-index technique) to 7. When a query is submitted, we require
all the clusters to be probed, aiming to get full search scope.

Figure 3, figure 4 and figure 5 show the average query traffic cost, query hits and
response time, respectively. Based on these simulation results, we make the following
inferences on TMO-CI search.

 Similar to Gnutella search, increasing the TTL of TMO-CI search also increases
traffic cost, but results in more hits and better response time.

 Compared with Gnutella search, by appropriately selecting TTLs the TMO-CI
search really reduces the average traffic cost while achieving the same or similar query
hits. Furthermore, increasing the value of d usually results in larger reduction of query
traffic cost. For example, when TTL= 5, the strategies that setting d to from 0 to 7
achieve similar query hits of Gnutella search with TTL=7, but reduce average traffic
cost by from 38% to 90%. In fact, the traffic cost each query generates largely depends
on the number of directly probed clusters, which is equal to ()/ 1N d + , where N is
the number of clusters.

 Topology-Aware Multi-cluster Architecture Based on Efficient Index Techniques 169

 Fig. 3. Average Traffic Cost in TMO-CI Fig. 4. Average Hits in TMO-CI

 Fig. 5. Average Response Time in TMO-CI Fig. 6. Average Hits in TMO-TI

 The TMO-CI search can shorten the response time, since it takes the physical
network topology into consideration when the overlay is constructed. Besides,
increasing the value of d usually results in better response time, since a peer can answer
queries for many other peers when d is set to a large value. For example, compared with
Gnutella search, the strategies that setting d to from 0 to 7 in TMO-CI search can
shorten the response time by from 31% to 59%.

 It may be difficult to choose the appropriate TTL for TMO-CI search. Empirically,
we would choose a smaller TTL when the number of clusters is large, and a larger TTL
when in the contrast case. However, we also believe that it is difficult to choose the
appropriate TTL for the Gnutella search.

6.3 Effectiveness of TMO-TI

In this subsection, we examine the effectiveness of TMO-TI search. We let Ad denote
the accuracy of classification of documents, and Aq denote the accuracy of
classification of queries.

We representatively present the results based on TTL=5 only. Figure 6 illustrates the
average query hits of TMO-TI. Different curves correspond to the performance on
different Aq with different value of Ad. If classifiers don’t make mistake, the TMO-TI
search achieves similar query hits compared with Gnutella search. However, with the

170 Y. He et al.

decrements of Aq and Ad, the query hits also decreases. For example, TMO-TI search
achieves 67% query hits of Gnutella search when Aq=85% and Ad=75%.

Figure 7 shows the average response time for TMO-TI search. We can see that
decreasing the values of Aq and Ad results in a little longer response time.

 Fig. 7. Average Response Time in TMO-TI Fig. 8. Ratio of Overall Traffic Costs

In the simulation, we find that TMO-TI search only generates around 5% of the
average query traffic cost of Gnutella search. Changing the values of Aq and Ad has little
influence on the average traffic cost that the queries generate.

6.4 The Impact of Index Update

One of the key factors that affect the performance of TMO system is the frequency of
index update operations, which heavily depends on the dynamic nature of overlay
network. In a real environment, the source peer should do index update operations
periodically, which incurs extra traffic cost. Especially, in the TMO-CI system,
increasing the depth parameter d could increase the extra traffic cost proportionally.

In the simulation, we assume that each peer executes 10 index update operations per
minute. We also assume that each peer issues 0.3 queries per minute, which is
calculated from the observation data shown in [14], i.e., 12,805 unique IP addresses
issued 1,146,782 queries in 5 hours. Figure 8 shows the ratio of the overall traffic costs
in different TMO systems to the overall traffic cost in Gnutella system. Compared with
Gnutella system, our TMO-CI system can reduce overall traffic cost by at least 67%,
and TMO-TI system can reduce overall traffic cost by 90%. Thus, the search
improvements afforded by TMO and the two index techniques are seldom outweighed
by the extra traffic cost of index update operations.

Based on the observations above, we believe that the strength of the cluster-index
technique lies in that it can help the TMO system to reduce both query traffic cost and
response time without decreasing the query hits. Thus, it is highly effective in the
applications where 100% recall is required, for example, a patent information sharing
application. The advantage of the topic-index technique is that it can help the TMO
system to reduce a quite large amount of traffic cost, though it may result in reduction
of query hits. Thus, it is highly effective in the applications where users are satisfied
with tens of (but not all) results, such as the music sharing application.

 Topology-Aware Multi-cluster Architecture Based on Efficient Index Techniques 171

Conclusion

In this paper, we proposed TMO, a topology-aware multi-cluster overlay architecture
which using a hierarchical structure with two levels. Furthermore, we present two novel
index techniques, namely cluster-index technique and topic-index technique that can be
incorporated into the TMO system to enhance search efficiency. From our simulation
results we conclude that TMO with index techniques offers significant improvements
versus Gnutella-like overlay networks. We believe that the TMO system and the two
index techniques can help improve the search performance of current and future P2P
systems.

References

1. Gnutella. http://gnutella.wego.com/
2. KaZaA. http://www.kazaa.com/
3. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan, “Chord: A scalable

peer-to-peer lookup service for Internet applications,” In Proceedings of ACM SIGCOMM,
2001.

4. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable content
-addressable addressable network,” In Proceedings of ACM SIGCOMM, 2001.

5. A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems,” In Proceedings of International Conference on
Distributed Systems Platforms, 2001.

6. S. Ratnasamy, N. Handley, R. Karp, and S. Shenker, “Topologically-Aware Overlay
Construction and Server Selection,” In Proceedings of IEEE INFOCOM, 2002.

7. Napster. http://www.napster.com/
8. B. F. Cooper and H. Garcia-Molina, “Studying search networks with SIL,” In Proceedings

of IPTPS, 2003.
9. B. Yang and H. Garcia-Molina, “Improving Search in Peer-to-Peer Networks,” In

Proceedings of IEEE ICDCS, 2002.
10. A. Crespo and H. Garcia-Molina, “Routing indices for peer-to-peer systems,” In

Proceedings of 22nd International Conference on Distributed Computing Systems, 2002.
11. C. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication in unstructured

peer-to-peer networks,” In Proceedings of ACM ICS, 2002.
12. Kermarrec, A.-N., Massoulie, L., and Ganesh, A. J, “Probabilistic reliable dissemination in

large-scale systems,” IEEE Transactions on Parallel and Distributed Systems, 2003.
13. J. Chu, K. Labonte, and B. Levine, “Availability and Locality Measurements of

Peer-to-Peer File Systems,” In Proceedings of SPIE, 2002.
14. K. Sripanidkulchai, “The popularity of Gnutella queries and its implications on scalability,”

In Proceedings of O’Reilly’s Peer-to-Peer and Web Services Conference, 2001.
15. E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to Model An Internetwork,” In

Proceedings of IEEE INFOCOM, 1996.

7

A Parallel Routing Algorithm on Circulant

Networks Employing the Hamiltonian Circuit
Latin Square

Dongkil Tak1, Yongeun Bae1, Chunkyun Youn2, and Ilyong Chung1,�

1 Department of Computer Science, Chosun University, Kwangju, Korea
iyc@chosun.ac.kr

2 Information Technology Division, Honam University, Kwangju, Korea
chqyoun@itc.honam.ac.kr

Abstract. Double-loop and 2-circulant networks are widely used in the
design and implementation of local area networks and parallel processing
architectures. In this paper, we investigate the routing of a message on
circulant networks, that is a key to the performance of this network. We
would like to transmit 2k packets from a source node to a destination
node simultaneously along paths on G(n; ±s1,±s2,...,±sk), where the
ith packet will traverse along the ith path (1 ≤ i ≤ 2k). In oder for
all packets to arrive at the destination node quickly and securely, the
ith path must be node-disjoint from all other paths. For construction of
these paths, employing the Hamiltonian Circuit Latin Square(HCLS) we
present O(n2) parallel routing algorithm on circulant networks.

1 Introduction

The intense interest in interconnection network used graph-theoretic proper-
ties for its investigations and produced various interconnection schemes. Many
of these schemes have been derived to optimize important parameters such as
degree, diameter, fault-tolerance, hardware cost, and the needs of particular ap-
plications. Double-loop[1] and 2-circulant networks(2-CN)[2] are widely used in
the design and implementation of local area networks and parallel processing
architectures. These networks are defined as follows. Let n, s1, s2 be positive
integers such that 0<s1<s2<n/2. A double-loop network is a directed graph
G(n; s1, s2), where n nodes labeled with integers modulo n, and 2 links per
vertex such that each node i is adjacent to the 2 other nodes i+s1, i+s2. In the
undirected case, which is known as a 2-circulant network and is denoted by G(n;
±s1,±s2). It is well known that G(n; s1, s2) and G(n; ±s1,±s2) are connected
iff gcd(n, s1, s2) =1.

The routing of message is thus a key to the performance of such networks.
There are routing algorithms using well-known methods, such as the Short-
est Path Algorithm(the Forward Algorithm)[3], the Backward Algorithm[4], the

� Corresponding author.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 172–175, 2005.
c© IFIP International Federation for Information Processing 2005

A Parallel Routing Algorithm on Circulant Networks 173

Spanning Tree Algorithm[8]. These algorithms provide for only sequential trans-
mission, from the source node to the desired node in a short time. We now look
for algorithms that are capable of handling, multiple data items simultaneously
transmitted from the staring(source) node to the destination node. There are a
few algorithms on the n-dimensional hypercube network[5]-[6] that allow us to
locate n disjoint paths such as the Disjoint Path Algorithm[7] and the Hamilto-
nian path Algorithm [8]. In this paper, we propose the algebraic approach to the
routing of message on the G(n; ±s1,±s2,...,±sk). As described above, 2k packets
are simultaneously transmitted from the starting(source) node to the destina-
tion node. In order for all packets to arrive at the destination node quickly and
securely, the ith path must be node-disjoint from all other paths.

2 Design of the Hamiltonian Circuit Latin Square to the
Parallel Routing Algorithm on Circulant Networks

Let A and B be any two nodes on G(n; ±s1,±s2,...,±sk). The paper’s objective
is to find algorithms that will facilitate the transmission of data from node A to
B in that network. In order for the data to traverse from node A to node B, it
must cross, successively, intermediate nodes along a path.

Definition 1. The routing function R for ±si is as follows:

R(A) = A ± si (mod n), where A is node address

Definition 2. The relative address r of nodes A and B on G(n; ±s1,±s2,...,±sk)
is computed as the value of difference between A and B.

r = B-A

Let two addresses of node A and node B be 1 and 3. What is the relative
address of two nodes? The value of the relative address is 2.

Definition 3. Let T(A,S) be the logical transmission path of data starting from
node A to the destination node B, where S is a multiset and a sequence of oper-
ations, via which data can reach at the destination node. T(A,S) is determined
by the order of the elements in the set S. between A and B.

The ith packet is transmitted along the ith path, the first intermediate node
of which is obtained from applying the ith operation at a starting node and the
last intermediate node transmits the packet to a destination node by applying
the ith operation. In some cases, the two operations can be the same.

Definition 4. Let Os be a set of operations occurring at a starting node when
four packets are transmitted simultaneously and Let Od be a set of operations
occurring at a destination node when four packets arrive. These sets are defined
as follows:

174 D. Tak et al.

Os = {s1, -s1, s2, -s2, ..., sk, -sk}
Od = {p1, p2, p3, p4, ..., p2k−1, p2k}
Os = Od

We now apply the HCLS(Hamiltonian Circuit Latin Square) to find a set of
m shortest and node-disjoint paths.

Definition 5. The HCLS M1 is constructed as follows: Given distinct m points
a0, a2, ... , am−2, am−1, a Hamiltonian circuit ai → aj → ... → ak → ai is
randomly selected. On the circuit each row of M can be obtained from the
Hamiltonian path, starting at any position ak(0≤k≤m-1), under the condition
that no two rows begin at the same position. If a Hamiltonian path is ai → aj

→ ... → ak, then the row obtained from it is [ai, aj , ..., ak]

Definition 6. Given the HCLS M1 = [ai,j], the MHCM M2 is constructed as
follows: M2 = [Ai,j], Ai,j = {ai,0, ai,1, ... , ai,j−1, ai,j}, 0 ≤ i,j ≤ m-1.

We now propose a parallel routing algorithm that generates a set of m
minimum-distance and node-disjoint paths for the network.

CN−Routing−Algorithm

A ← an address of a starting node A
B ←an address of a destination node B
Os ← a set of operations occurring at a starting node A
Od ← a set of operations requisite for reaching to a destination node B

begin

(1) Compute the relative address R of nodes A and B; R = B-A
(2) Using the relative address R, a sequence S of operations to arrive at node B
in a short time are produced
(3) In order to design a set of shortest and node-disjoint paths, find a set S1 of
distinct elements in S. A set of |S1| shortest and node-disjoint paths are
generated. Each path of length is |S|,

(3-1) Using the set S1, (n×n) HCLS is constructed, where n = |S1| .
(3-2) Operations in the ith row of the HCLS are performed for traversal
of the ith packet and the remaining operations in S should be executed
at the point except the first and the last points.
(3-3) Os ← Os - S1 and Od ← Od - S1.

(4) Construct two node-disjoint paths, each path has length |S|+2.

(4-1) If Os = φ, the process is finished.
(4-2) If a set of {si,-si} is found in Os , then these operations are
performed at the first and the last steps of two paths newly designed,
and operations in S at the middle steps of them, otherwise go to (5).
(4-3) Os ← Os - {si,-si}, Od ← Od - {si,-si} and go to (4-1).

A Parallel Routing Algorithm on Circulant Networks 175

(5) Generate the remaining paths.

(5-1) If Os = φ, the process is finished.
(5-2) Produce a sequence S2 of minimum number of operations by
reducing the size of S U {-si,-si}, si ∈ Os, S2 ={si,min(S U {-si,-si}),
si}.
(5-3) Operation gi is performed at the first and the last steps at
traversal and operations of S2 are executed at the middle steps.
(5-4) Os ← Os - {si}, Od ← Od - {si} and go to (5-1).

end.

3 Conclusion

In this paper, we present the algorithm that generates a set of 2k shortest and
node-disjoint paths on G(n; ±s1,±s2, ...,±sk), employing the Hamiltonian Cir-
cuit Latin Square(HCLS). Even n and k are fixed values, the algorithm can
be easily extended on arbitrary circulant networks. Important steps for de-
termining time complexity requisite for the algorithm are two things. One is
to design the HCLS, which needs O(n). The other is to execute Step (5) of
CN−Routing−Algorithm, which requires O(n2). Therefore, we can create O(n2)
parallel routing algorithm for constructing 2k shortest and node-disjoint paths.

References

1. Bermond, J., Comellas, F., Hsu, D., “Distributed Loop Computer Networks: A
Survey,” J. Parallel and Distributed Computing, Academic Press, no. 24, pp.2-10,
1995.

2. Park, J., “Cycle Embedding of Faulty Recursive Circulants,” J. of Korea Info. Sci.
Soc., vol.31, no. 2, pp. 86-94, 2004.

3. Basse, S., Computer Algorithms : Introduction to Design and Analysis, Addition-
Wesley, Reading, MA, 1978.

4. Stallings, W., Data and Computer Communications. Macmillan Publishing Com-
pany, New York, 1985.

5. Bae, M. and Bose, B., “Edge Disjoint Hamiltonian Cycles in k-ary n-cubes and
Hypercubes,” IEEE Trans. Comput., vol. 52, no. 10, pp. 1259-1270, 2003.

6. Thottethodi, M., Lebeck, A., and Mukherjee, S., “Exploiting Global Knowledge to
Achieve Self-Tuned Congetion Control for k-ary n-cube Networks,” IEEE Trans.
Parallel and Distributed Systems, vol 15, no. 3, pp. 257-272, 2004.

7. Johnson, S.L. and Ho, C-T., “Optimum Broadcasting and Personalized Communi-
cation in Hypercube,” IEEE Trans. Comput., vol. 38, no. 9, pp. 1249-1268, Seep.
1989.

8. Rabin, M.O., “Efficient Dispersal of Information for Security, Load Balancing, and
Fault Tolerance,” J. ACM, vol. 36, no. 2, pp. 335-348, Apr. 1989.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 176 – 179, 2005.
© IFIP International Federation for Information Processing 2005

An Efficient Load Balancing Algorithm for Cluster
System

Chunkyun Youn1,* and Ilyoung Chung2

1 Department of Internet Software, Honam University, Kwangju, Korea
chqyoun@honam.ac.kr

2 Department of Computer Science, Chosun University, Kwangju, Korea
iyc@mail.chosun.ac.kr

Abstract. Load balancing is one of the best efficient methods for performance
improvement of cluster system. Recently, WLC algorithm is used for the load
balancing of cluster system. But, the algorithm also has load imbalance between
servers, because it uses inaccurate static load status of servers. In this paper, I
suggest a more efficient dynamic load balancing algorithm base on various load
status information of servers by real time. It shows that load imbalance phe-
nomenon is improved greatly and response time is also improved compare with
WLC algorithm.

1 Introductions

Fast growing Internet user and huge amount of multimedia data are rapidly increasing
network traffic. Servers and network are bottle-neck in this situation. Now a days,
performance elevation and high availability of server are important to solve the prob-
lem [1]. Various cluster systems are used as suitable solution of it [2, 3]. Among
them, load sharing cluster system consists of several low-cost servers which are con-
nected to high speed network, and applies load balancing technique between servers.
It offers high computing power and high availability.

The load balancing algorithm is core function of the cluster system. Many tech-
niques were studied. Well known algorithms are round-robin (RR) scheduling [4],
weighted round-robin (WRR) scheduling [5], least-connection (LC) scheduling [6]
and WLC (Weighted Least Connection) scheduling [7]. The WLC is widely used now
among them.

Above load balancing algorithms select a server according to fixed weights which
are calculated by server's physical processing capacity and the number of established
connections mainly. Such methods can’t know server's load state exactly, because
those are not considered various load elements of real servers. And measuring time is
not suitable, because Director gets the connection number of real servers periodically.
So, it is not correct load of real servers. That is, inaccurate load status and unsuitable
measuring time are the cause of load imbalance.

* Corresponding author.

 An Efficient Load Balancing Algorithm for Cluster System 177

2 Proposal of an Efficient Load Balancing Algorithm

2.1 Various Load Elements Investigation and Application Plan

In this paper, various load elements of UNIX web server are considered to measure
exact load situation. CPU, memory and network are selected as influential suitable
elements among them. The detail statuses of main load elements are followings;

CPU load. Usually, we have to collect whole CPU usage, average CPU load and CPU
usage of each process etc to measure CPU load. When a client requests connection,
correct present CPU load of real servers is very important to decide which server will
handle the request. Numbers of waiting process is suitable for that purpose. It can be
different according to cluster system configuration, number of users and concurrent
connection ratio etc. Usually, connection requests are processed without waiting be-
cause servers are very powerful. Therefore, if there is waiting processes that mean the
CPU is busy. So, we can select which server has lower load [8, 9].

Load of memory. We can use virtual memory amount of processes, free memory
amount and paging activity that are performed in the latest 20 seconds from memory.
We can confirm relatively exact present memory load by the free memory amount
among them [8, 9].

Load of network. Packet I/O amount of each network interface, packet error rate and
collision rate are available for load status of network. We can estimate that a network
interface is over load if collision rate approaches to 5 ~ 10%, and use packet I/O
amount if necessary [8, 9].

2.2 Dynamic Load Measuring and Balancing Algorithm

I propose a dynamic load measuring algorithm
(Fig. 1) that can collect load status of server base
on the selected elements by real time. It will be
loaded on each real server and called using
broadcasting RPC by Director. A called real
server collects own load status according to Fig.
1 algorithm and transmits it to the director. The
value “Y” and “Init_Average” should be
adjusted properly according to configuration of
cluster system and users' environment after
system configuration.

Fig. 3 shows the proposed load balancing
algorithm that handles user's request with real
time load status of servers.

Fig. 1. Load measuring algorithm

178 C. Youn and I. Chung

 Fig. 2. Prototype module configuration Fig. 3. Load balancing algorithm

3 Test and Results Analysis

I use the WLC which is the most efficient among existing algorithms for performance
comparative test of the proposed algorithm. Comparison items are free memory
change of each real server and response time of cluster system for the two algorithms.

3.1 Test Result Analysis for Free Memory

When number of concurrent connecters is below 200, free memory difference of each
server is not so big in the WLC and the proposed algorithm. But, when the number is

Fig. 4. Free memory changes of WLC and the proposed algorithm (at 400 numbers)

Fig. 2 and 3 show the proposed
prototype modules configuration
and load balancing algorithm.

 An Efficient Load Balancing Algorithm for Cluster System 179

0 200 400 600 800

WLC

RTSS

WLC

RTSS

WLC

RTSS

WLC

RTSS

10
0

20
0

30
0

40
0

Response time (ms)

400, server's free memory of the WLC is not even, while it is similar in the proposed
algorithm (RTSS) as shown Fig. 4. This means that more efficient load balancing was
done by the proposed algorithm.

3.2 Test Result Analysis for Response Time

Fig. 5 shows the test result for
average response time of two
algorithms by the number of
concurrent connecters. Response
time of the proposed algorithm
(RTSS) is improved 9.3msec than
existing algorithm (WLC) in case
of 100, while it is improved
203msec in case of 400.

When the number of concurrent
connecter is few, the response time
is not so big different. But, when it
is increased, the difference is big.
This means performance of cluster
system is optimized well in the
proposed algorithm.

 Fig. 5. Results of response time comparison

4 Conclusions

I proposed an efficient load balancing algorithm to improve the performance of clus-
ter system. The WLC algorithm tries to balance load according to the fixed physical
resources of real servers’ and connection numbers. On the other hand, the proposed
algorithm measures waiting process, free memory and collision rate by real time to
get more accurate load state of real servers, and used them to balance load efficiently.

References

1. Delivering High Availability Solutions with Red Hat Enterprise Linux AS 2.1, RedHat
(2003)

2. Jian liu, Lorghu Xu, Baogen Gu, Jing Zhang, A scalable, high performance Internet cluster
server, High performance computing in the Asia-Pacific region, 2000 Proceedings. The firth
International Conference/ Exhibition, Vol.2, (2000) 941-944

3. OYoung Kwon, Cluster system introduction Korea institute of science and technology in-
formation news letter (2000)

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 180 – 188, 2005.
© IFIP International Federation for Information Processing 2005

A Greedy Algorithm for Capacity-Constrained Surrogate
Placement in CDNs

Yifeng Chen1, Yanxiang He2, Jiannong Cao3, and Jie Wu4

1 State Key Laboratory of Water Resources and Hydropower Engineering Science,
Wuhan University, Wuhan 430072, Hubei, China

2 School of Computer, Wuhan University, Wuhan 430072, Hubei, China
{Csyfchen, Yxhe}@whu.edu.cn

3 Department of Computing, Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong, China
Csjcao@comp.polyu.edu.hk

4 Department of Computer Science & Engineering, Florida Atlantic University,
Boca Raton, FL 33431, USA
Jie@cse.fau.edu

Abstract. One major factor that heavily affects the performance of a content
distribution network (CDN) is placement of the surrogates. Previous works take a
network-centric approach and consider only the network traffic. In this paper, we
propose solutions to optimal surrogate placement, taking into consideration both
network latency and capacity constraints on the surrogates. For CDNs with a tree
topology, an efficient and effective greedy algorithm is proposed which mini-
mizes network traffic while at the same time maximizing system throughput.
Simulation results show that the greedy algorithm is far better than the existing
optimal placement scheme that makes decisions based solely on network traffic.
This suggests that capacity constraints on surrogates or server bottlenecks should
be considered when determining surrogate placement, especially when the ca-
pacities of CDN servers are limited.

1 Introduction

A content distribution network (CDN) is a network optimized to deliver specific con-
tent such as static Web pages, streaming media, or real-time video or audio. The design
of a CDN aims at quickly providing users with the most current content in a highly
available fashion [1]. This is achieved by pushing hosted content from the origin
server(s) to a set of surrogates located at the edge of the Internet closer to clients. For
any client request, an appropriate surrogate is selected to deliver the requested content
to the client on behalf of the origin server(s) [2]. Besides speeding up content delivery,
CDNs can also reduce server workload and alleviate network congestion.

The performance of a CDN can be significantly affected by the decisions on 1) how
many surrogates are needed, and 2) where they should be placed. Previous studies
typically formulate this decision problem as the minimum k-median problem [3,4], the

 A Greedy Algorithm for Capacity-Constrained Surrogate Placement in CDNs 181

facility location problem [3], the minimum k-center problem [5], or for simple network
topologies (e.g., line, ring, or tree), the dynamic programming problem [3,6-9].

All of these previous works [3-9], however, take a network-centric view of the issue
of surrogate placement, assuming that a client’s requests can always be directed to the
surrogates closest to the client. Consequently, they consider only the network latency
factor and the resultant placement scheme may very likely lead to an undesirable load
concentration on some surrogates. In this paper, we argue that, in order to minimize the
network traffic and maximize the system throughput, load balancing among surrogates
should also be considered in surrogate placement. We call this problem the capacity
constrained surrogate placement problem (CCSP).

In this paper, we focus on a simplified version of the CCSP problem in the context of
transparent data replication [8-10], in which the access paths to a Web site are ar-
ranged as a tree with the origin server at the root. The aim of transparent data replica-
tion is to reduce the management overhead incurred by client redirection and to sim-
plify the design of surrogate cooperation and load balancing. Fig. 1 illustrates a
surrogate hierarchy for transparent data replication. A collection of surrogates, together
with the origin server, is placed on {1, 6, 10, 15, 20}. The request issued from node 11
is forwarded toward the origin server along the unique path from 11 to 1. Normally, the
surrogate placed on node 10 will intercept the request and immediately satisfy the re-
quest on behalf of the origin server. However, if the surrogate is overloaded, the request
will be forwarded up the tree, until another available surrogate, say node 6, is able to
serve the request. For any update activity, the update message will first be propagated
from root, (i.e., the origin server node 1) to its immediate descendant surrogate node 6,
and node 20. Then the update message will continue to be propagated down the sur-
rogate hierarchy from node 6 to nodes 10 and 15.

1

93

62

7

4 85

10

2221

2019

18

17

16

15

14

131211

23

origin server

client

surrogate

surrogate

surrogate

surrogate

retrieval
request

update
request

Fig. 1. Request-routing and consistency maintenance under transparent data replication

We employ queuing theory [11] to model server throughput and achieve load
balancing among surrogates by redirecting part of the client requests initially assigned
to the heavily loaded surrogates to other lightly loaded ones according to transparent
data replication. We propose an efficient greedy algorithm to solve the CCSP problem.
The performance of the proposed algorithm is evaluated in terms of communication
cost and system throughput. We compare our algorithm with an existing optimal
placement scheme that solely minimizes the communication cost and a random

182 Y. Chen et al.

placement scheme that uniformly chooses sites to place surrogates. The simulation
results show that our proposed CCSP approach significantly outperforms these two
benchmarks.

2 Problem Formulation

In this section, we first develop a queuing model of the throughput of CDN servers, and
then formulate the CCSP problem for tree networks.

We model each CDN server as an M/G/1/K*PS queuing system [11]. The arrival
process of HTTP requests is assumed to be Poissonian with rate (λ+µ) (λ is the read
rate, µ the write rate), whereas the service time has a general distribution with mean

_
x .

The service discipline is processor sharing. The total number of requests that can be
processed at one time is limited to K (

_
x and K represent the processing power of each

CDN server). Denoting the blocking probability by Pb′, we have

)1(
)1('

1+−
−=

K

K
bP ρ

ρρ

(1)

where ρ=(λ+µ)

_
x . Thus, the rate of blocked requests is given by (λ+µ)Pb′. A CDN

increases the throughput of the whole system by enabling the surrogates to cooperate
for redirecting the overloaded amount of requests (i.e., (λ+µ)Pb′) that have routed to
one surrogate to other lightly loaded ones. Note that update requests should always be
served locally and only retrieval requests can be redirected. Thus, if we define Pb=
(1+µ/λ)Pb′, the request blocking rate can be represented as λPb. This transformation is
reasonable, since the CDN servers are typically dominated by retrieval requests.

The network is modeled as a tree Tr(V,E), where V is a set of nodes, E⊆V×V is a set
of edges and r∈V is the root where the origin server is located. Each node represents an
autonomous system (AS) and each edge corresponds to a physical link connecting two
AS’s. For any node v∈Tr, we denote by Tv the subtree of Tr rooted at v.

Assume that the origin server holds N objects. The size of each object i is denoted by
si(1 i N). For each object i, every node v is associated with a nonnegative retrieval rate

v,i. The origin server is responsible for propagating update information down the sur-
rogate hierarchy and is additionally associated with a nonnegative update rate µi for
object i. Any link (u,v) in E is associated with a distance metric d(u,v), which could be
interpreted as bandwidth, hop counts, link cost, etc. Assuming that πx,y is a path be-
tween node x and y, the distance associated with path πx,y could be represented as
d(x,y)= ∈ yxvu vud

,),(),(π . We use f(si,d(u,v)) to denote the data transmission cost for
object i traverses link (u,v) or path πu,v, which measures the resource utilization on that
link or path for transferring object i from node u to v.

Suppose M surrogates are to be placed on a set of domains P(P⊆V, r∈P and |P|=M).
For any node v∈Tr, we say a node is the parent surrogate of v, denoted by C(v,P), if it is
the first node in P\{v} that is seen while going up from v to the root r, i.e., the lowest
ancestor of v which is contained in P\{v}. Also, the immediate descendant surrogates
of any v, denoted by D(v), is defined as follows. If v∉P, D(v)={u: u∈P ∧ u∈Tv ∧
C(u,P)=C(v,P)}; if v∈P, D(v) = {u: u∈P ∧ C(u,P)=v}.

 A Greedy Algorithm for Capacity-Constrained Surrogate Placement in CDNs 183

Now, suppose a set of surrogates P are placed on the network, the reduction of data
transfer cost, denoted by Cost(Tr,P), is ready to be obtained by:

= ∈
−−=

N

i rPv
iii

t
iv

b
vr PvCvdsfurvdsfPPTCost

1 }\{
,)))),(,(,()),(,()1((),(λ (2)

where the first term corresponds to the total decrease of retrieval cost and the second
term represents the total increase of update cost due to the placement of surrogates. v,i
denotes the access rate to object i issued from node v. v,i

t denotes the total retrieval
requests for object i that traverse node v:

∈+=
vBu

t
iu

b
uiv

t
iv P ,,, λλλ (3)

where Bv is the children of v, and Pv
b is the blocking probability of v. Here we extend

the concept of blocking probability: If v is a surrogate node (i.e., v∈P), Pv
b would be

derived via a queuing model; otherwise, Pv
b is set to one, meaning that, for the nodes

where no surrogates are located, all the incoming requests will be forwarded to their
parent nodes. We define λv

t= =
N
i

t
iv1 ,λ and µt= =

N
i i1 µ to compute Pv

b.
Under the given request-routing mechanism, the drop of requests occurs only if the

origin server is overloaded. The total requests blocked in the CDN therefore is

t
r

b
rr PPTBlock λ=),((4)

where λr
t denotes the total retrieval request rate directed to r after placing a set of surro-

gates P. Now, we are ready to define the CCSP problem in tree topologies: Given
Tr(V,E), traffic pattern, and surrogate capacity constraints, find a set of M surrogates
P(P⊆V, r∈P, |P|=M) such that the objective function (5) is satisfied.

)),(),((),(
,|,|

PTBlockPTCostMaxPTObj rrrr PMPVP
γ−= ∈=⊆ (5)

γ in (5) is a penalty coefficient to make a tradeoff between traffic reduction and load
balancing among surrogates.

3 A Greedy Algorithm

From the computation of Pv
b, it’s easy to verify that the CCSP problem for tree to-

pologies can not be solved via a dynamic programming approach similar to that used in
[8]. In this section, we develop an efficient greedy algorithm.

The greedy algorithm is illustrated in Algorithm 1. Initially, we set P={r} and the
network cost reduction to zero. The objective is determined by the dropped requests.
Then the algorithm iterates and chooses one surrogate in each step until M surrogates
are chosen. In each iteration, for ∀v∈V\P, we compute the objective increment as-
suming v is added to P. The node that yields the maximum objective increment is
chosen and added to P. The objective increment of candidate node v, besides the con-
tribution of v itself, includes (a) modifying the retrieval cost reduction of v’s ancestor
surrogates (the ratio of the request directed to and the blocking probabilities of these
surrogates will change when a surrogate is placed on v); and (b) modifying the update

184 Y. Chen et al.

cost of immediate descendant surrogates whose parent surrogate is C(v,P) (their parent
surrogate has changed from C(v,P) to v).

The objective increment can be computed in the following fashion. Suppose a set of
surrogates P(P⊂V, |P|<M, r∈P) has been placed over the network, and a candidate
node v(v∈V\P) is intended to join P. Define by A(v) the ordered ancestor nodes of v,
v∉A(v), i.e., the elements in A(v) are the nodes ordered as seen while going up from v to
the root r. Obviously, the first element in A(v) is the parent of v, and for any successive
node u and w in A(v), w is the parent of u. After the candidate v joins in P, the increment
of data transfer cost reduction ∆Cost(Tr,P∪{v}) and that of objective ∆Obj(Tr, P∪{v})
can be obtained by the following steps.

Step 1: compute the contribution of v itself
∆Cost(Tr,P∪{v})= i=1

N((1-Pv
b)λv,i

tf(si,d(v,r))-µif(si,d(v,C(v,P)))

Step 2: modify the retrieval cost reduction of ancestor surrogates of v

Let ∆λ=-(1-Pv
b)λv

t, ∆λi=-(1-Pv
b)λv,i

t

Then obtain a node u from A(v) in order until all the elements are traversed. Note that
the variable with a superscript of new corresponds to the case where v has joined in P.

If u∉P, set λu
t,new=λu

t+∆λ, λu,i
t,new=λu,i

t+∆λi

Otherwise if u∈P, set λu
t,new=λu

t+∆λ, λu,i
t,new=λu,i

t+∆λi, compute Pu
b,new by λu

t,new

∆λ=∆λ-(1-Pu
b,new) λu

t,new+(1-Pu
b)λu

t
∆λi=∆λi-(1-Pu

b,new) λu,i
t,new+(1-Pu

b)λu,i
t

∆Cost(Tr,P∪{v})=∆Cost(Tr,P∪{v})+ i=1
N(((1-Pu

b,new)λu,i
t,new-(1-Pu

b)λu,i
t)f(si,d(u,r)))

Step 3: modify the update cost of the immediate descendant surrogates of v
∆Cost(Tr,P∪{v})=∆Cost(Tr,P∪{v})+|D(v)| i=1

Nµif(si,d(v,C(v,P)))

Step 4: compute Block(Tr,P∪{v}) and ∆Obj(Tr,P∪{v})
Block(Tr,P∪{v})=Pr

b,newλr
t,new

∆Obj(Tr,P∪{v})=∆Cost(Tr,P∪{v})-γ(Block(Tr,P∪{v})-Block(Tr,P))

Algorithm 1. The greedy algorithm for surrogate placement

set P={r}, set λv,i
t= ∈ vTu iu ,λ , λv

t= =
N
i

t
iv1 ,λ , for ∀v∈Tr, ∀i (1≤i≤N),

set Cost(Tr,P)=0, compute Block(Tr,P), Obj(Tr,P);
while(|P|≤M){
 for ∀v∈ V\P, compute ∆Cost(Tr,P∪{v}), Block(Tr,P∪{v}) and

∆Obj(Tr,P∪{v});
 find v∈ V\P such that ∆Obj(Tr,P∪{v}) is maximized;

P←P∪{v}, Cost(Tr,P)←Cost(Tr,P)+∆Cost(Tr,P),
Obj(Tr,P)←Obj(Tr,P)+∆Obj(Tr,P);

 for ∀u∈A(v), update λu
t, λu,i

t in order;
 for ∀u∈D(v), C(u,P) ←v; }

 A Greedy Algorithm for Capacity-Constrained Surrogate Placement in CDNs 185

4 Performance Evaluation

We have evaluated the performance of the proposed algorithm through simulations, in
comparison with two baseline algorithms: a random algorithm and a throughput-
oblivious dynamic programming (DP) algorithm.

We use synthetic tree topologies and traffic pattern to evaluate the algorithms, as in
[8]. Tree topologies are created randomly in a breadth-first manner with two parame-
ters: the total number of nodes (treeSize) and the maximum degree of a tree node
(treeDegree). Each tree edge is associated with a distance randomly distributed in (0,1).
Every node v is associated with a retrieval rate λv and values,

_
x and K, uniformly dis-

tributed in (minSvTime, maxSvTime) and in (minJobLimit, maxJobLimit), respec-
tively. The root r is further associated with an update rate of µ uniformly distributed in
(minWtRate, maxWtRate).

The origin server holds a collection of N Web objects. The access popularity of the
objects follows a Zipf-like distribution [12,13] with a parameter of θr for retrieval and
θw for update. Each object i is assigned an object size of si, whose distribution has been
found to be heavy-tailed [13]. The cumulative distribution function is given by

F(s)=1-(s0/s) β β, s0>0, s≥ s0 (6)

where β is known as the tail index, and s0 represents the smallest possible value of the
random object size in the heavy-tailed distribution. For simplicity, we set f(si,d(u,v))=
si*d(u,v). Default parameter settings are summarized in Table 1.

We vary the number of nodes from 60 to 1000 and examine the impacts on surrogate
placement decision of the penalty coefficient, traffic volume, and server capacity. Fig.
2 shows a typical simulation result on a 600-node tree with M=0.3*treeSize.

We have made the following observations: (1) The greedy algorithm significantly
outperforms the benchmarks in both network cost reduction and dropped request rate;
(2) The greedy algorithm is not very sensitive to the penalty coefficient. A larger γ,
however, will lead to a decrease in blocked requests at slight cost of network traffic; (3)
When the traffic is relatively small, adding one more surrogate can absorb a significant
amount of traffic and remarkably improve the performance of the system. As traffic
increases, more surrogates are needed to achieve the same normalized performance; (4)
When candidate surrogates are configured powerful (i.e., set

_
x close to zero), the

Table 1. Default simulation parameter settings

Parameter Setting Parameter Setting Parameter Setting
minRdRate 1 minSvTime 0.0001 θr 0.8
maxRdRate 80 maxSvTime 0.01 θw 0.4
minWtRate 1 minJobLimit 50 β 1.2
maxWtRate 80 maxJobLimit 300 s0 4
treeDegree 6 N 1000 γ 10

186 Y. Chen et al.

0 60 120 180
0.0

0.2

0.4

0.6

0.8

1.0

Num ber of S urrogates

N
or

m
al

iz
ed

 C
os

t
R

ed
uc

tio
n

Optim al
Greedy
DP
Random

0 60 120 180
0.0

0.2

0.4

0.6

0.8

1.0

Num ber of S urrogates

N
or

m
al

iz
ed

 D
ro

pp
ed

 R
at

e

G reedy
DP
Random

Fig. 2. Traffic reduction (normalized by “optimal” measure of placing a maximum of M surro-
gates) and blocked request rate (normalized by “optimal” measure of placing only a single sur-
rogate at the root of the tree)

greedy algorithm can offer a performance close to optimal. Otherwise, the network cost
reduction has to be traded off against the system throughput; (5) Heterogeneity in CDN
servers and skewness in traffic pattern do not hurt the performance of the proposed
greedy algorithm.

5 Conclusion

In this paper, we have investigated the capacity constrained surrogate placement
problem (CCSP), aiming at minimizing the network traffic while maximizing the
throughput of a CDN. An efficient greedy algorithm is developed to solve the problem
in the context of transparent data replication.

The performance of the proposed algorithm is compared with a random solution and
a dynamic programming based optimal solution, that makes decisions considering only
data transmission cost. The simulation results demonstrate that the proposed greedy
algorithm has a performance close to optimality and can find the placement scheme that
remarkably increases the throughput of the system. Therefore, capacity constraints on
surrogates or server bottlenecks should be integrated into the surrogate placement de-
cision. This is especially the case when the power of CDN servers is limited for some
reason. If the traffic volume increases roughly in proportion in the domains, an in-
cremental or amortized surrogate placement scheme will be appropriate, just as the
proposed greedy algorithm does.

Acknowledgement

This work is supported in part by the University Grant Council of Hong Kong under the
CERG grant PolyU 5075/02E, the Hong Kong Polytechnic University under the grant
G-YY41 and the National Natural Science Foundation of China under the grant
90104005.

 A Greedy Algorithm for Capacity-Constrained Surrogate Placement in CDNs 187

References

1. Lazar, I., Terrill, W.: Exploring Content Delivery Networking. IEEE IT Pro. (2001) 47-49
2. Day, M., Cain, B., Tomlinson, G., Rzewski, P.: A Model for Content Internetworking. RFC

3466. Network Working Group (2003)
3. Qiu, L., Padmanabhan, V.N., Voelker, G.M.: On the Placement of Web Server Replicas.

Proc. IEEE INFOCOM’01, Vol. 3 (2001) 1587-1596
4. Li, Y., Liu, M.T.: Optimization of Performance Gain in Content Distribution Networks with

Server Replicas. Proc. 2003 Symp. Applications and the Internet (2003)
5. Cronin, E., Jamin, S., Jin, C., Kurc, A.R., Raz, D., Shavitt, Y.: Constrained Mirror Place-

ment on the Internet. IEEE J. Select. Areas Commun., Vol. 20. 7 (2002) 1369-1381
6. Li, B., Golin, M.J., Italiano, G.F., Deng, X., Sohraby, K.: On the Optimal Placement of Web

Proxies in the Internet. Proc. IEEE INFOCOM’99 (1999) 1282-1290
7. Jia, X., Li, D., Hu, X., Du, D.: Placement of Read-Write Web Proxies on the Internet. Proc.

IEEE ICDCS’01 (2001) 687-690
8. Xu, J., Li, B., Lee, D.L.: Placement Problems for Transparent Data Replication Proxy Ser-

vices. IEEE J. Select. Areas Commun., Vol. 20. 7 (2002) 1383-1398
9. Krishnan, P., Raz, D., Shavitt, Y.: The Cache Location Problem. IEEE/ACM Trans. Net-

working, Vol.8. 5 (2002) 568-582
10. Heddaya, A., Mirdad, A.: WebWave: Globally Load Balanced Fully Distributed Caching of

Hot Published Documents. Proc. IEEE ICDCS’97 (1997) 160-168
11. Cao, I., Andersson, M., Nyberg, C., Kihl, M.: Web Server Performance Modeling Using an

M/G/1/K*PS Queue. Proc. 10th Int’l Conf. Telecommunications, Vol. 2. (2003) 1501-1506
12. Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web Caching and Zipf-like Distri-

butions: Evidence and Implications. Proc. IEEE INFOCOM’99, New York (1999) 126-134
13. Mahanti, A., Williamson, C., Eager, D.: Traffic Analysis of a Web Proxy Caching Hierar-

chy. IEEE Network (2000) 16-23

Appendix: Correctness Proof for Algorithm 1

Theorem 1. Algorithm 1 is correct, and can be computed in O(ML) time. L is the path
length of Tr, which is defined as the sum over Tr of the number of ancestors of each
node.

Proof. The time complexity of the algorithm is straightforward. The proof for the cor-
rectness can be reduced to proving that for ∀u∈A(v), the computation of λu

t,new (and
similarly λu,i

t,new for ∀i(1≤i≤N)) is correct. We first prove the following Lemma.

Lemma 1. For any surrogate placement scheme P in tree topologies, there holds

λv
t=λv

t,0-Σu∈D(v) λu
t,0+Σu∈D(v)Pu

bλu
t , for ∀v∈Tr (7)

where λv
t,0 is the corresponding result after execution of the first step in Algorithm 1.

Proof: The proof is done by induction.
(1) Basis: when P={r}, we have D(v)=∅, λv

t=λv
t,0 for ∀v∈Tr. Thus (7) trivially holds.

(2) Induction: Suppose (7) holds when a set of surrogates P(P⊂V, |P|<M, r∈P) is
placed over the network. Now we prove that (7) still holds after any node v(v∈V\P) is
added to P.

188 Y. Chen et al.

First, according to the request-routing mechanism, placing a surrogate on v can only
affect the retrieval requests of its ancestor nodes A(v). Therefore, based on the induction
hypothesis, (7) holds for ∀u∈Tr\A(v), and λu

t,new=λu
t. For A(v), we first consider the first

element u in A(v), i.e., the parent of v. Obviously, D(v)⊆D(u). Now due to the join of v,
Dnew(u)=(D(u)-D(v))∪{v}. According to the algorithm, λu

t,new=λu
t+∆λ =λu

t-(1-Pv
b)λv

t.
By λu

t=λu
t,0-Σw∈D(u) λw

t,0+Σw∈D(u)Pw
bλw

t (induction hypothesis)

λu
t,new=λu

t,0-Σw∈D(u)-D(v)λw
t,0+Σw∈D(u)-D(v)Pw

bλw
t+(λv

t,0-Σw∈D(v)λw
t,0+Σw∈D(v)Pw

bλw
t-λv

t,0)-(1-Pv
b)λv

t
=λu

t,0-Σw∈Dnew(u)λw
t,0+Σw∈Dnew(u) Pw

bλw
t

=λu
t,0-Σw∈Dnew(u)λw

t,0+Σw∈Dnew(u) Pw
b,newλw

t,new

(7) holds. Then for the successive element x of u in A(v), if u∉P, it is completely the
same as u. Otherwise, if u∈P, there is evidently u∈D(x), but D(u)⊄D(x). Therefore,
Dnew(x)=D(x). According to the algorithm, λx

t,new=λx
t+∆λ=λx

t-(1-Pv
b)λv

t-(1-Pu
b,new)

λu
t,new+(1-Pu

b)λu
t. By λx

t=λx
t,0-Σw∈D(x)λw

t,0+Σw∈D(x) Pw
bλw

t (induction hypothesis)
λx

t,new=λx
t,0-Σw∈D(x)λw

t,0+Σw∈D(x)-uPw
bλw

t+Pu
bλu

t-(1-Pv
b)λv

t- (1-Pu
b,new) λu

t,new+(1-Pu
b)λu

t

=λx
t,0-Σw∈Dnew(x)λw

t,0+Σw∈Dnew(x)Pw
b,newλw

t,new+λu
t-(1-Pv

b)λv
t-λu

t,new
=λx

t,0-Σw∈Dnew(x)λw
t,0+Σw∈Dnew(x)Pw

b,newλw
t,new

(7) holds. Based on this approach, we can prove one by one that (7) holds for all the
elements in A(v). Thus Lemma 1 is true. Noticing that (7) is equivalent to λv

t= =
N
i

t
iv1 ,λ ,

where v,i
t is computed by (3), it can be trivially inferred that Theorem 1 is true.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 189 – 196, 2005.
© IFIP International Federation for Information Processing 2005

An Improved Scheme of Wavelength Assignment
for Parallel FFT Communication Pattern on a Class

of Regular Optical Networks*

Yawen Chen and Hong Shen

Japan Advanced Institute of Science and Technology,
Asahidai 1-8, Nomi-Shi, Ishikawa, Japan, 923-1292

{yawen, shen}@jaist.ac.jp

Abstract. Routing and wavelength assignment (RWA) is a central issue to
increase efficiency and reduce cost in Wavelength Division Multiplexing
(WDM) optical networks. In this paper, we propose an improved scheme of
wavelength assignment of parallel FFT communication pattern on a class of
regular optical networks. With our new scheme, the numbers of wavelengths

required to realize parallel FFT communication pattern with n2 nodes on WDM

linear arrays, rings, 2-D meshes and 2-D tori are 12 2 +−n , 12 3 +−n ,

12 2),max(+−−knk and 12 3),max(+−−knk respectively, which are about

one-third less for linear arrays and meshes, and a half less for rings and tori, than
the known results. Our results have a clear significance for applications because
FFT represents a common communication pattern shared by a large class of
scientific and engineering problems and WDM optical networks as a promising
technology in networking has an increasing popularity.

Keywords: Parallel FFT, wavelength assignment, optical networks, Wavelength
Division Multiplexing (WDM), network embedding.

1 Introduction

Fast Fourier Transform (FFT) plays an important role in numerous scientific and
technical applications [1]. While the application fields of FFT are growing rapidly, the
amount of data to be transformed is also increasing tremendously. Hence, there has
been a great interest in implementing FFT on parallel computers and some parallel
computers have been specially designed to perform FFT computations [2]. With the
increasing computation power of parallel computers, interprocessor communication
has become an important factor that limits the performance of supercomputing systems.
Optical communication, in particular, Wavelength Division Multiplexing (WDM)
technique, has become a promising technology for many emerging networking and
parallel/distributed computing applications because of its huge bandwidth. Parallel
FFT is often implemented on dense interconnection networks such as hypercube and

* This work is supported by the 21st Century Center of Excellence Program in JAIST on

“Verifiable and Evolvable e-Society”.

190 Y. Chen and H. Shen

shuffle-exchange networks [2], instead of simple connected networks such as linear
arrays and rings. Since WDM divides the bandwidth of an optical fiber into multiple
wavelength channels so that multiple devices can transmit on distinct wavelengths
through the same fiber concurrently [3], these dense networks can be simplified to
simple regular topologies by realizing connections in parallel FFT communication
patterns in optical lightpaths. A connection or a lightpath in a WDM network is an
ordered pair of nodes (x, y) corresponding to that a packet is sent from source x to
destination y. In this paper, we assume that no wavelength converter facility is available
in the network. Thus, a connection must use the same wavelength throughout its path.
Routing and wavelength assignment (RWA) is a key problem for increasing the
efficiency of wavelength-routed all-optical networks. RWA can be described as
follows [4]: Given a set of all–optical connections, the problem is to (a) find routes
from the source nodes to their respective destinations, and (b) assign channels to these
routes so that the same channel is assigned to all the links of a particular route. (c) The
goal of RWA is to minimize the number of assigned channels. Numerous research
studies have been conducted on the RWA problem [3-8]. A popular approach to tackle
this problem is to apply integer programming technique, which, however, does not
always lead to efficient solution. In [5], the problem of wavelength assignment for
realizing parallel FFT communication pattern on a class of regular optical WDM
networks was addressed and two methods, sequential mapping and shift-reversal
mapping, were proposed. By sequential mapping, the numbers of wavelengths required

to realize parallel FFT communication pattern of n2 nodes on WDM linear arrays,

rings, 2-D meshes and 2-D tori are 12 −n , 12 −n , 1),max(2 −−knk and 1),max(2 −−knk
respectively. By shift-reversal mapping, the numbers of wavelengths required are

)2,23max(3−× n , 22 −n ,)2,23max(3),max(−−× knk and 2),max(2 −−knk respectively. In

this paper, we design a new scheme to realize parallel FFT communication pattern on a
class of regular optical WDM networks and results show that our new scheme
significantly improves the known results in [5].

2 Wavelength Assignment of Parallel FFT Communication Pattern

2.1 Problem Definition

The so-called butterfly representation [2] of FFT algorithm is a diagram made up of
blocks representing identical computational units (butterflies) connected by arrows that
show the flow of data between the blocks. Assuming that N is the length of the
sequence to be transformed (N is an integer power of two), then the diagram with
N(log2N+1) nodes arranged in N rows and log2N+1 columns is made of log2N stages of
N/2 butterflies each. The butterfly representation clearly shows the great potential of
FFT for parallel processing. Generally, the FFT is implemented stage by stage, i.e. any
stage of calculation cannot proceed until all the results of its previous stage have been

completed. In this paper, we consider one dimensional data sequence of size N= n2 . If
the butterfly representation is viewed as a process graph, i.e. each row of the butterfly is
implemented by a process and each arrow by a communication channel, the butterfly
can map onto a WDM hypercube perfectly those links connecting the nodes having an

 An Improved Scheme of Wavelength Assignment for Parallel FFT 191

address that differs by only one bit at each stage. However, if a WDM hypercube is
used, only the ith dimensional links are used with one wavelength during the ith stage

whereas other (n-1)× 12 −n links are vacant during this stage, which may lead to wasting
of wavelength channels.

As we know, a connection in the hypercube communication pattern is called a
dimensional i connection [4] if it connects two nodes that differ in the ith bit position,

where 1 ≤ i ≤ n. In a network of size n2 , the set iDIM is defined as the set of all

dimension i connections and nH is defined as the hypercube communication pattern

which contains all connections in the hypercube. That is, U
n

i

in DIMH
1=

= and

}120|)2)1(,{(2/ −≤≤×−+= −− ninj
i jjjDIM

in

. With n2 input data distributed on
n2 processors, the set of all communications during n stages of parallel FFT is

equivalent to nH , and the set of communications during the ith stage is equivalent to

iDIM . Clearly, parallel FFT has a regular communication pattern which we denote by

)2(≥nFFTn . We model a network as a directed graph G (V, E). Nodes in V are

switches and edges in E are links. Since the n stages of parallel FFT communications
should be implemented stage by stage, the number of wavelengths required to realize

nFFT on optical WDM networks is the maximum number among the wavelengths

required by the n stages. Let),(GGWe ′ denote the number of wavelengths to realize

communication pattern G′ on network G by embedding scheme e . Thus,
)),((max),(

1
GDIMWGFFTW ie

ni
ne

≤≤
= .

2.2 Linear Arrays

At first, we introduce the definition of cross mapping on linear arrays. Assume that NL
and NR are two node arrangements with 2n-1 nodes numbered from left to right in
ascending order starting from 0. If we put node i of NR between node 2n-2+i and node
2n-2+i+1 of NL for i=0, 1, 2, …, 2n-2-2, and nodes 2n-2-1 till 2n-1 -1 of NR consecutively
after node 2n-1-1 of NL. By symmetry, this is equivalent to placing node 2n-2+i+1 of NL
between node i and node i+1 of NR, and nodes 0 till 2n-2-2 of NL consecutively before
node 0 of NR. We call the above operation cross operation and denote the obtained node
arrangement Cross(NL, NR). Assume that nX is the increasing order of indices in

binary representations of n2 nodes. For example, 2X =00, 01, 10, 11. We define the

cross order of a linear arrays with 2n nodes,)1(≥nCn , as follows:

≥
≤

=
−− 3),1,0(

2 ,

11 nXXCross

nX
C

nn

n
n . For example,)1,0(334 XXCrossC = =Cross

((0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111), (1000, 1001, 1010, 1011, 1100,
1101, 1110, 1111)) =0000, 0001, 0010, 0011, 0100, 1000, 0101, 1001, 0110, 1010,
0111, 1011, 1100, 1101, 1110, 1111.

192 Y. Chen and H. Shen

Assume that the nodes of WDM linear arrays are numbered from left to right in
ascending order starting from 0, and that the links are numbered from left to right
starting from 1. If the ith node of Cn for nFFT is mapped onto the ith processor of the

WDM network G , we establish the 1-1 mapping from the nodes of nFFT to the nodes

of G . We define such an embedding cross mapping on WDM linear arrays. Figure 1
shows cross mapping of FFT3 on 8-node linear array.

Fig. 1. Cross mapping on 8-node linear array

Theorem 1. By cross mapping, the number of wavelengths required to realize nFFT

on an n2 -node WDM linear array is 12 2 +−n .

Proof. When n=1 and 2, it is easy to know the results are true. In the following, we
consider the numbers of wavelengths required during the n stages when 3≥n .

When 3≥n , the ith node of NL (10 −nX) communicates with the ith node of NR

(11 −nX) during the first stage. Assuming that the number of nodes in NL on the left side

of the ith link on the linear array is l
il

 by cross mapping, and the number of nodes in NR

on the left side of the ith link is l
ir , then the number of wavelengths required on the ith

link during the first stage is l
il - l

ir . It can be calculated that the number of wavelengths

required during the first stage on the ith link, denoted by 1iw , is

1iw =

1223 i,-2

odd is and 12312 ,12

even is and 12312 ,2

21 ,

2n

222

222

2

−≤≤×

−×≤≤++

−×≤≤+

≤≤

−

−−−

−−−

−

nn

nnn

nnn

n

i

ii

ii

ii

. Therefore, the number of

wavelengths required during the first stage is 12 2 +−n . During the second stage, there
is no communications between the nodes of NL and NR. If the cross operation is not
implemented, communications within nodes of NL and nodes of NR are equivalent to the

communications of 1−nFFT mapped on 12 −n -node linear arrays by sequential mapping

[5]. So, the number of wavelengths required on the ith link of the two 12 −n -node linear

arrays is i for 121 2 −≤≤ −ni and in −−12 for 122 12 −≤≤ −− nn i . If the cross operation

is implemented between these two 12 −n -node linear arrays, the relative positions
between the nodes within NL and NR are not changed and the number of wavelengths
required on each link is the sum of wavelengths required on the corresponding links

 An Improved Scheme of Wavelength Assignment for Parallel FFT 193

which are overlapped between the two 12 −n -node linear arrays. Assuming that the

number of nodes in NL on the right side of the ith)12312(22 −×≤≤+ −− nn i link on

linear arrays is r
il

 by cross mapping and the number of nodes in NR on the left side of

the ith link is l
ir , the number of wavelengths required on the ith link during the second

stage is r
il + l

ir . It can be calculated that the number of wavelengths required during the

second stage on the ith link, denoted by 2iw , is

2iw =

1223 ,-2

odd is and 12312 ,12

even is and 12312 ,2

21 ,

2n

222

222

2

−≤≤×

−×≤≤+−

−×≤≤+

≤≤

−

−−−

−−−

−

nn

nnn

nnn

n

ii

ii

ii

ii

. Therefore, the number of

wavelengths required during the second stage is 22 −n .

During the jth stage for nj ≤≤3 , the number of wavelengths required is jn−2 on

each of NL and NR before the cross operation [5]. After the cross operation, the numbers
of wavelengths required during stage from 3 to n are less than

23 22222 −−− =×≤× nnjn because the number of wavelengths required on the
n2 -node linear array is not more than the double of the wavelengths required on each

of NL and NR in the worst case. Therefore, the maximum number of wavelengths

required during all stages by cross mapping is 12 2 +−n .

Clearly, realizing nFFT on an n2 -node WDM linear array by cross mapping

requires 12 3 −−n fewer wavelengths than that by shift-reversal mapping mentioned in
[5] when 4≥n .

2.3 Rings

If we exchange node i of NL with node 2n-1-i of NR and exchange node 2n-1-i of NL with
node i of NR for each i=1, 3, 5,…, 2n-3-1, we call such an operation exchange operation

and denote the obtained node arrangement Exchange(NL, NR). Assume that 1−C is the

reversal arrangement of C . For example, if dcbaC ,,,= , then abcdC ,,,1 =− . Thus,

we define the cross order on rings, denoted by)1(≥nCRn as follows:

≥

≤
=

−
−−

−
−−

4),1,0(

3 ,1,0
1
11

1
11

nCCExchange

nCC
CR

nn

nn
n . For example,)1,0(1

334
−= CCExchangeCR =

Exchange (0(000, 001, 010, 100, 011, 101, 110, 111), 1(000,001,010,100,011,
101,110,111)-1) =0000, 1000, 0010, 0100, 0011, 0101, 0110, 1110, 1111, 0111, 1101,
1011, 1100, 1010, 1001, 0001. Assume that the nodes of WDM rings are numbered
clockwise starting from 0, and the links starting from 1. If we map the ith node on nCR

of nFFT onto the ith processor of WDM rings, we establish the 1-1 mapping from the

194 Y. Chen and H. Shen

nodes of nFFT to the nodes of rings. We define such an embedding cross mapping on

rings.
Theorem 2. By cross mapping, the number of wavelengths required to realize nFFT

on an n2 -node WDM ring is 12 3 +−n .

Proof. It is easy to know the numbers of wavelengths required on the rings for n=1, 2
and 3 are 1, 1, and 2 respectively. In the following, we consider the numbers of
wavelengths required during the n stages when 4≥n .

During the first stage, the ith node of NL communicates with node 2n-1-1-i of NR.
Exchange operation results that the ith node on the ring communicates with node i+1

for }1227 ,12523 ,1202{ 14444 −≤≤×−×≤≤×−≤≤∈ −−−−− nnnnn kkkki . As

those communications take place between the neighborhood nodes, the number of
wavelengths required is 1. At the same time, the ith node on the ring communicates

with node 2n-1-i for 1232 33 −×≤≤ −− nn i , which requires 2n-3 wavelengths. Therefore,
the number of wavelengths required during the first stage is 2n-3+1.

During the stages from 2 to n, there is no communications passing through the links
of 2n-1 and 2n if the exchange operation is not implemented. If we ignore these two links,

the ring can be regarded as two 12 −n -node linear arrays. By the definition of cross
mapping on rings, realizing the stages from 2 to n can be regarded as realizing 1−nFFT

on each 12 −n -node linear array by cross mapping before the exchange operation, which

requires 12 3 +−n wavelengths by Theorem 1. In the following, we prove that the

number of wavelengths is still 12 3 +−n after exchange operation.
Due to the symmetry of the ring, the numbers of wavelengths required on the links

clockwise from 327 −× n to n2 and 1 to 32 −n are equal with those on the links

clockwise from 323 −× n to 325 −× n . So, we only take the links from 327 −× n to n2

and 1 to 32 −n for example. Before the exchange operation, the maximum number of

wavelengths required on the ith (321 −≤≤ ni , nn i 227 3 ≤≤× −) link of the ring,

denoted by iw , satisfies iw
227 ,-2

21 ,
3n

3

≤≤×

≤≤
≤

−

−

nn

n

ii

ii
. After the exchange operation,

the exchange between node i and node in −2 results that the numbers of wavelengths

required on the links clockwise from in −2 to n2 and from 1 to i increase by 1 for
each i=1, 3, 5,…, 2n-3-1 in the worst case. So, the number of additional wavelengths
passing through the ith link caused by the exchange operation, denoted by iw∆ ,

satisfies iw∆

odd is and 227 ,127

even is and 227 ,27

odd is and 21 ,12

even is and 21 ,2

33

33

33

33

≤≤×−×−

≤≤××−

≤≤−−

≤≤−

≤

−−

−−

−−

−−

iii

iii

iii

iii

nnn

nnn

nn

nn

. Therefore, the

maximum number of wavelengths required on the ith links is not more than

 An Improved Scheme of Wavelength Assignment for Parallel FFT 195

iw + iw∆

odd is and 227 ,12

even is and 227 ,2

odd is and 21 ,12

even is and 21 ,2

33

33

33

33

≤≤×−

≤≤×

≤≤−

≤≤

≤

−−

−−

−−

−−

ii

ii

ii

ii

nnn

nnn

nn

nn

. It can be concluded that the

maximum number of wavelengths required on the links clockwise from 327 −× n to n2

and 1 to 32 −n is not more than 12 3 +−n . Therefore, the number of wavelengths

required on WDM rings with n2 nodes is 12 3 +−n . From the above discussion, we

know that the wavelengths required to realize nFFT in WDM ring with n2 nodes by

cross mapping is 12 3 −−n less wavelengths than that by shift-reversal mapping when
4≥n .

We denote sizes of meshes and tori as N= knk −× 22 . For simplicity, the details of the
definition for the cross mapping on meshes and tori are ignored here.

Theorem 3. By cross mapping, the numbers of wavelengths required to realize nFFT

on a knk −× 22 mesh and torus are 12 2),max(+−−knk and 12 3),max(+−−knk

respectively.

3 Comparisons

It can be seen that cross mapping outperforms shift-reversal mapping and sequential
mapping on the number of wavelengths, as shown in Fig. 2 for linear arrays. The
analysis can be obtained similarly for other topologies.

0

50

100

150

200

250

300

4 16 64 256 512
network size of linear arrays (N)

w
av

el
en

gt
hs

 (W
)

cross mapping on linear arrays
shift-reversal mapping on linear arrays
sequential mapping on linear arrays

Fig. 2. Comparisons of wavelengths required on liner arrays

196 Y. Chen and H. Shen

4 Conclusions

In this paper, we proposed an improved scheme of wavelength assignment for parallel
FFT communication pattern on a class of regular optical networks. By the improved
mapping method, the numbers of wavelengths required to realize parallel FFT

communication pattern with n2 nodes on WDM linear arrays, rings, 2-D meshes and

2-D tori are 12 2 +−n , 12 3 +−n , 12 2),max(+−−knk and 12 3),max(+−−knk

respectively, which improved the results in [5]. Our results have a clear significance for
applications because FFT represents a common communication pattern shared by a
large class of scientific and engineering problems and WDM optical networks as a
promising technology in networking has an increasing popularity. Future work may
include other type of optical networks and other RWA problems. Another interesting
issue is to find the lower bound for this problem and the improved schemes which can
achieve the lower bound.

References

1. Rami A, AL-Na'mneh, W. David Pan, and B. Earl Wells. Two parallel implementations for
one dimension FFT on symmetric multiprocessors. ACM Southeast Regional Conference, pp.
273-278. ACM Press. New York, NY, USA, 2004.

2. F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
Hypercubes. Morgan Kaufmann Publishers, Inc., 1992.

3. Hui Zang, Jason P. Jue, and Biswanath Mukherjee. A review of routing and wavelength
assignment approaches for wavelength-routed optical WDM networks. SPIE Optical
Networks Magazine, 1(1):47-60, 2000.

4. Yuan X and Melhem R. Optimal Routing and Channel Assignments for Hypercube
Communication on Optical Mesh-like Processor Arrays. Proceedings of the 5th International
Conference on Massively Parallel Processing Using Optical Interconnection, pp.110-118.
IEEE Computer Society Press. Las Vegas, NV, 1998.

5. Fangai Liu and Yawen Chen. Wavelength Assignment of Parallel FFT Communication
Pattern in a Class of Regular Optical WDM Network. Proceedings of the IEEE International
Symposium on Parallel Architectures, Algorithms, and Networks, 495-500. IEEE Computer
Society. Hong Kong, 2004.

6. Zhou Chunling and Yang Yuanyuan. Wide-Sense nonblocking multicast in a class of regular
optical WDM networks. IEEE Transactions on Communications, 50(1):126-134, 2002.

7. H. Shen, Y. Pan, J. Sum and S. Horiguchi, Multicasting in multihop optical WDM networks
with limited wavelength conversion. IEICE Transactions on Information and Systems,
E86-D(1):3-14, 2003.

8. Yawen Chen and Fangai Liu. A Wavelength Assignment Algorithm of Parallel LU
Decomposition Communication Pattern On WDM Ring Interconnection Network.
International Symposium on Distributed Computing and Applications to Business,
Engineering and Science, pp. 366-370. Wuhan, China, 2004.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 197 – 204, 2005.
© IFIP International Federation for Information Processing 2005

A Parallel O(n27n/8) Time-Memory-Processor Tradeoff
for Knapsack-Like Problems

Ken-Li Li1,2, Ren-Fa Li1, Yang Lei1, and Yan-Tao Zhou1

1 School of Computer and Communication,
Hunan University,

Changsha, 410082, China
{jt_lrf, jt-yl, jt_zyt}@hnu.cn

2 Department of Computer Science,
University of Illinois at Urbana-Champaign,

 Champaign, 61801,USA
kenlili@uiuc.edu

Abstract. A general-purpose parallel three-list four-table algorithm that can
solve a number of knapsack-like NP-complete problems is developed in this
paper. Running on an EREW PRAM model, The proposed parallel algorithm
can solve this kind of problems of size n in O(n29n/20) time, with O(213n/40)
shared memory units and O(2n/10) processors, and thus its time-space-processor
tradeoff is O(n27n/8). The performance analysis and comparisons show that the
proposed algorithms are both time and space efficient, and thus is an improved
result over the past researches. Since it can break greater variables knapsack-
based cryptosystems and watermark, the new algorithm has some cryptanalytic
significance.

1 Introduction

Every NP-complete problem can be solved in O(2n) time by exhaustive search, but
this complexity becomes prohibitive when n exceeds 70 or 80. Assuming that NP ≠ P,
we cannot hope to find algorithms whose worst-case complexity is polynomial, but it
is both theoretically interesting and practically important to determine whether sub-
stantially faster algorithms exist. In this paper we describe a parallel algorithm which
can solve the knapsack problem. But owing to the work done by Schoreppel and
Shamir [1], our proposed algorithm actually can solve a fair number of NP-complete
problems including knapsack, partition, exact satisfiability, set covering, hitting set,
disjoint domination in graphs, etc, which can be related by the composition operator
[1]. Although the proposed algorithm is a versatile algorithm, to make this algorithm
more easily be understood, we only take the knapsack problem as the representative
to narrate this algorithm.

Given n positive integers W = (w1, w2, ..., wn) and a positive integer M, the knapsack
problem is the decision problem of a binary n-tuple X = (x1, x2, …, xn) that solves the

equation:
=

n

i
ii xw

1

� M. This problem was proved to be NP-complete. Solving the

198 K.-L. Li et al.

knapsack problem can be seen as a way to study some large problems in number the-
ory and, because of its exponential complexity, some public-key cryptosystem are
based on it [2-3]. Branch and Bound algorithms were proposed, but the worst case
complexity is still O(2n) [4]. A major improvement in this area was made by Horowitz
and Sahni [4], who drastically reduced the time needed to solve the knapsack problem
by conceiving a clear algorithm in O(n2n/2) time and O(2n/2) space. It is known as the
two-list algorithm. Based on this algorithm, Schrowppel and Shamir [1] reduced the
memory requirements with the two-list four-table algorithm which needs O(2n/4)
memory space to solve the problem in still O(n2n/2) time. Using unbalanced four ta-
bles, an adaptive algorithm is presented in [5], which can solve the knapsack-like
problems according to the available computation source. Although the above algo-
rithm is by far the most efficient algorithm to solve the knapsack problem in sequen-
tial, it can not solve any instances where the size n is great.

With the advent of the parallelism, much effort has been done in order to reduce the
computation time of problems in all research areas [6-14], most of which are based on
CREW (concurrent read exclusive write) PRAM (parallel random access machine)
model. Karnin [6] proposed a parallel algorithm that parallelizes the generation rou-
tine of the two-list four-table algorithm. In his algorithm the knapsack problem could
be solved with O(2n/6) processors and O(2n/6) memory cells in O(2n/2) time. The algo-
rithm proposed by Amirazizi and Helman [7] runs in O(n2α n) time, 0 ≤≤ α 1/2, by
allowing O(2(1-α)n/2) processors to concurrently access a list of this same size. They
also present a more feasible Time-Space-Processor (TSP) model for evaluation of
performance of different algorithms for the solution of knapsack-like NP-complete
problems [7]. Ferreira [8] proposed a parallel algorithm that solves the knapsack prob-

lem of size n in time T = O(n(2n/2) ε), 0 ≤≤ ε 1, when P = O((2n/2) ε−1) processors S =
O(2n/2) memory units are available. Chang et al. [9] presented another parallel algo-
rithm where the requirement of the sharing memory is O(2n/2) by using O(2n/8) proces-
sors to solve the knapsack problem still in O(2n/2) time. Thereafter, based on Chang et
al.’s parallel algorithm, Lou and Chang [10] successfully parallelize the second stage
of the two-list algorithm. Regretfully, it is independently found in [11] and [12] that
the analysis of the complexity of the Chang et al.’s algorithm was wrong. In addition
to pointing out the wrong in literature [9], we also proposed a CREW-PRAM cost-
optimal parallel algorithm [11], and thereafter, a cost-optimal algorithm without
memory conflicts was further presented in [13]. It must be pointed out that the space
complexity is very important when solving the knapsack-like problems [6,15]. How-
ever, because the memories required in both of these two cost-optimal parallel algo-
rithms are still O(2n/2), it make the available memory cells a bottleneck when using
these algorithms to break practical knapsack based cryptosystem.

Therefore, to further reduce the required memory units for the solution of this kind
of NP-complete problems, based on Ferreira’s CREW based parallel three-list algo-
rithm [14], we proposed a new parallel three-list four-table algorithm. The main
properties of the proposed algorithm are as follows:

(i) With this algorithm, we can solve knapsack-like problems in O(n29n/20) time,
O(213n/40) shared memory units when O(2n/10) processors are available. It results
in an O(n27n/8) TSP trade off, which is considerably better than those of all similar
algorithms published so far.

 A Parallel O(n27n/8) Time-Memory-Processor Tradeoff 199

(ii) It can be performed on an EREW (exclusive read exclusive write) PRAM ma-
chine model, and thus is a totally without memory conflicts algorithm. Further-
more, the algorithm is completely practical in the sense that it is easy to program
and it can handle problems which are almost 1.5 times as big as those handled by
previous algorithms.

The rest of this paper is organized as follows. Section 2 explains the parallel three-
list algorithm, on which the proposed algorithm is based. The proposed parallel algo-
rithm is described in Section 3. Then, in Section 4, the performance comparisons
follow. Finally, some concluding remarks are given in Section 5.

2 The Parallel Three-List Algorithm

In 1995, Ferreira presented a parallel three-list algorithm, which is based on a CREW
PRAM model [14]. The number of processor, time complexity, and space require-

ments in it are O(nβ2),)2()2/1(nnO βε −− ,)2(2/nnO ε , 10 << ε , 2/10 εβ −≤≤ ,

respectively. It is viewed as an important breakthrough in the research of knapsack-
like problems for it can solve the knapsack-like problems in a way of both time and
space effective [14]. Because our parallel algorithm is based on this algorithm, we
introduce it. To make it easy be understood, let the number of processors be O(2n/10).

Algorithm 1. The Three-list algorithm�

Generation stage

1. Divide W into three parts: W1 = (w1,w2,…,w9n/20),W2 = (w9n/20 + 1,w9n/20 + 2,…,
w18n/20), W3 = (w18n/20 +1, w18n/20 + 2,…, wn).
2. Form all possible subset sums of W1, W2, then sorted them in an nondecreasing
order and store them as A = [A1, A2,…,

20

9

2

nA] and B = [B1, B2,…,
20

9

2

nB], respec-

tively.
3. Form all possible subset sums of W3, and store them as C = [C1,C2,…,

102

nC].

Search stage

1. For all Ci in C where 1021 ni ≤≤
2. Ci execute the binary search over A + B:
3. If a solution is found: then stop, output the solution
4. If a solution cannot be found: then stop: output that there is no solution.

The time and space complexity of this algorithm are)2(2011nnO × and

)2(209nO [14].

Based on its serial algorithm, Ferreira’s parallel algorithm is very direct. It runs on

a CREW model. The subset sums in list A and B which hold 2092 n subset sums re-
spectively are stored in the shared memory. And each processor Pi (Pi ≤≤1), which
holds the subset sum Ci, execute a “virtual” binary search on the list A + B to make

200 K.-L. Li et al.

sure whether A[j] + B[l] = M – Ci is satisfied, 2092,1 nlj ≤≤ .The parallel three-list

algorithm consists of the following three main steps [14].

Algorithm 2. Parallel three-list algorithm

for all Pi where 1021 ni ≤≤ do
1. Generation of the two lists A, B and C
2. Sorting of the two lists
3. Binary search over A + B

end

The time and space needed in this algorithm are)2(209nnO × and O(29n/20) [14].

3 The Proposed Parallel Algorithm

Although Ferreira’s above algorithm is considered as a main breakthrough for the
researches on the knapsack problem, it still have an obvious shortcoming, i.e. the TSP

tradeoff is O(nn 2×), which is greater than that of the recent parallel algorithms in
[11,14] by a factor n. To overcome this shortcoming, we redesign the two main stages
of the parallel three-list algorithm. In list generation stage, we introduce four tables to
produce two ordered list A and B dynamically. Doing so we can reduce the space
complexity from O(29n/20) to O(213n/40). While in list search stage, we replace the ma-
trix search way in [14] with the two-list like search algorithm, which is more simply
and can reduce the time needed by a factor O(n) in search stage.

In our proposed algorithm, each of the two lists stored in shared memory have a
size of O(29n/20), whose elements will be dynamically generated one by one, by using
only O(213n/40) shared memory units. Now consider the two stages of the algorithm.

3.1 The Generation Stage

Using the selection technique [14], Ferreira’s parallel search algorithm is subtle. For it
reduced the time needed otherwise for direct enumerating on the virtual list A + B
from O(29n/10) to O(n× 29n/20). However, it is a little complicated for it concerns the
search of “virtual” matrix [14]. Now we use the simply two-list like search to fulfill
the list search stage.

Suppose the two ordered list A and B exist before the following algorithm 3 exe-
cutes. We can use the following two-list like search algorithm to make sure that for

any C[k], 1021 nk ≤≤ whether exist A[i] and B[j], 2092,1 nji ≤≤ , such that the

formula A[i] + B[j] + C[k] = M can be satisfied.

Algorithm 3. Parallel two-list like search algorithm
The subset sums in list A and B are sorted in increasing and decreasing order

for all processors Pk where 1021 nk ≤≤ do
1. i = 1, j = 1.
2. If A[i] + B[j] = M – C[k], then stop: a solution is found, and write the result

into the shared memory.
3. If A[i] + B[j] < M – C[k], then i = i + 1; else j = j + 1.

 A Parallel O(n27n/8) Time-Memory-Processor Tradeoff 201

4. If i > 29n/20 or j > 29n/20 then stop: there is no solution.
5. Goto Step 2.

End

Lemma 1. Let all elements in list A and B are given, the time needed to perform the
algorithm 3 is at most 2× 29n/20.

Proof. The condition that the loop ends shows that once the variables i or j is greater
than 29n/20, the algorithm terminates. While for each computation step, the value of
one of the above two variables must increase by 1. So it is obvious that the maximum
of the needed time to perform the algorithm 3 is 2× 29n/20.

Compared with the Ferreira’s search algorithm [14], the search time needed here is
reduced by a factor O(n). But the space requirements do not increase.

3.2 The Search Stage

We discuss how to produce all elements of lists A and B stored in the shared memory.
Note that in list search algorithm 3, each processor accesses the elements of the sorted
lists A and B sequentially, and thus there is no need to store all the possible subset
sums of A and B simultaneously in the shared memory—what we need is the ability to
generate them quickly (on-line, upon request) in sorted order. So if we generate the
two ordered lists dynamically, the needed space will reduced greatly. To implement
this key idea, we explore the thoughts in [1] where four tables are used to dynamically
produce the two sorted lists. Use four tables T1, T2, and T3 , T4 to produce the two
sorted lists A and B, where T1 includes all possible subset sums of knapsack entries
(w1,w2,…,w9n/40), …, T4 includes all sums of (w27n/40 + 1,w27n/40 + 2,…, w36n/40). let e =
29n/40, and mark Ti = (ti1, ti2, …, tie), i = 1,2,3,4. We first sort all sums in T1 in an in-
creasing order. Then use a priority queue Q1 which has a length of O(29n/40). At start,
Q1 stores all pairs of first (T1) and all elements t2i. It can be updated by two operations
deletion and insertion, which enables arbitrary insertions and deletions to be done in
logarithmic time of the length of the queue, and makes the pair with the smallest t1i +
t2j sum accessible in constant time. Through the efficient heap implementations of
priority queues [1], the following algorithm is designed to dynamically produce all
sums of T1 + T2 in an increasing order. For the processes to generate list A and B are
similar, we focus on the procedures on the process to generate list A.

Algorithm 4. Algorithm for generating all sums of T1 + T2 dynamically
Tables T1 = (t11, t12, …, t1e), T2 = (t21, t22, …, t2e) are given

(1) sort T1 into increasing order;
(2) insert into Q1 all the pairs (first (T1), t2i) for all t2i∈T2;
(3) Repeat until Q1 becomes empty.

(t1, t2) ��pair with smallest t1 + t2 sum in Q1;
S1 ��(t1 + t2)
if S1 is needed and used for the objectivity of computation;
delete (t1, t2) from Q1;
if the successor t1

1 of t1 in T1 is defined,
insert (t1

1, t2) into Q1;

202 K.-L. Li et al.

Lemma 2. One element in T1 + T2 can be produced in O(9n/40) time; while all 29n/20
elements can be dynamically generated in O(n29n/20) time with O(29n/40) shared mem-
ory units.

Proof. According to the theory of heap [1], one time of deletion and insertion on the
heap can be performed with logarithmic time of the size of the heap. Since the heap
constructed in algorithm 4 has a size of 29n/40 and the combinations of T1 + T2 have
29n/20 elements. It validates the results of lemma 2.

To make the search algorithm perform successfully, we must prepare two queues
(heaps) for each processor. As a result, in parallel case, the shared memory must have
more memory units than that needed in sequential case.

Combine the above discussions into a whole; we get the final parallel three-list
four-table algorithm and an overall conclusion on the solution of knapsack-like NP-
complete problems.

Algorithm 5. An EREW based parallel three-list four-table algorithm
for all processors Pk where 1021 nk ≤≤ do
1. generate list C and four tables T1, T2 and T3, T4 and sort T1 and T3 in parallel.
2. construct one min heaps for queue Q1, and one max heaps for queue Q2.
3. perform algorithm 4.
4. perform two-list like search algorithm (algorithm 3).

end

Theorem 1. n-variable knapsack-like problems can be solved on EREW model in
O(n29n/20) time when O(2n/10) processors and O(213n/40) memory units are available.

Proof. Producing list C and tables T2 and T4 can be finished in n and 2n× 25n/40 time,
while tables T1 and T3 can be sorted in 4× 25n/40 time [13]. Each processor will take
2× 29n/40 time to construct two heaps. Following the lemmas 1 and 2, the total needed

time is:)2
40

9
()

40

9
(222422 209209405405 nnnn n

O
n

nn ×=××+×+×+ .

The linear factor has little impact on the time complexity and thus is usually omit-
ted [6-9,14]. So the time complexity of the proposed parallel algorithm is O(29n/20). As
for the space complexity, since there are 2n/10 processors, and each of them need
2× 29n/40 for the construction of heaps, the total space requirements is O(213n/40). To
avoid memory conflicts, at first, we copy the knapsack vector W and scalar M for each
processor, which doesn’t affect the overall complexity of the proposed algorithm.
Thereafter, each processor access and update its own heaps, so it is obvious that all
processors have no memory conflicts, and it can be performed on EREW PRAM
machine model.

4 Performance Comparisons

For the importance of the space complexity [6,15], we adopt the time-space-processor
tradeoff (TSP tradeoff) [10], as the criterion of evaluation of relevant algorithms.

The TSP tradeoff of Karnin’s parallel algorithm is O(25n/6) [6]. The number of
processor, time complexity, and the TSP tradeoff of Ferreira’s parallel three-list

 A Parallel O(n27n/8) Time-Memory-Processor Tradeoff 203

search algorithm in [14] are O(2 nβ), O(nn)2/1(2 βε −−), 2/10 εβ −≤≤ , and O(n2n),

respectively. The parallel algorithm [7] runs in O(nn α2) time, 0 ≤≤ α 1/2, by allow-

ing O(2/)1(2 nα−) processors to concurrently access a list of this same size, hence the
TSP tradeoff of this algorithm is also O(n2n). Ferreira’s parallel one-list algorithm [8]
bears O(n2n) TSP tradeoff. The performance of Chang et al.’s parallel algorithm [9] is
T = O(2n/2), P = O(2n/8), and S = O(2n/2), thus results in a TSP tradeoff of O(29n/8). The
parallel algorithm Lou and Chang presented had a same performance as Chang et al.’s
algorithm. In addition, both of the algorithms in [11] and [13] have a TSP tradeoff of
O(2n). From our parallel three-list four-table algorithm, one can get a TSP tradeoff of
O(9n/40× 2n/10 × 213n/40 × 29n/20) = O(n27n/8).

Among all algorithms that have been published, the TSP tradeoff of Karnin’s algo-
rithm [6] is the lowest, which is O(n25n/6). However, it has an obvious defect that it
can’t reduce the execution time even in parallel. In spite of our proposed algorithm is
not cost optimal, it go further on the overall time and memory performance than
Ferreira’s parallel three-list algorithm did. Moreover, our algorithm is totally without
memory conflicts when different processors access the shared memory.

For the purpose of clarity, the comparisons of the main parallel algorithms pub-
lished by far for solving the knapsack-like problems are depicted in Table 1. It is
obvious that our parallel algorithm outtakes undoubtedly other parallel algorithms in
the overall performance.

Table 1. Comparisons of the parallel algorithms for solving the knapsack-like problems

Algorithm Model Processor Time Memory TSP tradeoff

1 [6] CREW O(2n/6) O(2n/2) O(2n/6) O(25n/6)

2[7] CREW O(2/)1(2 nα−) O(nα2) O(2/)1(2 nα−) O(2n)

3[14] CREW O(nβ2) O(n)2/1(2 βε −−) O(2/2 nε) O(2n)

4[8] CREW O(2/)1(2 nε−) O(2/2 nε) O(2n/2) O(2n)
5[9] CREW O(2n/8) O(2n/2) O(2n/2) O(29n/8)
6[10] CREW O(2n/8) O(2n/2) O(2n/2) O(29n/8)
7[11] CREW O((2n/4)1- ε) O(2n/4(2n/4) ε) O(2n/2) O(2n)
8[13]

EREW O((2n/4)1- ε) O(2n/4(2n/4) ε) O(2n/2) O(2n)
Ours EREW O(2n/10) O(29n/20) O(2n/4) O(27n/8)

Notation: 0 ≤≤ ε 1, 0 ≤≤ α 1/2, εβ −≤≤ 10 . The linear factor n in algorithms numbered by

1-6 and ours has been ignored for its little impact on the overall performance [6-9,14].

5 Conclusions

A new parallel three-list four-table algorithm for solving the knapsack-like problems
is presented. Through dynamically producing the elements of the two lists which is to
be searched in our two-list like search algorithm, we dramatically reduce the space
requirements from O(29n/20) in three-list algorithm in [14] to O(213n/40). Moreover, the
memory conflicts in [14] are also avoided by leave different memory address segment

204 K.-L. Li et al.

for different processors, permitting the algorithm being able to perform on an EREW
machine model. Performance comparisons shows our proposed algorithm greatly
outweighs the parallel algorithms presented by far, and thus it is an improved result
over the past researches. To our knowledge it is the first time that the knapsack-like
problems can be solved without memory conflicts with less than O(2n/2) running time
when the hardware is also much smaller than O(2n/2). Since it can solve problems that
are almost 1.5 times as big as those handled by previous algorithms, it has some im-
portance in research of cryptosystem.

References

1. Schroeppel, R., Shamir, A. A T = O(2n/2), S = O(2n/4) algorithm for certain NP-complete
problems. SIAM J. Comput, 1981,10(3):456-464.

2. Chor, B., Rivest, R.L. A knapsack–type public key cryptosystem based on arithmetic in fi-
nite fields. IEEE Trans. Inform. Theory, 1988,34(5):901-909.

3. Zhang, B., Wu, H.J., Feng, D.G, Bao, F. Cyptanalysis of a knapsack based two-lock
cryptosystem. ACNS 2004, Lecture Notes in Computer Science, Vol. 3089. Springer-
Verlag, Berlin Heidelberg New York (2004) 303-309.

4. Horowitz, E., Sahni, S. Computing partitions with applications to the knapsack problem. J.
ACM, 1974,21(2): 277-292.

5. Li, K.L, Li,Q.H., Dai, G.M. An adaptive algorithm for the knapsack problem. Journal of
Computer Development and Research, 2004,12(7): 1024-1029.

6. Karnin, E.D. A parallel algorithm for the knapsack problem. IEEE Trans, Comput, 1984,
33(5): 404-408.

7. Amirazizi, H.R., Hellman, M.E. Time-Memory-Processor trade-offs, IEEE Transactions
on Information Theory, 1988,34(3):505-512.

8. Ferreira, A.G. A parallel time/hardware tradeoff HT ⋅ = O(2n/2) for the knapsack problem.
IEEE Trans. Comput, 1991,40(2):221-225.

9. Chang, H.K.-C., Chen, J.J.-R., Shyu, S.-J. A parallel algorithm for the knapsack problem
using a generation and searching technique. Parallel Computing, 1994,20(2):233-243.

10. Lou, D.C., Chang, C.C. A parallel two-list algorithm for the knapsack problem. Parallel
Computing, 1997,22(14): 1985-1996.

11. Li, K.L, Li Q.H., Jiang, S.Y. An optimal parallel algorithm for the knapsack problem.
Journal of Software, 2003,14(5): 891-896. (in Chinese)

12. Aanches, C.A., Soma, N.Y., Yanasse, H.H. Comments on parallel algorithms for the knap-
sack problem. Parallel Computing, 2002,28(10): 1501-1505.

13. Li, K.L., Li, Q.H., Li, R.F. Optimal parallel algorithm for the knapsack problem without
memory conflicts. Journal of Computer Science and Technology. 2004,19(6): 760-768

14. Ferreira, A.G, Work and memory efficient parallel algorithms for the knapsack problem.
International Journal of High Speed Computing, 1995,7(4): 595-606.

15. Woeginger G.J. Space and time complexity of exact algorithms: some open problems. In:
R. Downey etc. Proceeding of IWPEC 2004, Lecture Notes in Computer Science, Vol.
3162. Springer-Verlag, Berlin Heidelberg New York (2004) 281–290.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 205 – 212, 2005.
© IFIP International Federation for Information Processing 2005

Improving Parallelism of Nested Loops
with Non-uniform Dependences

Sam Jin Jeong and Kun Hee Han

Division of Information and Communication Engineering,
Cheonan University Anseo-dong 115, Cheonan City, Korea 330-704

{sjjeong, hankh}@cheonan.ac.kr

Abstract. This paper defines the properties of FDT (Flow Dependence Tail set)
and FDH (Flow Dependence Head set), and presents two partitioning methods
for finding two parallel regions in two-dimensional solution space. One is the
region partitioning method by intersection of FDT and FDH. Another is the re-
gion partitioning method by two given equations. Both methods show how to
determine whether the intersection of FDT and FDH is empty or not. In the case
that FDT does not overlap FDH, we will divide the iteration space into two par-
allel regions by a line. The iterations within each area can be fully executed in
parallel. So, we can find two parallel regions for doubly nested loops with
non-uniform dependences for maximizing parallelism.

1 Introduction

The evolutionary transition from sequential to parallel computing offers the promise of
quantum leap in computing power [1]. In the past few years, many techniques for ex-
ploiting parallelism within nested loops have been developed, and they have been
automated and collected to form parallelizing compilers.

Example l.

do i = 1, 10
 do j = 1, 10
 A(2i+3, j+1) = . . .

 . . . = A(i+2j+1, i+j+1)
 enddo

enddo

Several works has been done for loops with non-uniform dependences, but show us
poor performance. Some techniques, based on Convex Hull theory [5] that has been
proven to have enough information to handle non-uniform dependences, are the
minimum dependence distance tiling method [4], the unique set oriented partitioning
method [3], and the three region partitioning method [2], [7].

Fig. 1(a) shows the dependence patterns of Example 1 in the iteration space.
This paper will focus on parallelization of flow and anti dependence loops with

non-uniform dependences. Especially, it shows us two partitioning methods to find two
parallel regions in doubly nested loops with non-uniform dependences.

206 S.J. Jeong and K.H. Han

��� �

 (a) (b)

Fig. 1. (a) Iteration Spaces (b) CDCH of Example 1

The rest of this paper is organized as follows. Chapter two describes our loop model,
and introduces the concept of Complete Dependence Convex Hull (CDCH). In chapter
three, we define the properties of FDT (Flow Dependence Tail set) and FDH (Flow
Dependence Head set), and show how to find FDT and FDH. We also present two
partitioning methods to find two parallel regions in the given space. Chapter four shows
comparison with related works. Finally, we conclude in chapter five with the direction
to enhance this work.

2 Program Model and Dependence Analysis

The loop model considered in this paper is doubly nested loops with linearly coupled
subscripts and both lower and upper bounds for loop variables should be known at
compile time. The loop model has the form in Fig. 2, where f1(I, J), f2(I, J), f3(I, J), and
f4(I, J) are linear functions of loop variables.

do I = l1, u1
 do J = l2, u2

A(f1(I, J), f2(I, J)) = . . .
 . . . = A(f3(I, J), f4(I, J))
 enddo

enddo

Fig. 2. A doubly nested loop model

The loop in Fig. 2 carries cross iteration dependences if and only if there exist four
integers (i1, j1, i2, j2) satisfying the system of linear diophantine equations given by (1)
and the system of inequalities given by (2). The general solution to these equations can
be computed by the extended GCD or the power test algorithm [6] and forms a DCH
(Dependence Convex Hull).

f1(i1, j1) = f3(i2, j2) and f2(i1, j1) = f4(i2, j2) (1)

l1 i1, i2 u1 and l2 j1, j2 u2 (2)

 Improving Parallelism of Nested Loops with Non-uniform Dependences 207

From (1), (i1, j1, i2, j2) can be represented as

 (i1, j1, i2, j2) = (g1(i2, j2), g2(i2, j2), g3(i1, j1), g4(i1, j1))

where gi are linear functions.
From (2), two sets of inequalities can be written as

l1 � i1 � u1 and l2 � j1 � u2 and�

l1 g3(i1, j1) u1 and l2 g4(i1, j1) u2

(3)

l1 � i2 � u1 and l2 � j2 � u2 and

l1 g1(i2, j2) u1 and l2 g2(i2, j2) u2
(4)

And, (3) and (4) form DCHs denoted by DCH1 and DCH2, respectively [3]. Clearly, if
we have a solution (i1, j1) in DCH1, we must have a solution (i2, j2) in DCH2, because
they are derived from the same set of equations (1). The union of DCH1 and DCH2 is
called Complete DCH (CDCH), and all dependences lie within the CDCH. Fig. 1(b)
shows the CDCH of Example 1.

If iteration (i2, j2) is dependent on iteration (i1, j1), then we have a dependence vector
d(i1, j1) = (di(i1, j1), dj(i1, j1)) = (i2-i1, j2-j1)

So, for DCH1, we have

di(i1, j1) = g3(i1, j1) - i1 = (11 - 1)i1 + 11j1 + ��� and

dj(i1, j1) = g4(i1, j1) - j1 = 12i1 + (12 - 1)j1 + ���

(5)

For DCH2, we have

di(i2, j2) = i2 - g1(i2, j2) = (1 - �21)i2 – �21j2 - ��� and�

dj(i2, j2) = j2 - g2(i2, j2) = - 22i2 + (1 - 22)j2 - ���

(6)

We can write these dependence distance functions in a general form as

d(i1, j1) = (di(i1, j1), dj(i1, j1)), d(i2, j2) = (di(i2, j2), dj(i2, j2))

di(i1, j1) = p1*i1 + q1*j1 + r1, dj(i1, j1) = p2*i1 + q2*j1 + r2

di(i2, j2) = p3*i2 + q3*j2 + r3, dj(i2, j2) = p4*i2 + q4*j2 + r4

(7)

where pi, qi, and ri are real values and i1, j1, i2, and j2 are integer variables of the iteration
space. The properties of DCH1 and DCH2 can be found in [3].

The set of inequalities and dependence distances of the loop in Example 1 are
computed as follows.

DCH1 : 1 � i1 � 10, 1 � j1 � 10

 1 � -2i1 + 2j1 - 2 � 10, 1 � 2i1 - j1 + 2 � 10
 di(i1, j1) = -3i1 + 2j1 - 2, dj(i1, j1) = 2i1 - 2j1 + 2
 DCH2 : 1 � i2/2 + j2 - 1 � 10, 1 � i2 + j2 � 10
 1 � i2 � 10, 1 � j2 � 10
 di(i2, j2) = i2/2 - j2 + 1, dj(i2, j2) = -i2

208 S.J. Jeong and K.H. Han

3 Region Partitioning Methods for Two Parallel Regions

In this section, we propose two partitioning methods to find two parallel regions in the
given space. One is the region partitioning method by intersection of FDT and FDH.
Another is the region partitioning method by two given equations. Both methods show
how to determine whether the intersection of FDT and FDH is empty or not.

3.1 Region Partitioning Method by Intersection of FDT and FDH

We define the flow dependence tail set (FDT) and the flow dependence head set (FDH)
as follows.

Definition 1. Let L be a doubly nested loop with the form in Fig. 2. If line di(i1, j1) = 0
intersects DCH1, the flow dependence tail set of the DCH1, namely FDT(L), is the
region H, where H is equal to

DCH1 {(i1, j1) | di(i1, j1) 0 or di(i1, j1) 0 } (8)

Definition 2. Let L be a doubly nested loop with the form in Fig. 2. If line di(i2, j2) = 0
intersects DCH2, the flow dependence head set of the DCH2, namely FDH(L), is the
region H, where H is equal to

DCH2 {(i2, j2) | di(i2, j2) 0 or di(i2, j2) 0 } (9)

Property 1. Suppose line di(i, j) = p*i+q*j+r passes through CDCH. If q > 0,
FDT(FDH) is on the side of di(i1, j1) 0 (di(i2, j2) 0), otherwise, FDT(FDH) is on the
side of di(i1, j1) 0 (di(i2, j2) 0).

We can form two regions, FDT and FDH, by the algorithm of finding FDT or FDH in
two-dimensional solution space in Fig. 3, which is similar to the algorithm presented
in [5].

Fig. 4 shows the head and tail sets of flow dependence, anti dependence, and FDH
and FDT of the loop in Example 1.

By Property 1, we can know the area of the flow dependence head set (FDH) of
DCH1 and the flow dependence tail set (FDT) of DCH2 in Example 1 as shown in Fig.
4. In this example, because the intersection of FDT and FDH is empty, FDT does not
overlap FDH and the iteration space is divided into two parallel regions by the line di(i2,
j2) = 0. From equation (7), we can get di(i2, j2) = i2/2 - j2 + 1, and the equation is j = i/2+1.
So, the iteration space is divided into two parallel regions, AREA1 and AREA2, by the
line j = i/2+1. The execution order is AREA1 AREA2.

Transformed loops are given as follows.

��/* AREA1 – parallel region */ /* AREA2 – parallel region */

doall�i�� �l1��u1 doall�i�� �l1��u1

����doall�j�� �max(l2, i/2+1), u2 doall j�� �l2��min(u2, i/2+1)
A(2i+3, j+1) = . . . A(2i+3, j+1) = . . .

 . . . = A(i+2j+1, i+j+1) . . . = A(i+2j+1, i+j+1)

enddoall enddoall
enddoall enddoall

 Improving Parallelism of Nested Loops with Non-uniform Dependences 209

Algorithm FDT (or FDH)
Input: A list of 9 half spaces (Def. 1 or 2)
Output: An FDT (or FDH);
 struct node {
 float (x, y);
 int zoom;
 struct node *next;
 struct node *prev; };
 max = 9999999;
BEGIN
Build the initial FDT (or FDH) ring which is composed of four
nodes:
 (x1, y1) = (max, max);
 (x2, y2) = (max, -max);
 (x3, y3) = (-max, -max);
 (x4, y4) = (-max, max);
 while (the input list is not empty)
 Pop a half space from the list, named HS;
 Scan the ring;
 { Determine the zoom value for each node; }
 if ((x, y) � HS) then
 zoom = 0;
 else
 zoom = 1;

if (the zoom is different from previous node)then
{ Compute the intersection point

 and give it zoom = 0;
 Insert it into the ring between the
 current node and the previous node };
 endif
 Scan the ring again;
 { Remove the nodes with zoom = 1 };
 if (the ring is empty) STOP;
 end while
END FDT

Fig. 3. Algorithm of finding FDT (or FDH) in two-dimensional solution space

�

 �

Fig. 4. FDT and FDH in Example 1

210 S.J. Jeong and K.H. Han

3.2 Region Partitioning Method by Two Given Equations

In our proposed algorithm in Fig. 5, Algorithm Region_Partition, we can determine
whether the intersection of FDT and FDH is empty by position of two given lines di(i1,
j1) = 0 and di(i2, j2) = 0, and two real values q1 and q3 given in (7). If the intersection of
FDT and FDH is not empty, we divide the iteration space into two parallel regions and
one serial region by two appropriate lines as given in the three region partitioning
method [2], [7]. If the intersection of FDT and FDH is empty, we divide the iteration
space into two parallel regions by the line di(i1, j1) = 0 or di(i2, j2) = 0.
�

Algorithm Region_Partition
INPUT: two lines (d

i
(i

1
, j

1
) = 0, d

i
(i

2
, j

2
) = 0) and two real values

(q
1
, q

3
)

OUTPUT: two parallel regions
BEGIN
If (line d

i
(i

1
, j

1
) = 0 is on the left side of line d

i
(i

2
, j

2
) =0)

 If (q
1
 > 0 and q

3
 < 0){

 /* AREA1 does not overlap AREA2 */
 AREA1: {(i

1
,

j
1
) | d

i
(i

1
, j

1
)

��0}

 AREA2: {(i
1
,

j
1
) | d

i
(i

1
, j

1
)

< 0} }

Else if (d
i
(i

1
, j

1
) = 0 is on the right side of d

i
(i

2
, j

2
) = 0)

 If (q
1
 < 0 and q

3
 > 0) {

 /* AREA1 does not overlap AREA2 */
 AREA1: {(i

1
,

j
1
) | d

i
(i

1
, j

1
)

� 0}

 AREA2: {(i
1
,

j
1
) | d

i
(i

1
, j

1
)

> 0} }

Else Call Three Region Partitioning Method
END Region_Partition

Fig. 5. Algorithm of determining the intersection of FDT and FDH

From property 1, we know that the real value q1(q3) determines whether the position
of FDT(FDH) is on side of the line di(i1, j1) 0 (di(i2, j2) 0) or not. The line is the
bounds of two parallel loops.

In this algorithm, the line di(i1, j1) = 0 is expressed by j = Ai+B , where A = (1 -

11)/ 11, B = -���/ 11, which are derived from (5). We know that the line can be the upper
or lower bound in the transformed loops based on the corresponding region of the loop
technique. The line di(i1, j1) = 0 is the upper boundary in AREA2 and lower boundary in
AREA1 in Example 1. In this case, the iteration space is divided into two parallel re-
gions, AREA1 and AREA2, by line j = 3/2*i+1 as shown in Fig 4. The execution order
is AREA1 � AREA2.

Transformed loops are loops are given as follows.

��/* AREA1 – parallel region */ /* AREA2 – parallel region */

doall�i�� �l1��u1 doall�i�� �l1��u1

����doall�j�� �max(l2, 3/2*i+1), u2 doall j�� �l2��min(u2, 3/2*i+1)
A(2i+3, j+1) = . . . A(2i+3, j+1) = . . .

 . . . = A(i+2j+1, i+j+1) . . . = A(i+2j+1, i+j+1)

enddoall enddoall
enddoall enddoall

 Improving Parallelism of Nested Loops with Non-uniform Dependences 211

4 Performance Analysis

Theoretical speedup for performance analysis can be computed as follows. Ignoring the
synchronization, scheduling and variable renaming overheads, and assuming an
unlimited number of processors, each partition can be executed in one time step. Hence,
the total time of execution is equal to the number of parallel regions, Np, plus the
number of sequential iterations, Ns. Generally, speedup is represented by the ratio of
total sequential execution time to the execution time on parallel computer system as
follows:

Speedup = (Ni * Nj)/(Np + Ns)

where Ni, Nj are the size of loop i, j, respectively

Fig. 6. Regions of the loop partitioned by the unique sets oriented partitioning in Example 1

By using an example given in Example 1, the unique set oriented partitioning
method [3] divides the iteration space into one parallel region, AREA2, and one serial
region, AREA1, as shown in Fig. 6. So, the speedup is (10*10)/(1+69) =1.4.

Applying the minimum dependence distance tiling method to this loop illustrates
case 2 of this technique [4], which is the case that line di(i, j) = 0 and dj(i, j) = 0 pass
through the IDCH. The minimum values of di(i, j), dimin, and dj(i, j), djmin, occur at the
extreme point (1, 1) and both dimin = 1 and djmin = 1. There is only serial region, and no
speedup for this method.

Our proposed two methods divide the iteration space into two parallel areas by line j
= 1/2*i+1 and line j = 3/2*i+1, respectively. The speedup for these methods is
(10*10)/2 = 50.

5 Conclusions

In this paper, we have studied the parallelization of flow and anti dependence loops
with non-uniform dependences to improve parallelism.

By variable renaming, there remains only flow dependence sets in the nested loop.
We then divide the iteration space into the flow dependence head and tail sets.

We defined the properties of FDT (Flow Dependence Tail set) and FDH (Flow
Dependence Head set), and show how to find FDT and FDH in two-dimensional solu-

212 S.J. Jeong and K.H. Han

tion space. We also present two partitioning methods to find two parallel regions in the
given space. One is the method by intersection of FDT and FDH. Another is the method
by two given equations. Both methods show how to determine whether the intersection
of FDT and FDH is empty or not. If FDT does not overlap FDH, a line di(i, j) = 0 be-
tween two sets divides the iteration space into two areas. The iterations within each area
can be fully executed in parallel. So, we can find two parallel regions for doubly nested
loops with non-uniform dependences.

In comparison with some previous partitioning methods, our proposed methods give
much better speedup and extract more parallelism than other methods in the case which
FDT does not overlap the FDH. Our future research work is to develop a method for
improving parallelization of higher dimensional nested loops.

References

1. V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel Computing, The
Benjamin/Cummings Publishing Company, Inc., 1994.

2. C. K. Cho and M. H. Lee, "A loop parallelization method for nested loops with non-uniform
dependences", in Proceedings of the International Conference on Parallel and Distributed
Systems, pp. 314-321, December 10-13, 1997.

3. J. Ju and V. Chaudhary, "Unique sets oriented partitioning of nested loops with non-uniform
dependences," in Proceedings of International Conference on Parallel Processing, vol. III,
pp. 45-52, 1996.

4. S. Punyamurtula and V. Chaudhary, "Minimum dependence distance tiling of nested loops
with non-uniform dependences," in Proceedings of Symposium on Parallel and Distributed
Processing, pp. 74-81, 1994.

5. T. Tzen and L. Ni, "Dependence uniformization: A loop parallelization technique," IEEE
Transactions on Parallel and Distributed Systems, vol. 4, no. 5, pp. 547-558. May 1993.

6. M. Wolfe and C. W. Tseng, "The power test for data dependence," IEEE Transactions on
Parallel and Distributed Systems, vol. 3, no. 5, pp. 591-601, September 1992.

7. A. Zaafrani and M. R. Ito, "Parallel region execution of loops with irregular dependences," in
Proceedings of the International Conference on Parallel Processing, vol. II, pp. 11-19, 1994.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 213 – 220, 2005.
© IFIP International Federation for Information Processing 2005

A Static Data Dependence Analysis Approach
for Software Pipelining

Lin Qiao, Weitong Huang, and Zhizhong Tang

Department of Computer Science and Technology,
Tsinghua University, Beijing, 100084, PR China

{qiaolin, hwt}@cic.tsinghua.edu.cn, tzz-dcs@tsinghua.edu.cn

Abstract. This paper introduces a new static data dependence constraint, called
dependence difference inequality, which can deal with coupled subscripts for
multi-dimensional array references. Unlike direction vectors, dependence
difference inequalities are related to not only the iteration space for a loop
program but also the operation distance between two operations. They are more
strict than other methods, and can act as additional constraints to each variable
in a linear system on their own or with others. As a result, the solution space for
a linear system can be compressed heavily. So long as dependence difference
inequalities do not satisfy simultaneously, the loop can be software-pipelined
with any initiation interval even if there exists a data dependence between two
operations. Meanwhile, by replacing direction vectors with dependence
difference inequalities some conservative estimations made by other traditional
data dependence analysis approaches can be eliminated.

1 Introduction

Data dependence analysis plays an important role in automatic detection of implicit
parallelism in programs written in conventional sequential languages. Dependence
analysis techniques estimate, at compile-time, the run-time interactions between
different operations or between different instances of the same operation [1].

It is at the core of data dependence analysis strategies to estimate data dependence
between two operations in which multi-dimensional array references are involved.
General speaking, the question of whether multi-dimensional array references with
coupled linear subscripts can be parallelized depends upon the resolution of multi-
dimensional array aliases. The resolution of multi-dimensional array aliases is to
ascertain whether or not the two references to the same multi-dimensional array
within a general [nested] loop can refer to the same element of that multi-dimensional
array [2].

The paper focuses on a new data dependence analysis technique for an interlaced
inner and outer loop software pipelining algorithm. Our approach, called dependence
difference inequalities, can deal with coupled subscripts for multi-dimensional array
references statically. This paper is organized as follows. Section 2 introduces related
work and background, while Section 3 discusses dependence difference inequalities.
Section 4 draws a conclusion.

214 L. Qiao, W. Huang, and Z. Tang

2 Related Work and Background

This section introduces a novel software pipelining algorithm and gives a brief
description of data dependence analysis techniques.

2.1 Interlaced Inner and Outer Loop Software Pipelining Algorithm

Software pipelining algorithms currently pursued in the world exploit the instruction-
level parallelism of loop program by overlapping the operations of different loop
bodies. Using software pipelining, a loop is transformed into a semantics-equivalent
program consisting of a new loop, a prologue and an epilogue.

Several effective software pipelining algorithms have been presented to optimize
innermost loops, such as Modulo Scheduling [3] and GURPR* [4]. In most cases,
however, actual programs always contain nested loops. Optimization performance of
existed algorithms is fairly insufficient when they are used to optimize nested loop
programs, so it is the key to develop new algorithms that can efficiently optimize
these nested loop programs.

Interlaced inner and outer Loop Software Pipelining (ILSP) is an efficient
algorithm that can optimize operations in nested loops with various loop structures. In
order to make the ILSP algorithm work efficiently and correctly, corresponding
control mechanism, which combines software pipelining techniques with several
hardware features, is introduced in [5]. In [6], Rong and his co-operators introduces a
single-dimension software pipelining algorithm, which can be outlined as a brief
version of the ILSP algorithm. Their algorithm chooses the most profitable loop level
in the loop nest and software-pipelines it, which has been implemented as a tool set
on an IA-64 Itanium workstation.

The ILSP algorithm is different from any traditional software pipelining algorithms
of nested loops. ILSP does not execute the nested loops in the traditional sequence of
completing the inner loop first and then executing the outer loop. It breaks the
boundary of the different loop bodies of the nested loop, and can overlap the inner
loop bodies of different outer loop bodies. Thus, ILSP makes it possible to optimize
nested loops with various loop structures.

Consider the nested loop example as shown in Fig. 1. It can be performed well
using the ILSP, as shown in Table 1.

By the example, we can describe the basic principle of the ILSP as follows. The
ILSP is a software pipelining algorithm that is suitable for the nested loops with
various loop structures. When each loop body of the nested loops is pipelined, the
ILSP pipelines the nested loop as if the inner loops of this loop were executed only
once. Whenever a new execution pattern made up of operations of an inner loop
appears, in other words, the inner loop becomes active, the execution of the outer loop
will be temporarily stopped. At this moment the software pipelining of the inner loop
will be continuously executed until it is ready to enter its epilogue stage and to return
to its outer loop or until another inner loop becomes active. When the inner loop
begins to execute, the outer loop gives all its function units to the inner loop, and
when the inner loop is completed, it will give all function units back to the outer loop,
and the execution of the outer loop will be continued.

 A Static Data Dependence Analysis Approach for Software Pipelining 215

In one word, the foundation of the ILSP algorithm is to perform the nested loops as
a whole. In order to form an effective pipeline along different loop bodies of the
nested loop, it is very necessary to feed it with enough operations. A data dependence
analysis approach has to meet the demand.

for(i=1; i<=n; i++){
 op1;
 for(j=1; j<=m; j++){
 op2;
 op3;
 op4;
 }
 op5;
}

 op1

(a) A Loop Program (b) Data Dependence Graph

 op2

 op3

 op4

 op5

Fig. 1. A nested loop example

Table 1. Execution result of the example

Clock Operations Comments
0 op1(1,−) Prologue of the outer loop begins
1 op1(2,−) op2(1,1) Prologue of the inner loop begins
2 op1(3,−) op2(2,1) op3(1,1)
3 op1(4,−) op2(3,1) op3(2,1) op4(1,1) The inner becomes active; switches to it
4 op2(1,2) op3(3,1) op4(2,1) The inner executes; the outer pauses
5 op2(2,2) op3(1,2) op4(3,1)
… … … … …
3m op2(3,m) op3(2,m) op4(1,m) The inner completes; system returns
3m+1 op1(5,−) op2(4,1) op3(3,m) op4(2,m) op5(1,−) The first epilogue of the inner begins
3m+2 op1(6,−) op2(5,1) op3(4,1) op4(3,m) op5(2,−) Epilogue of the outer begins
3m+3 op1(7,−) op2(6,1) op3(5,1) op4(4,1) op5(3,−) The second epilogue of the inner begins
3m+4 op2(4,2) op3(6,1) op4(5,1) The inner executes again; the outer pauses
… … … … … …
nm op2(n,m) op3(n−1,m) op4(n−2,m)
nm+1 op3(n,m) op4(n−1,m) op5(n−2,−)
nm+2 op4(n,m) op5(n−1,−)
nm+3 op5(n,−)

Epilogue of the whole nested loop

2.2 Data Dependence Analysis

Suppose op1 and op2 be two operations within a n-nested loop which refer to a m-
dimensional array simultaneously. Each iteration of the loop is identified by an
iteration vector whose elements are the values of the iteration variables for that
iteration. We have

Definition 1. Let op1(i) and op2(j) respectively denote the instance of the operation
op1 during the iteration i = (i1, i2, …, in) and that of the operation op2 during the

216 L. Qiao, W. Huang, and Z. Tang

iteration j = (j1, j2, …, jn). There exists an partial order between the two operation
instances, op1(i) < op2(j), if (a) for given an r where 1 ≤ r ≤ min{m, n}, ir = jr and ik ≤
jk (1 ≤ k < r) hold, or (b) for m ≤ n, ir = jr (1 ≤ r ≤ m) holds.

Practically an partial order op1(i) < op2(j) means that op1(i) precedes op2(j). If the
instance of the operation op2(j) uses the element of the array defined first by the
instance of the operation op1(i), then op2(j) is true-dependent or write-read-dependent
on op1(i). If the instance of the operation op2(j) defines the element of the array used
first by the instance of the operation op1(i), then op2(j) is anti-dependent or read-write-
dependent on op1(i). If the instance of the operation op2(j) redefines the element of the
array defined first by the instance of the operation op1(i), then op2(j) is output-
dependent or write-write-dependent on op1(i).

In general, suppose the n-nested loop have linear lower bounds and upper bounds,
fk denote the lower bound function for the k-th level nested loop, and gk the upper
bound function. It is obvious that fk ≤ ik, jk ≤ gk, 1 ≤ k ≤ n, hold simultaneously. By
replacing ik with x2k−1 and jk with x2k, the problem mathematically can be reduced to
that of checking whether or not a system of m linear equations with 2n unknown
variables has a simultaneous integer solution, which satisfies the constraints for each
variable in the system. The m linear equations in the system can be written as

1,0 1,1 1 1,2 2 1,2 2

2,0 2,1 1 2,2 2 2,2 2

,0 ,1 1 ,2 2 ,2 2

... 0

... 0

... 0

n n

n n

m m m m n n

a a x a x a x

a a x a x a x

a a x a x a x

+ + + + =
+ + + + =

+ + + + =
K

 (1)

where each ai, j is a constant integer for 1 ≤ i ≤ m and 1 ≤ j ≤ 2n. i = (x1, x3, …, x2n−1)
and j = (x2, x4, …, x2n) denote two iteration vectors, op1(i) and op2(j), respectively.
Constraints to each variable in Eq. (1) can be represented as

1,0 1 2 1,0

1 1

,0 , 2 1 1 3 2 3 2 1 1 3 2 3 ,0 , 2 1
1 1

1 1

,0 , 2 2 4 2 2 2 2 4 2 2 ,0 , 2
1 1

,

(, ,...,) (, ,...,) , 2

(, ,...,) (, ,...,) , 2

k k

k k s s k k k k k k k s s
s s

k k

k k s s k k k k k k k s s
s s

P x x Q

P P x f x x x x g x x x Q Q x k n

P P x f x x x x g x x x Q Q x k n

− −

− − − − −
= =
− −

− −
= =

≤ ≤

+ = ≤ ≤ = + ≤ ≤

+ = ≤ ≤ = + ≤ ≤

 (2)

where Pr,0, Qr,0, Pr,s, Qr,s are constant integers for 1 ≤ r ≤ n. If each of Pr,s and Qr,s is
zero, the Eq. (2) will be reduced to

,0 2 1 2 ,0, , 1k k k kP x x Q k n−≤ ≤ ≤ ≤ . (3)

That is, the bounds for each variables are constants.

Definition 2. A vector of the form e = (e1, e2, …, en) is termed a direction vector from
op1(i) to op2(j) if for 1 ≤ k ≤ d, ik ek jk, i.e., the relation ek is defined by

if

if

if

* any one of { , , }

k k

k k
k

k k

i j

i j
e

i j

< <
= =

=
> >

< = >

. (4)

 A Static Data Dependence Analysis Approach for Software Pipelining 217

There are several well-known data dependence analysis algorithms exploited for
practical parallelizing compilers. The Banerjee Inequalities can handle one linear
equation under the bounds of Eq. (3) and Eq. (4), and the Banerjee Algorithm can
deal with one linear equation under the bounds of Eq. (2) and Eq. (4) [7]. When
applied to practical cases, the Banerjee Test (the Banerjee Inequalities and the
Banerjee Algorithm) may lose accuracy. The I Test and the Direction Vector I Test
are a combination of the Banerjee inequalities and the GCD Test [8] [9]. They
determine integer solutions for a linear equation with constant bounds and given
direction vectors. The Lambda Test extends the Banerjee Inequalities to allow m
linear equations in Eq. (1) under the constraints of Eq. (3) and Eq. (4) to be tested
simultaneously [10]. And the Generalized Lambda Test allows m linear equations in
Eq. (1) under the constraints of Eq. (2) and Eq. (4) to be tested simultaneously [2].
More precise results can be obtained by judging the consistency of a linear system of
equations and inequalities inexpensively.

All of above data dependence analysis methods, however, are exploited for general
parallelizing compilers, and they ignore the fact that the software pipelining technique
per se has an impact on instruction-level parallelism. The next section will prove that
for instruction-level parallelizing compilers more interesting results can be achieved
under additional constraints of dependence difference inequalities.

3 Dependence Difference Inequalities

This section introduces a kind of additional constraints, called dependence difference
inequalities, for software pipelining techniques. Under these additional constraints the
solution space for a linear system can be compressed heavily.

3.1 Relationship Between Software Pipelining and Data Dependence

In general, the ILSP algorithm overlaps adjacent iterations of a nested loop program.
The initiation interval of these adjacent iterations, denoted by II, is only restricted by
resource limit, denoted by IIres, and sequential semantics of the loop program, denoted
by IIsem, i.e., II = max{IIres, IIsem}. For the sake of clarity the paper only concentrates
on IIsem since IIres can always be released by using more function units.

Definition 3. Let op1 and op2 be two operations of a loop program. The number of
operations between op1 and op2 plus 1 is referred to as operation distance, denoted by
dis(op1, op2).

Definition 4. If op2(j) is dependent on op1(i), i = (x1, x3, …, x2n−1) and j = (x2, x4, …,
x2n), then i − j = (x1 − x2, x3 − x4, …, x2n−1 − x2n) is referred to as dependence difference
vector, denoted by dif(op1, op2), and ik − jk = x2k−1 − x2k is referred to as the
dependence difference in the k-th level nested loop, denoted by difk(op1, op2). If
difk(op1, op2) = 0 then op2(j) is intra-loop-dependent on op1(i) otherwise inter-loop-
dependent.

For the ILSP algorithm intra-loop-dependences have no impact on IIsem but those
inter-loop-dependences may make a strong impact on IIsem.

218 L. Qiao, W. Huang, and Z. Tang

Lemma 1 [11]. Let op1 and op2 be two operations, both belonging to the same k-th
level nested loop. If 0 < difk(op1, op2) ≤ dis(op1, op2) does not hold, then the loop
program can be software-pipelined with IIsem = 1.

Lemma 1 shows that the loop program can not be software-pipelined with IIsem = 1
where 0 < difk(op1, op2) ≤ dis(op1, op2) holds. However, it does not imply that the loop
program can not be software-pipelined with a greater one.

Definition 5. An inequality of the form 1 ≤ difk(op1, op2) ≤ dis(op1, op2) is termed a
dependence difference inequality for 1 ≤ k ≤ n.

Theorem 1 [11]. Let op1 and op2 be two operations, both belonging to the same n-
nested loop program whose loop labels are denoted by L1, L2, …, Ln in turn. The loop
can be software-pipelined with any value of initiation interval if the following
dependence difference inequalities

1 ≤ difk(op1, op2) ≤ dis(op1, op2), 1 ≤ k ≤ n, (5)

do not satisfy simultaneously.
Theorem 1 implies that dependence difference inequalities can act as, on their own

or with other constraints, additional constraints to each variable in a linear system. If
there does not exist any integer solution for the linear system under these constraints,
the loop can be software-pipelined with IIsem = 1 even if a data dependence between
two operations exists.

3.2 Dependence Difference Inequalities vs. Direction Vectors

In general, a direction vector e = (e1, e2, …, en) bounds the solution space for a linear
system with ik < jk or ik > jk for 1 ≤ k ≤ n. ik = jk means two operations are intra-loop-
dependent on each other, and thus the dependence can be ignored when the loop is
software-pipelined by the ILSP algorithm.

Suppose ik > jk. When using a direction vector as a constraint we have fk(x2, x4, …,
x2n) ≤ jk < ik ≤ gk(x1, x3, …, x2n−1), i.e.,

1 ≤ ik − jk ≤ gk(x1, x3, …, x2n−1) − fk(x2, x4, …, x2n). (6)

On the other hand, by using dependence difference inequalities as constraints we have

1 ≤ ik − jk ≤ dis(op1, op2). (7)

It is shown that dependence difference inequalities are more strict than direction
vectors since in most cases gk(x1, x3, …, x2n−1) − fk(x2, x4, …, x2n), as an iteration
counter, is far greater than dis(op1, op2). In one word, these dependence difference
inequality constraints make our data dependence analysis algorithm more powerful.

Table 2 gives a practical loop example where op2 is anti-dependent on op1 and
dis(op1, op2) = 3. The corresponding data dependence equation of the loop program is
2i1 + 1 = j1, i.e., 2i1 − j1 = −1. Because gcd(2, 1) = 1, the GCD Test draws a conclusion
that op1 is dependent on op2 and the loop can not be parallelized. On the other hand, it
can be derived that −90 ≤ 2i1 − j1 ≤ 195 from 5 ≤ i1, j1 ≤ 100, namely, −90 ≤ −1 ≤ 195,
which makes the Banerjee Test also draws a conclusion that the loop can not be

 A Static Data Dependence Analysis Approach for Software Pipelining 219

parallelized. Furthermore, when a direction vector i1 < j1 is applied we first have −95
≤ i1 − j1 ≤ −1, and second −106 ≤ i1 − j1 ≤ −6 from i1 − j1 = −i1 − 1. The Banerjee Test
still draws the same conclusion since the interaction of the solution spaces for the two
inequalities is not empty.

Table 2. Dependence difference inequalities are more strict tha`n direction vectors

Iteration
Clock

i = 5 i = 6 i = 7 i = 8
1 X=A[11];
2 Y=X+5; X=A[13];
3 Z=Y*3; Y=X+5; X=A[15];
4 A[5]=Z; Z=Y*3; Y=X+5; X=A[17];

5 A[6]=Z; Z=Y*3; Y=X+5;

6 A[7]=Z; Z=Y*3;

for(L1=5;L1<=100;++L1)
{
 op1: X = A[2L1+1];
 Y = X + 5;
 Z = Y * 3;
 op2: A[L1] = Z;
}

7 A[8]=Z;
(a) A loop program (b) Correct software pipelining with IIsem = 1

When replacing the direction vector with a dependence difference inequality, we
can clearly find the interaction of the solution spaces for the two inequalities, 1 ≤ i1 −
j1 ≤ dis(op1, op2) = 3 and −106 ≤ i1 − j1 ≤ −6, is empty. Thus our data dependence
analysis algorithm determines that the loop can be paralleled, as shown in Table 2.

4 Conclusion

This paper has presented a new static data dependence analysis approach, called
dependence difference inequality, for our software pipelining algorithm ILSP for
nested loops. Our data dependence analysis approach can deal with coupled subscripts
for multi-dimensional array references statically.

Conceptually, unlike a direction vector, a dependence difference inequality is not
only related to the iteration space for a loop program but also related to the operation
distance between two operations. Dependence difference inequalities can act as
additional constraints to each variable in a linear system on their own or with other
constraints, such as direction vectors. They are more strict than a direction vector and
make our data dependence analysis algorithm more powerful. As a result, the solution
space for the linear system can be compressed heavily.

Under constraints of dependence difference inequalities, so long as these
inequalities do not satisfy simultaneously, the loop can be software-pipelined with
any value of initiation interval even though there exists a data dependence between
two operations. The paper has also shown that some conservative estimations made
by other traditional data dependence analysis approaches can be eliminated by
replacing a direction vector with a dependence difference inequality.

Further experimental results are reported in [12]. On the other hand, a dynamic
data dependence analysis approach is presented in [13], which can work with this
method together to coping with data dependencies for software pipelining.

220 L. Qiao, W. Huang, and Z. Tang

Acknowledgement

This work was partially supported by National Nature Science Foundation, grant
number 60173010, of P. R. China.

References

1. Petersen, P. M., Padua, D. A.: Static and Dynamic Evaluation of Data Dependence
Analysis Techniques. IEEE Transactions on Parallel and Distributed Systems 7 (1996)
1121–1132

2. Chang, W. L., Chu, C. P., Wu, J.: The Generalized Lambda Test: A Multi-Dimensional
Version of Banerjee’s Algorithm. International Journal of Parallel and Distributed Systems
and Networks 2 (1999) 69–78

3. Rau, B.R.: Iterative Modulo Scheduling. Technical Report HPL-94-115. Hewlett-Packard
Laboratory, Palo Alto, CA (1994)

4. Su, B., Ding, S., Wang, J., Xia, J.: GURPR — A Method for Global Software Pipelining.
ACM SIGMICRO Newsletter 19 (1988) 32–36

5. Qiao, L., Tang, Z. Z., Wang, S. Y.: Control Strategies of Software Pipelining: Dealing
with the Prologue and the Epilogue of Nested Loops. In: Zhou, X., Xu, M., Lou, S., Yang,
X. (eds.): Proceedings of the 3rd Workshop on Advanced Parallel Processing
Technologies, 19-21 Oct. 1999, Changsha, China. Publishing House of Electronics
Industry, Beijing (1999) 177–181

6. Rong, H. B., Tang, Z. Z., Govindarajan, R., Douillet, A., Gao, G. R.: Single-Dimension
Software Pipelining for Multi-Dimensional Loops. In: Proceedings of the 2nd IEEE/ACM
International Symposium on Code Generation and Optimization, 21-24 Mar. 2004, San
Jose, CA. IEEE Computer Society, Los Alamitos, CA (2004) 163–174

7. Banerjee, U.: Dependence Analysis. Kluwer Academic Publishers, Norwell MA (1997)
8. Kong, X, Klappholz, D., Psarris, K.: The I Test. IEEE Transactions on Parallel and

Distributed System 2 (1991) 342–359
9. Kong, X, Klappholz, D., Psarris, K.: The Direction Vector I Test. IEEE Transactions on

Parallel and Distributed System 4 (1993) 1280–1290
10. Li, Z., Yew, Y. C., Zhu, C. Q.: An Efficient Data Dependence Analysis for Parallelizing

Compilers. IEEE Transactions on Parallel and Distributed System 1 (1990) 26–34
11. Qiao, L.: On Data Dependencies in Software Pipelining. Doctorial Dissertation,

Department of Computer Science, Tsinghua University, Beijing (2001)
12. Qiao, L., Huang, W. T., Tang, Z. Z.: Coping with Data Dependencies of Multi-

Dimensional Array References. In: Jin, H., Reed, D., Jiang, W. (eds.): Proceedings of IFIP
International Conference on Network and Parallel Computing, Beijing, Lecture Notes in
Computer Science. Springer-Verlag, Berlin Heidelberg New York (2005) accepted by
NPC'05

13. Qiao, L., Huang, W. T., Tang, Z. Z.: A Dynamic Data Dependence Analysis Approach for
Software Pipelining. In: Jin, H., Reed, D., Jiang, W. (eds.): Proceedings of IFIP
International Conference on Network and Parallel Computing, Beijing, Lecture Notes in
Computer Science. Springer-Verlag, Berlin Heidelberg New York (2005) accepted by
NPC'05

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 221 – 228, 2005.
© IFIP International Federation for Information Processing 2005

A Dynamic Data Dependence Analysis Approach
for Software Pipelining

Lin Qiao, Weitong Huang, and Zhizhong Tang

Department of Computer Science and Technology, Tsinghua University,
Beijing, 100084, PR China

{qiaolin, hwt}@cic.tsinghua.edu.cn, tzz-dcs@tsinghua.edu.cn

Abstract. This paper presents a run-time pointer aliasing disambiguation
method for software pipelining techniques. By combining hardware with
software, the method is better than run-time checking method or run-time
compensation method, which is capable of dealing with irreversible code, and
has limited compensation code space without serious rerollability problem. The
new method solves pointer aliasing problem efficiently and makes it possible to
obtain potential instruction-level parallel speedup. In this paper instruction-level
parallel speedups of the new method are analyzed in detail. Three theoretical
speedups, i.e., general speedup, probabilistic speedup and mean speedup with
probability, are given, which will be helpful for studying and evaluating
instruction-level parallelism of the new method.

1 Introduction

To exploit instruction-level parallelism (ILP), compilers for a very-long instruction
word (VLIW) machine often employ static code scheduling and software pipelining
[1] [2] [3] [4]. It is, however, restricted by ambiguous dependencies between memory
fetches. Even though great progress has been made in the analysis of static aliases
among arrays, analysis of pointer aliasing is a formidable task for most compilers. In
order to solve this key problem to achieving the potential speedup in instruction-level
parallel processing, two types of run-time disambiguation (RTD) methods, i.e., run-
time checking and run-time compensation, have been presented in [5].

When applying both of the run-time disambiguation methods to software
pipelining, however, the run-time compensation approach allows speculative memory
fetch but is suitable only for reversed code, while the run-time checking approach can
be used for any code but has serious rerollability problem. Moreover, both of the run-
time disambiguation methods have code space problem. In particular, when applying
run-time disambiguation to global software pipelining the space of compensation
code could be tremendous.

Followed Su and his co-operators [6], the paper presents a new hardware/software
combined method. The basic ideas are as follows. First, during run time, let the
function units execute NOP operations instead of using compensation code to
implement the postponement of the incorrect memory load operation and its
successive operations. Second, to guarantee the consistency of the execution sequence
of all postponed operations, the order of function units that execute NOPs and the
number of NOPs must be determined during compiler time.

222 L. Qiao, W. Huang, and Z. Tang

This paper is organized as follows. Section 2 discusses the hardware support for
the RTPAD method before how to use the RTPAD method is discussed by a sample
example in detail in Section 3. Section 4 presents three theoretical parallel speedups
and analyzes the example. Section 5 gives some experimental results while Section 6
draws conclusions.

2 Hardware Architecture

Fig.1 illustrates a hypothetical VLIW architecture that has ten function units: two
ALU, two multipliers (MUL), two memory ports (MEM), and four branch-and-loop-
control units (BRLC). In addition, the hardware support of the RTPAD method
includes an instruction buffer (IB) storing postponed operations, a multiplexer set
(MUX) selecting operations from regular instruction memory or from instruction
buffer, an RTPAD control instruction buffer, and a read register called RTPAD
WORD. This VLIW processor is capable of starting four integer operations, two
memory operations, and four branch operations every cycle.

MUX

Control Instruction Buffer

Instruction Buffer (IB)

Instruction Memory (IM)

ALU1 BRLCsMEM1 MEM2MUL2MUL1ALU2

RTPAD WORDRTPAD

Fig. 1. Hardware support for the RTPAD method

3 Using the RTPAD Method

The RTPAD method has been used for software pipelining of non-loop programs in
[7] [8] [9]. This paper extends the work by using it for software pipelining of loop
programs.

Table 1 and Table 2 illustrates how to use the RTPAD method for software
pipelining algorithms. Fig. 2 shows the original code and Fig. 3 shows the modified
code into which RTPAD operations are inserted.

Because the software pipelining algorithm overlaps several iterations, some
RTPAD operations are inserted before the ambiguous load operation as shown in
Fig. 3. Table 1 shows the normal execution sequence of the result of software
pipelining when no address conflict is detected, where opi

(j) denotes operation opi
belongs to the j-th iteration of the loop.

 A Dynamic Data Dependence Analysis Approach for Software Pipelining 223

Table 1. The result of software pipelining without address conflicts

CLK ALU1 ALU2 MUL1 MUL2 MEM1 MEM2 BRLC0 BRLC1 BRLC2
1 op1

(1)
2 op1

(2) op5
(1) RTPAD(op5

(2), op8
(1))

3 op6
(1) op1

(3) op5
(2) RTPAD(op5

(3), op8
(1)) RTPAD(op5

(3), op8
(2))

4 op6
(2) op7

(1) op1
(4) op5

(3) RTPAD(op5
(4), op8

(1)) RTPAD(op5
(4), op8

(2)) RTPAD(op5
(4), op8

(3))
5 op6

(3) op7
(2) op1

(5) op5
(4) op8

(1) RTPAD(op5
(5), op8

(2)) RTPAD(op5
(5), op8

(3)) RTPAD(op5
(5), op8

(4))
6 op6

(4) op7
(3) op1

(6) op9
(1) op5

(5) op8
(2) RTPAD(op5

(6), op8
(3)) RTPAD(op5

(6), op8
(4)) RTPAD(op5

(6), op8
(5))

7 op6
(5) op7

(4) op1
(7) op9

(2) op5
(6) op8

(3) RTPAD(op5
(7), op8

(4)) RTPAD(op5
(7), op8

(5)) RTPAD(op5
(7), op8

(6))
8 op6

(6) op7
(5) op1

(8) op9
(3) op5

(7) op8
(4) RTPAD(op5

(8), op8
(5)) RTPAD(op5

(8), op8
(6)) RTPAD(op5

(8), op8
(7))

9 op6
(7) op7

(6) op1
(9) op9

(4) op5
(8) op8

(5) RTPAD(op5
(9), op8

(6)) RTPAD(op5
(9), op8

(7)) RTPAD(op5
(9), op8

(8))

Table 2. An address conflict between op5
(6) and op8

(4) is detected

CLK ALU1 ALU2 MUL1 MUL2 MEM1 MEM2 BRLC0 BRLC1 BRLC2
6 op6

(4) op7
(3) op1

(6) op9
(1) op5

(5) op8
(2) RTPAD(op5

(6), op8
(3)) RTPAD(op5

(6), op8
(4)) RTPAD(op5

(6), op8
(5))

7 op6
(5) op7

(4) op9
(2) op8

(3) RTPAD(op5
(7), op8

(4)) RTPAD(op5
(7), op8

(5)) RTPAD(op5
(7), op8

(6))
8 op7

(5)
NOP
NOP op9

(3)
NOP
NOP Op8

(4) RTPAD(op5
(8), op8

(5)) RTPAD(op5
(8), op8

(6)) RTPAD(op5
(8), op8

(7))
9

NOP
NOP op1

(7) op5
(6)

10 op6
(6)

NOP
NOP op1

(8)
NOP
NOP op5

(7)
NOP
NOP

NOP
NOP

NOP
NOP

NOP
NOP

11 op6
(7) op7

(6) op1
(9) op9

(4) op5
(8) op8

(5) RTPAD(op5
(9), op8

(6)) RTPAD(op5
(9), op8

(7)) RTPAD(op5
(9), op8

(8))

for(i=0; i<n; i++)
{
 R2 = 2 * R1

 R1 = M(P)
 R4 = R2 – R1

 R4 = R4 + R3

 M(Q) = R6

 R7 = R4 * R5

}

for(i=0; i<n; i++)
{
op1: R2 = 2 * R1

op2: RTPAD
op3: RTPAD
op4: RTPAD
op5: R1 = M(P)
op6: R4 = R2 – R1

op7: R4 = R4 + R3

op8: M(Q) = R6

op9: R7 = R4 * R5

}

Fig. 2. Th eoriginal code Fig. 3. After RTPAD inserted

The prologue stage of the loop is from cycle 1 to cycle 5, and the pipelining stage
of the loop begins from cycle 6. In Table 1, each VLIW instruction executes 6
operations belonging to adjoining iterations, namely, it takes a VLIW CPU one cycle
to complete an iteration of the loop. Assume that l be the loop length and n be the
loop counter. If n >> l, the corresponding parallel speedup is l approximately.

Three RTPAD operations are inserted to determine whether memory address
conflict between the ambiguous load operation of the iteration and store operations of
previous three iterations, respectively. As Table 2 shows, all operations at cycle 11
are the same as original run-time VLIW code at cycle 9, which means that all
operations within cycle 7 and cycle 8 in Table 1 are performed within cycle 7 to cycle
10 in Table 2. All data dependencies of these operations are guaranteed by the order
of inserted NOP operations. The RTPAD method totally needs two extra cycles to
complete compensation NOP operations, which is equal to the compensation code
measure, when the address conflict is detected.

It takes a sequential CPU 6n cycles to execute the original code as shown in Fig. 2.
When the RTPAD method is used, it takes a VLIW CPU n cycles to execute the

224 L. Qiao, W. Huang, and Z. Tang

corresponding VLIW code in parallel if no address conflict is detected. Thus, the
speedup of the VLIW code is 6 approximately.

4 Theoretical Speedups

Because of the indeterminacy of parallel execution of programs, it is very difficult to
precisely analyze the complexity and code space of the final VLIW code. The results
we obtained are related to probabilities of events that address conflicts occur.

For the sake of clarity, assume that (a) all operations complete within one cycle,
(b) all PEs share only one memory bank, and (c) each of PEs have a memory read
unit, a memory load unit and four BRLC units. Proofs of theorems can be found
in [8].

Definition 1. Let op1 and op2 be two operations of a program. The number of
operations between op1 and op2 plus 1 is referred to as operation distance, denoted by
dis(op1, op2).

Definition 2. Let op1 and op2 be two operations of a VLIW program, and operation
op1 executes before operation op2 in the original sequential code. If op1 and op2 have
been arranged and the number of VLIW instructions between these two operations is
N, arrangement distance of these two operations, denoted by d(op1, op2), is

1 2

1 2 1 2

1, if executes before ,

(,) 1 if executes after ,

0 otherwise.

N op op

d op op N op op

+
= − − �
�

 (1)

Definition 3. Let op1 and op2, respectively, be two ambiguous store and load
operations. Let the arrangement distance d(op1, op2) < 0. When an address conflict is
detected during run-time, some NOP operations are inserted to implement the
postponement of the incorrect memory load operation and its successive operations.
The number of inserted NOP operations is called compensation code measure,
denoted by Ω.

Definition 4. The duration when compensation NOP operations are executed before
op2 is referred to as pre-compensation period, denoted by D1. Similarly, the duration
when compensation NOP operations are executed after op1 is referred to as post-
compensation period, denoted by D2.

Given a loop program, an operation has different arrangement place in different
iterations. The following definition presents specific arrangement information of
operations in different iterations.

Definition 5. For any op1 and op2 belonging to a loop whose loop counter is n,
suppose that op1

(k) and op2
(j) denote the k-th iteration of op1 and the j-th iteration of

op2, respectively, where 1 ≤ j ≤ n and 1 ≤ k ≤ n. If j ≠ k, d(op1
(k), op2

(j)) is referred to as
inter-body arrangement distance. Otherwise, d(op1

(k), op2
(j)) is referred to as inner-

body arrangement distance.

 A Dynamic Data Dependence Analysis Approach for Software Pipelining 225

Any modulo scheduling algorithm of a loop has to determine the initial interval, II,
of the loop before scheduling it. That is, the modulo scheduling algorithm has to
determine the inter-body arrangement distance of the first operation in two adjoining
iterations, d(op1

(k), op1
(k+1)). It is easily found that the inner-body arrangement distance

of op1 and op2 in different iterations are the same, abbreviated as dinn(op1, op2). If op1
executes before op2 in the original code, op1

(j) executes before op2
(j) in the VLIW code

when software pipelining algorithm is applied, i.e., dinn(op1, op2) > 0.

Theorem 1. Let II = 1. Suppose that l be the length of the sequential code of the loop
and n be the loop counter. op1

(k) and op2
(j) are two arranged ambiguous load and store

operations, respectively, and their inner-body arrangement distance is
dopopd =),(21inn . After some address conflicts have occurred, that is, the address

conflict whose body difference is i has occurred ji times, where di ≤≤1 for any i, the
parallel speedup of the VLIW program, called general speedup, is

()
1

2 4 1
d

i
i

lnS
n l j d i

=

=
+ − + − +

. (2)

After address conflicts have occurred m times, the average value of general speedups
is of the form

2()
2 4 8

lnS m
n md m l

=
+ + + −

. (3)

Theorem 2. Suppose that probabilities of events that address conflicts between any
two different iterations occur are independent of each other and probabilities of events
that address conflicts with different body differences in an iteration occur are mutual.
Let pi be the probability of the event that an address conflict whose body difference is
i, occur in an iteration, where di ≤≤1 for any i. Other assumptions of the theorem
are the same as those of Theorem 1. If address conflicts occur m times with
probability, the compensation code measure,)(mP , is related to m′s probability,

that is,

()
1 2

1 2

... 1 111 2
0 , ,...,

() 1 1
, ,..., ,

i

d
d

n m dd d
j

P i i i
j j j m i iid

j j j m

n
m p p j d i

j j j n m

−

+ + + = = ==
≤ ≤

= − − +
− ∏ . (4)

The corresponding parallel speedup with probability, called probabilistic speedup, is
of the form

42)(
)(

−++
×=

lnm
nl

mS
P

P . (5)

Parallel speedups of the VLIW program are different from each other when distinct
address conflicts occur. Being the means of estimating speedup before program
execution, the probabilistic speedup)(mSP denotes the expected value of the parallel

226 L. Qiao, W. Huang, and Z. Tang

speedup. The probabilistic speedup is an important parameter to show the efficiency
of the RTPAD method.

Theorem 3. Assumptions of the theorem are the same as Theorem 2. The average
value of parallel speedups when some address conflicts occur with probability, called
mean speedup with probability, is

2 4
lnS

n l
=

+ + −
, (6)

where is the average value of compensation code measures with probability and

()
nd

i
i

d

i
i

p

idpn

−−

+−
=

=

=

1

1

11

1
. Convergence of mean speedup with probability is

()
=

∞→
+−+

=
d

i
i

n
idp

lS

1
11

lim . (7)

The mean speedup with probability S denotes the average value of the parallel
speedups, which is an important parameter to show the average performance of the
RTPAD method. When the probability of events that address conflicts occur is 0,
convergence of mean speedup with probability is l.

5 Experiment Results

This section briefly introduces and analyzes experimental results of the RTPAD
algorithm for the sample code. For load operations which can possibly result in run-
time address conflicts, the method inserts some RTPAD instructions before them. For
the sake of the clarity, we only discuss the loop program shown in Fig. 3. More
detailed experimental results and practical applications can be seen in [8].

The RTPAD method inserts three RTPAD operations before op5. That is, there
exist three probabilistic parameters, p1, p2 and p3, when software pipelining is applied.
Suppose that p1 = p2 = p3, and p1 + p2 + p3 =p. We executes the compiled code of the
loop program 10,000 times repeatedly where the loop counter n = 10,000.

Fig. 4 illustrates the speedups of the compiled code shown in Fig. 3, while the p-
axis denotes the probability of occurring address conflicts between two iterations, and
the S-axis means the speedup. In Fig. 4 max, min, and mean denote the maximum
speedup, minimum speedup, and mean speedup obtained through 10,000 times
executions respectively, while limS denotes convergence of mean speedup with
probability obtained by Theorem 3. The experiment shows that the RTPAD method
works very well.

 A Dynamic Data Dependence Analysis Approach for Software Pipelining 227

0.15 0.30 0.45 0.60 0.75 0.900 1
p1.80

3.00

4.00

5.00

S

6.00

2.80

2.60

2.40

2.20

3.80

3.60

3.40

3.20

4.80

4.60

4.40

4.20

5.80

5.60

5.40

5.20

2.00

max

limS

min

mean

Fig. 4. Speedups of the compiled code shown in Fig. 3

6 Conclusion

This paper has proposed a method of run-time pointer aliasing disambiguation,
RTPAD. Applying the RTPAD approach to a typical loop example, this paper has
indicated that it has solved pointer aliasing problem with the same speed as software
pipelining only applying compensation approach.

228 L. Qiao, W. Huang, and Z. Tang

The RTPAD approach presented in this paper has its own advantages. First, it is
good for irreversible code because the run-time checking method has no redo
problem. Second, the code space for compensation code is limited because any
RTPAD operation only needs one RTPAD control instruction. and last, it has no
rerollability problem that other run-time checking methods have.

In addition, this paper has theoretically described three parallel speedups of the
RTPAD approach, i.e., general speedup, probabilistic speedup and mean speedup with
probability. Because of the indeterminacy of parallel execution of programs, it is very
difficult to precisely analyze the complexity and code space of the final VLIW code.
The obtained results are related to probabilities of events that address conflicts occur.
These theoretical speedups will be helpful for studying and evaluating the instruction-
level parallel techniques.

Acknowledgement

This work was supported by National Nature Science Foundation, grant number
60173010, of P. R. China.

References

1. Rau, B. R., Fisher, A.: Instruction-Level Parallel Processing: History, Overview, and
Perspective. Journal of Supercomputing 7 (1993) 9–50

2. Rong, H. B., Tang, Z. Z., Govindarajan, R., Douillet, A., Gao, G. R.: Single-Dimension
Software Pipelining for Multi-Dimensional Loops. In: Proceedings of the 2nd IEEE/ACM
International Symposium on Code Generation and Optimization, 21-24 Mar. 2004, San Jose,
CA. IEEE Computer Society, Los Alamitos, CA (2004) 163–174

3. Qiao, L., Huang, W. T., Tang, Z. Z.: A Static Data Dependence Analysis Approach for
Software Pipelining. In: Jin, H., Reed, D., Jiang, W. (eds.): Proceedings of IFIP International
Conference on Network and Parallel Computing, Beijing, Lecture Notes in Computer Science.
Springer-Verlag, Berlin Heidelberg New York (2005) accepted by NPC'05

4. Qiao, L., Huang, W. T., Tang, Z. Z.: Coping with Data Dependencies of Multi-Dimensional
Array References. In: Jin, H., Reed, D., Jiang, W. (eds.): Proceedings of IFIP International
Conference on Network and Parallel Computing, Beijing, Lecture Notes in Computer
Science. Springer-Verlag, Berlin Heidelberg New York (2005) accepted by NPC'05

5. Nicolau, A.: Run-Time Disambiguation: Coping with Statically Unpredictable
Dependencies. IEEE Transactions on Computers 38 (1989) 663–678

6. Su, B., Hu, E. W., Najarian, J.: Technical Description of SPLIT – A Hardware/Software
Combined Approach for Run-Time Pointer Aliasing Disambiguation. Tech. Rep. 108,
Department of Computer Science, William Paterson University, NJ (1996)

7. Qiao, L., Tang, Z. Z., Wang, S. Y.: Control Strategies of Software Pipelining: Dealing with the
Prologue and the Epilogue of Nested Loops. In: Zhou, X., Xu, M., Lou, S., Yang, X. (eds.):
Proceedings of the 3rd Workshop on Advanced Parallel Processing Technologies, 19-21 Oct.
1999, Changsha, China. Publishing House of Electronics Industry, Beijing (1999) 177–181

8. Qiao, L.: On Data Dependencies in Software Pipelining. Doctorial Dissertation, Department
of Computer Science, Tsinghua University, Beijing (2001)

9. Qiao, L., Zou, H. X., Wen, Q., Tang, Z. Z.: Exploiting Instruction-Level Parallelism for the
FMMlet Transformation. In: Ip, H. S., Shi, Y. C., Zhang, X. J., (eds.): Proceedings of the
10th Joint International Computer Conference, 4-6 Nov. 2004, Kunming, China.
International Academic Publishers, Word Publishing Corporation, Beijing (2004) 587–592

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 229 – 237, 2005.
© IFIP International Federation for Information Processing 2005

A Parallel and Distributed Method for Computing High
Dimensional MOLAP*

Kongfa Hu1,2, Ling Chen1, Qi Gu1, Bin Li1, and Yisheng Dong2

1 Department of Computer Science and Engineering, Yangzhou University
2 Department of Computer Science and Engineering, Southeast University

kfhu@seu.edu.cn

Abstract. Data cube has been playing an essential role in fast OLAP(on-line
analytical processing) in many multidimensional data warehouse. We often
execute range queries on aggregate cube computed by pre-aggregate technique
in MOLAP. For the cube with d dimensions, it can generate 2d cuboids. But in
a high-dimensional data warehouse (such as the applications of bioinformatics
and statistical analysis, etc.), we build all these cuboids and their indices and
full materialized the data cube impossibly. In this paper, we propose a multi-
dimensional hierarchical fragmentation of the fact table based on dimension hi-
erarchical encoding. This method partition the high dimensional data cube into
shell mini-cubes. Using dimension hierarchical encoding and pre-aggregated re-
sults, OLAP queries are computed online by dynamically constructing cuboids
from the fragment data cubes. Such an approach permits a significant reduction
of processing and I/O overhead for many queries by restricting the number of
fragments to be processed for both the fact table and bitmap encoding data. This
method also supports parallel I/O and parallel processing as well as load balanc-
ing for disks and processors. We have compared the methods of our parallel
method with the other existed ones such as partial cube by experiment. The ana-
lytical and experimental results show that the method of our parallel method
proposed in this paper is more efficient than the other existed ones.

1 Introduction

Data warehouses integrate massive amounts of data from multiple sources and are
primarily used for decision support purposes. They have to process complex analyti-
cal queries for different access forms such as OLAP, data mining, OLAM(on-line
analytical mining) etc. Since the advent of data warehousing and online analytical
processing (OLAP) [1], data cube has been playing an essential role in the implemen-
tation of fast OLAP operations [2]. Materialization of a data cube is a way to pre-
compute and store multi-dimensional aggregates so that multi-dimensional analysis
can be performed on the fly. For this task, there have been many efficient cube

* The research in the paper is supported by the National Natural Science Foundation of China

under Grant No. 60473012; the Natural Science Foundation of Jiangsu Province under Grant
No. BK2005047, BK2004052 and BK2005046; the National Tenth-Five High Technology
Key Project of China under Grant No. 2003BA614A; the Tenth-Five High Technology Key
Project of JiangSu Province of China under Grant No. BG2004034.

230 K. Hu et al.

computation algorithms proposed, such as ROLAP-based multi-dimensional aggre-
gate computation [3], BUC [4], H-cubing [5], and Star-cubing [6]. Since computing
the whole data cube not only requires a substantial amount of time but also generates
a huge number of cube cells, there have also been many studies on partial materializa-
tion of data cubes [7], computation of condensed[8], dwarf[9], or quotient cubes [10],
and computation of approximate cubes [11].

Besides large data warehouse applications, there are other kinds of applications
like bioinformatics, statistical analysis, and text processing that need the OLAP data
analysis. However, data in such applications usually are high in dimensionality,e.g.,
over 100 dimensions, and moderate size, e.g., around 106 tuples. This kind of datasets
behaves rather differently from the datasets in a traditional data warehouse which may
have about 10 dimensions but more than 109 tuples. Since a data cube grows exponen-
tially with the number of dimensions, it is too costly in both computation time and
storage space to materialize a full high-dimensional data cube. For example, a data
cube of 100 dimensions, each with 10 distinct values, may contain as many as 11100
aggregate cells. If we consider the dimension hierarchies, the aggregate cell will in-
crease by 2h times. Although the adoption of iceberg cube[5,6], condensed cube[8], or
approximate cube[11] delays the explosion, it does not solve the fundamental prob-
lem. No feasible data cube can be constructed with such data sets. In this paper we
will address the problem of developing an efficient algorithm to perform OLAP on
such data sets.

The paper focuses on the design and evaluation of suitable data allocation methods
for the fact table and bitmap indices to allow an efficient parallel processing of OLAP
queries. We propose a multi-dimensional hierarchical fragmentation of the fact table
based on multiple dimension attributes and their dimension hierarchical encoding.
Such an approach permits a significant reduction of processing and I/O overhead for
many queries by restricting the number of fragments to be processed for both the fact
table and bitmap data. Such savings are achieved not only for the fragmentation at-
tributes themselves but also for attributes at different levels of a dimension hierarchy.
The proposed data allocation and processing model also supports parallel I/O and
parallel processing as well as load balancing for disks and processors.

2 Parallel Shell mini-Cubes

OLAP Queries tend to be complex and ad hoc, often requiring computationally ex-
pensive operations such as joins and aggregation. Those queries must be performed
on tables having potentially millions of records. The OLAP query that accesses a
large number of fact table tuples that are stored in no particular order might result to
much more many I/Os, causing a prohibitive long response time. Due to the huge size
of the fact table, such full scans are very costly and must be avoided whenever possi-
ble even when parallel scans can be utilized. This is also because for most queries,
only a small fraction of the fact data is relevant. To illustrate the method ,a tiny data-
base, Table 1, is used as a running example.

 A Parallel and Distributed Method for Computing High Dimensional MOLAP 231

Table 1. A sample database with two measure values

Category Class Product Country Province City Year Month Day Count SaleNum
1 Office OA Computer China Jiangsu Nanjing 1998 1 1
2 Office OA Computer China Jiangsu Nanjing 1998 1 2
3 Office OA Computer China Jiangsu Yangzhou 1998 1 2
4 Office OA Computer China Jiangsu Yangzhou 1998 1 3
...

367 Office OA Computer China Jiangsu Nanjing 1999 1 2
...

Measure TID DimProduct dimRegion dimTime

From the RPT Cube, we would compute eight cuboids:{(P,R,T),(P,R,All),
(P,All,T),(All,R,T),(P,All,All), (All,R,All), (All,All,T), (All,All,All)}.To the cube of
d dimensions, it would create 2d cuboids (The P dimension in these cuboids would be

{P, All},such as the R and T dimension .The aggregate cuboids is d
d

i

22
1

=∏
=

).

For the cube with d dimensions (D1,D2,...,Dd) and | Di| distinct values for each di-

mension Di, it can generate 2d cuboids and)1|(|
1

+∏
=

d

i
iD cells. If we consider the

dimension hierarchies of each dimension, the cube would generate cuboids

∏
=

+
d

i
ih

1

)1(and)1|(|
1

∏∏ +
=

d

i

h

j

i
j

i

L cells. (where ih is the dimension hierarchy levels of

the dimension Di, | i
jL | is he max number of the distinct member of the

hierarchy i
jL).

For example, the RPT cube in figure 1 has three dimensions: DimProduct, DimRe-
gion and DimTime. The DimProduct dimension has three hierarchies as (Cate-
gory,Class,Product),the DimRegion dimension has three hierarchies as (Coun-
try,Province,City),and the DimTime dimension has three hierarchies as
(Year,Month,Day). Thus this cube would generate 64)13(*)13()13()1(

1

=++∗+=+∏
=

d

i
ih

cuboids such as {(Product,City,Day),(Product,City,Month),(Product,City,Year),
(Product,City,All),...,(All,All,All)}.But in a high-dimensional database with many
cuboids, it might not be practical to build all these cuboids and their indices. Further-
more, reading via an index implies random access for each row in the cuboid, which
could turn out to be more expensive than a sequential scan of the raw data.

A partial solution, which has been implemented in some commercial data ware-
house systems is to compute a thin cube shell. For example, one might compute all
cuboids with 3 dimensions or less in a 30-dimensional data cube. There are two dis-

advantages to this approach. First, it still needs to compute 1
30

2
30

3
30 CCC ++ = 4525

cuboids. Second, it does not support OLAP in a large portion of the high-dimensional
cube space. If we consider the dimension hierarchies, the cuboids is vary much. So we
can use the shell mini-Cubes.

232 K. Hu et al.

For example, for a database of 30 dimensions, D1, D2, ..., D30, we first partition the
30 dimensions into 10 fragments(mini-Cubes) of size 3: (D1,D2,D3), (D4,D5,D6), ... ,
(D28,D29,D30). For each fragment, we compute its full data cube while recording the
inverted indices. For example, in fragment mini-Cube (D1,D2,D3), we would compute
eight cuboids: {(D1,D2,D3),(D1,D2,All),(D1,All,D3),(All,D2,D3),(D1,All,All), (All,D2,
All),(All,All,D3),(All,All,All)}. An inverted encoding index is retained for each cell
in the cuboids.

The benefit of this method can be seen by a simple calculation. For a base cuboid
of 30 dimensions, there are only 8*10 = 80 cuboids to be computed according to the
above shell fragment partition. Comparing this to 4525 cuboids for the cube shell of
size 3, the saving is enormous.

As we will see, our multi-dimensional fragmentation permits eliminating some
bitmaps, thus improving storage and access overhead. We propose this novel hierar-
chical encoding on each dimension table. The encoding is implemented through the
assignment of a special surrogate key on each dimension table tuple, called dimension
hierarchical encoding.We can create the dimRegion, DimTime and dimProduct di-
mension hierarchy encoding shown in Table 2, Table 3 and Table 4.

Table 2. DimTime dimension hierarchy encoding

TimeID Year Month Day BTimeID

 yyy mmmm ddddd yyymmmmddddd

1 98 Jan 1 001000100001

2 98 Jan 2 001000100010

3 98 Jan 3 001000100011

… … … … …

Table 3. The dimRegion dimension hierarchy encoding

RegionID Country Province City BRegionID

 uuuuuuu vvvvv cccc uuuuuuuvvvvvcccc

1 China Jiangsu Nanjing 0000001000010001

2 China Jiangsu Yangzhou 0000001000010010

… … … … …

Table 4. The dimProduct dimension hierarchy encoding

ProductID Category Class Product BProductID

 gggg aaaaa ppppppp ggggaaaaappppppp

1 Office OA Computer 0001000010000001

2 Office OA Printer 0001000010000010

… … … … …

 A Parallel and Distributed Method for Computing High Dimensional MOLAP 233

By using dimension hierarchical encoding, we can register a list of tuples IDs (tids)
associated with the dimension members for each dimension. For example, the TID list
associated with the dimProduct , dimRegion and dimTime dimension are shown in
Table 5, Table 6 and Table 7 in turn. To compute a data cube for this database with
the measure avg() (obtained by sum()/count()), we need to have a tid-list for each cell:
{tid1,…, tidn}. Because each tid is uniquely associated with a particular set of measure
values, all future computations just need to fetch the measure values associated with
the tuples in the list. In other words, by keeping an array of the ID-measures in mem-
ory for online processing, one can handle any complex measure computation. Table 8
shows what exactly should be kept, which is substantially smaller than the database
itself.

Table 5. dimProduct dimension TID

BProductID TID List

0001000010000001 1-2-3-4-367
… …

Table 6. dimRegion dimension TID

BRegionID TID List

0000001000010001 1-2-367

0000001000010010 3-4

… …

Table 7. dimTime dimension TID

BTimeID TID List

001000100001 1

001000100010 2-3

001000100011 4

… …

Table 8. TID- measure array of Table 2

tid Count SaleNum

1 1 20

2 1 60

3 1 40

4 1 20
… … …

In our study , the method can rapidly retrieve the matching dimension member hi-

erarchical encoding and evaluate the set of query ranges for each dimension and im-
prove the efficiency of OLAP queries by using dimension hierarchical path prefix and
encoding prefix.

By using encoding prefix, we can register the dimension hierarchy encoding and its
TID list for every dimension hierarchy for each dimension. For example, the dimen-
sion hierarchy encoding and its TID list associated with the dimension hierarchies
Month and Province are shown in Table 9 , and so on.

For each fragment, we compute the complete data cube by intersecting the TID-
lists in the dimension and its hierarchies in a bottom-up depths-first order in the cu-
boid lattice (as seen in [6]). For example, to compute the cell {0001000010000001,
0000001000010001, 0010001}, we intersect the TID lists of BProductID
=0001000010000001, BRegionID =0000001000010001, and Bprefix(BTimeID,Month)=
0010001 to get a new list of {1,2}.

234 K. Hu et al.

Table 9. Month hierarchy encoding Prefix AND its TID

BTimeID Bprefix(BTimeID,Month) TID List

001000100001

001000100010

001000100011

0010001 1-2-3-4

… … …

010000100001 0100001 367
… … …

3 Parallel and Distributed MOLAP Aggregation Algorithm

The data cube can be distributed across a set of parallel computers by parallel
constructing the segment Cubes. Therefore, for the end-user and other potential
applications, we consider this data cube as one large virtual cube, which is dis-
tributed across a set of parallel computers, which manage the creation, updates
and querying of the associated cube portions. To develop appropriate scheduling
mechanisms for these management tasks, we consider that the virtual cube is split
into several smaller parts, called mini-Cube segments. But a mini-Cube segment
could furthermore also be split into smaller segments and so on, till we achieve
the level of chunks. They can then be assigned to parallel computers, having se-
quential or parallel computing power, which are responsible for their manage-
ment. The algorithm for shell cube segment parallel computation can be summa-
rized as follows.

Algorithm 1 (Parallel Shell mini-Cube Computation)
Input: A base cuboid BC of n dimensions:(D1; ... ;Dn).

{ partition the set of dimensions :(D1; ... ;Dn) into a set of k mini-Cube fragments
{P1;..., Pk};
scan base cuboid BC once and do the following with parallel processing
{ insert each <tid, measure> into ID-measure array;

for each attribute value ai of each dimension Di;
build an dimension hierarchy encoding index entry: <B; TID list>;}

parallel processing all fragment partition Pi as follows
{build a local fragment mini-cubes MCi by intersecting their corre-

sponding tid-lists and computing their measures;
build MCi’s aggregate cuboids by the cuboid lattice;}

We can parallel construct the high dimensional cube with the Cube segments paral-
lel construction. The system architecture of these shell mini-Cube segment parallel
construction is shown in Figure 2.

 A Parallel and Distributed Method for Computing High Dimensional MOLAP 235

Warehouse
Cube

Constructor Cube Index
Cube

Operator OLAP Query

Cube Segment 1
D1 D2 D3

D1D2 D2D3 D1D3

D1D2D3 P1

Cube Segment 2
D4 D5 D6

D4D5 D5D6 D4D6

D4D5D6 P2

Cube Segment m
D3m-2 D3m-1 D3m

D3m-2D3m-1

D3m-2D3m-1D3m

D3m-1D3m D3m-2D3m

 Pm…

Connection handling

Fig. 2. The system architecture of these shell Cube segment parallel construction

4 Performance Analysis

The bitmap encoding index table uses the same amount of storage space as the origi-
nal database. Since we have |T| tuple IDs in total, the entire inverted index will still
only need d×|T| bitmap encoding indices. The amount of memory needed to store the

0

100

200

300

400

500

600

6 9 15

Number of dimensions

N
um

be
r

of
 C

ub
oi

ds mini-Cube
Partial cube

0

500

1000

1500

2000

2500

6 9 15
 Number of dimensions

St
or

ag
e

si
ze

(M
B

) mini-Cube
Partial cube

Fig. 3. Cuboids of mini-Cube Fig. 4. Storage size of mini-Cube

0

400

800

1200

15 30 45
Number of Dimensions

I/
O

(P
ag

e
A

cc
es

s) mini-Cube
Partial Cube

Fig. 5. Average I/Os

236 K. Hu et al.

shell mini-cubes of size f is O(|T|*(2f*d/f)),but the amount of storage needed to store

partial cube with f dimensions is O(|T|*(
=

f

i

i
dC

1

)),and the full cube’s is O(|T|*(2d)).

Based on the above analysis, for a base cuboid of 30 dimensions with 106 tuples,
our precomputed shell fragments of size 3 will consist of 80 cuboids plus one ID
measure array, with the total estimated size of roughly 320 + 12 = 332 MB in total. In
comparison, a shell cube of size 3 will consist of 4525 cuboids, with estimated
roughly 18 GB in size. A full 30-dimensional cube will have 230= 109 cuboids, with
the total cube size beyond the summation of the capacities of all storage devices. The
performance of shell fragment mini-cube method with the partial cube is shown in
Figure 3- Figure 5.

Figure 3-Figure 5 show the shell fragment mini-cube method has more efficient
than other existed ones.

5 Conclusion

Data cube has been playing an essential role in fast OLAP in many multidimensional
data warehouse. We often execute range queries on aggregate cube computed by pre-
aggregate technique in MOLAP. For the cube with d dimensions, it can generate 2d
cuboids. But in a high-dimensional data warehouse(such as the applications of bioin-
formatics and statistical analysis, etc.), while full materialization of the data cube is
impossible, we have proposed a reasonable method to partition the high dimensional
cube into a set of disjoint low dimensional cubes (i.e., shell fragment mini-cubes). We
propose a multi-dimensional hierarchical fragmentation of the fact table based on
multiple dimension attributes and their dimension hierarchical encoding. Using in-
verted hierarchical encoding indices and pre-aggregated results, OLAP queries are
computed online by dynamically constructing cuboids from the fragment data cubes.
With this method, for high-dimensional OLAP, the total space that needs to store such
shell-fragment mini-cubes is negligible in comparison with a high-dimensional cube.
Moreover, the query I/O costs for large data sets are reasonable and are comparable
with reading answers from a materialized data cube, when such a cube is available.
We have compared the methods of parallel shell mini-cubes with the other existed
ones such as partial cube by experiment. The analytical and experimental results show
that the methods of our parallel shell mini-cubes proposed in this paper are more
efficient than the other existed ones.

References

1. Chaudhuri, U., Dayal, U.: Data Warehousing and OLAP for Decision Support. ACM
SIGMOD Record 26 (1997) 507-508

2. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow
F., Pirahesh, H.: Data Cube: A Relational Aggregation Operator Generalizing Group-by,
Cross-tab and Subtotals. Data Mining and Knowledge Discovery 1(1997)29-54

3. Agarwal, S., Agrawal, R., Deshpande, P. M., Gupta, A., Naughton, J. F., Ramakrishnan,
R., Sarawagi, S.: On the Computation of Multidimensional Aggregates. VLDB(1996) 506-
521

 A Parallel and Distributed Method for Computing High Dimensional MOLAP 237

4. Beyer, K., Ramakrishnan, R.: Bottom-up Computation of Sparse and Iceberg Cubes. ACM
SIDMOD (1999) 359-370

5. Han, J., Pei, J., Dong, G., Wang, K.: Efficient Computation of Iceberg Cubes with Com-
plex Measures. ACM SIGMOD (2001)1-12

6. Xin, D., Han, J., Li, X., Wah, B. W.: Star-cubing:Computing Iceberg Cubes by Top-down
and Bottom-up Integration. VLDB(2003) 476-487

7. Harinarayan, V., Rajaraman, A., Ullman, J. D.: Implementing Data Cubes Efficiently.
ACM SIGMOD (1996) 205-216

8. Wang, W., Lu, H., Feng, J., Yu, J. X.: Condensed Cube: An Effective Approach to Reduc-
ing Data Cube Size. ICDE(2002) 155-165

9. Sismanis, Y. , deligiannakis, A., Kotidis, Y., Roussopoulos, N.: Hierarchical Dwarfs for
the Rollup Cube.VLDB(2004) 540-551

10. Lakshmanan, L. V. S., Pei, J., Zhao, Y.: Q-trees: An Efficient Summary Structure for Se-
mantic OLAP. ACM SIGMOD(2003) 64-75

11. Shanmugasundaram, J., Fayyad, U. M., Bradley, P. S.: Compressed Data Cubes for OLAP
Aggregate Query Approximation on Continuous Dimensions. ACM SIGKDD(1999) 223-
232

An Improved ACO Algorithm
for Multicast Routing

Ziqiang Wang and Dexian Zhang

School of Information Science and Engineering, Henan University of Technology,
Zheng Zhou 450052,China
wzqagent@xinhuanet.com

Abstract. The multicast routing problem with quality of service (QoS)
constraints is a key requirement of computer networks supporting multi-
media applications. In order to resolve Qos multicast routing effectively
and efficiently, an improved ant colony optimization (ACO) algorithm is
proposed to resolve this problem.The core idea of improved ACO algo-
rithm is mainly realized through pheromone local and global updating
rule.Experimental results show that this algorithm can find optimal so-
lution quickly and has a good scalability.

1 Introduction

As a result of the emergence of many kinds of high-speed communication sys-
tems, such as ATM, and increasing demands of distributed multimedia appli-
cations, such as video on demand, multimedia conference, efficient and effective
support of quality of service (QoS) has become more and more essential, these
multimedia applications all require multicast support. Multicast employs a tree
structure of the network to efficiently deliver the same data stream to a group
of receivers. In multicast routing, one or more constraints must be applied to
the entire tree. Multicast service is becoming a key requirement of computer
networks supporting multimedia applications. In the past, the multicast rout-
ing problem has been formulated as the minimum cost multicast tree problem[1],
i.e., the Steiner tree problem, which is well-known to be NP-complete[2].Over the
past decades, many works have done to solve multicast routing problems using
conventional algorithm, such as exhaustive search routing and greedy routing.
But due to the high degree of complexity, it is not practical to use these algo-
rithms in real-time multicast routing. Recently, some nature-based algorithms[3]
have been proposed. but these algorithms too complex and lower the efficiency
of the algorithm.

Ant Colony Optimization (ACO) algorithm is a novel population-based meta-
heuristic search algorithm[4] for solving difficult discrete optimization problems,
inspired by the foraging behavior of real ant colonies. It has been applied to TSP,
QAP, scheduling and graph coloring, etc. In this paper, we develop an efficient
heuristic ant colony algorithm for multicast routing. This paper is organized as

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 238–244, 2005.
c© IFIP International Federation for Information Processing 2005

An Improved ACO Algorithm for Multicast Routing 239

follows: The multicast routing model is described in section 2.The ACO algo-
rithm are analyzed in section 3.The multicast routing algorithm based on ACO
algorithm are presented in section 4. Experimental results are given in section
5. Conclusions and future works are presented in section 6.

2 Multicast Routing Model

Communication network can be modeled as an undirected graph G =< V,E >,
where V is a finite set of vertices (network nodes) and E is the set of edges (net-
work links) representing connection of these vertices.Each link in G has three
weights (B(x, y), D(x, y), C(x, y)) associated with it, in which positive real val-
ues B(x, y), D(x, y), C(x, y), denote the available bandwidth, the delay and the
cost of the link respectively. Given a path P (x, y) connected any two nodes x, y
in G, it can be presumed that:

1)The delay of a path is the sum of the delays of the links (a, b) ∈ P (x, y):

Delay(P (x, y)) =
∑

D(a, b) (1)

2)The available bandwidth of (a, b) ∈ P (x, y) is considered as the bottle neck
bandwidth of P (x, y):

Width(P (x, y)) = min(B(a, b)) (2)

In Qos transmission of real time multimedia service, the optimal cost routing
problem with delay and bandwidth constrained can be described as follows.Given
G =< V,E >, a source node s, and a multicast member set M ⊆ V − {s},the
problem is to find the multicast tree T = (VT , VE) from source s to all destina-
tions v ∈ M and T must satisfy the following conditions:

Cost(T) = min(
∑

(x,y)∈(ET)

C(x, y)) (3)

∑
(x,y)∈(ET)

D(x, y) ≤ Dmax,∀v ∈ M (4)

Width(PT (s, v)) ≥ Wmin,∀v ∈ M (5)

where PT (s, v) is the set of links in the path from source nodes s to destination
v in the multicast tree.Relation (3) means that the cost of multicast routing tree
should be minimum. Relation (4) means that the delay requirement of Qos, in
which Dmax is the permitted maximum delay value of real time services. And
relation (5) guarantees the bandwidth of communication traffic, in which Wmin

is the required minimum bandwidth of all applications.

240 Z. Wang and D. Zhang

3 The Ant Colony Optimization(ACO) Algorithm

3.1 The Ant System

The Ant Colony Optimization(ACO) technique[5] has emerged recently as a new
meta-heuristic search methods for hard combinatorial optimization problems.
ACO algorithms have been inspired by the behavior of real ant colonies, in
particular, by their foraging behavior. Real ants communicate with each other
using an chemical substance called pheromone, which they leave on the paths
they traverse. In the absence of pheromone trails ants more or less performance
a random walk. However, as soon as they sense a pheromone trail on a path in
their vicinity, they are likely to follow that path, thus reinforcing this rail. More
specifically, if ants at some point sense more than one pheromone trail, they
will choose one of these trails with a probability related to the strengths of the
existing trails. This idea has first been applied to the TSP, where an ant located
in a city choose the next city according to the strength of the artificial trails.

3.2 The ACO Algorithm Description

Informally, the ACO algorithm works as follows: m ants are randomly positioned
on n cities. Each ant builds a tour path (i.e.,a feasible solution to the TSP) by
repeatedly applying a state transition rule. While constructing its tour, an ant
also modifies the amount of pheromone on the visited edges by applying the local
updating rule. Once all ants have finished their tours, the amount of pheromone
on edges is modified again by applying the global updating rule. In the following,
we firstly describe the ACO algorithm procedure, then we discuss the core steps
of ACO algorithm: the state transition rule, the global updating rule, and the
local updating rule.

Algorithm 1. The ACO Algorithm.
Initialize;
Loop;
Each ant is positioned on a starting node;
Loop;
Each ant applies a state transition rule to incrementally build a solution;
And a local pheromone updating rule ;
Until all ants have built a complete solution;
A global pheromone updating rule is applied ;
Until End condition.

3.3 State Transition Rule

While building a tour, ant k situated in city r moves to city s using the follow
state transition rule:

s =
{

arg maxu∈Jk(r){[τ(r, u)] · [η(r, u)]β} : q ≤ q0

S : otherwise
(6)

An Improved ACO Algorithm for Multicast Routing 241

where Jk(r) is the set of cities not visited by ant k, τ(r, u) is the amount of
pheromone trail on edge, η(r, u)] is a heuristic function which is the inverse of
distance between city r and u, β is a parameter which determines the relative
importance of pheromone versus distance, q is a random number uniformly dis-
tributed in [0,1], q0 is a parameter (0 ≤ q0 ≤ 1),and S is a random variable
selected according to the probability distribution given by Equation (7) which
gives the probability with which an ant k in city r choose the city s to move to:

pk(r, s) =

⎧⎨
⎩

[τ(r,u)]·[η(r,u)]β∑
u∈Jk(r)

τ(r,u)]·[η(r,u)]β
: S ∈ Jk(r)

0 : otherwise
(7)

3.4 Local Updating Rule

While building a solution of the TSP, ants visit edges and change their amount
of pheromone trail by applying the local updating rule of Equation (8):

τ(r, s) ← (1 − ρ) · τ(r, s) + ρ · τ0 (8)

where ρ(0 < ρ < 1) is the pheromone decay parameter, τ0 is an initial pheromone
level.

3.5 Global Updating Rule

Global updating rule is performed after all ants have completed their tours. The
pheromone level is updated by applying global updating rule of Equation(9).

τ(r, s) ← (1 − α) · τ(r, s) + α · ∆kτ(r, s) (9)

where α(0 < α < 1) is the pheromone decay parameter,

∆kτ(r, s) =
{

(Lgb)−1 : (r, s) ∈ global best tour
0 : otherwise

(10)

and Lgb is the length of global best tour from the beginning of the trail. Equation
(9) indicates that only those edges that belong to the global best tour will receive
reinforcement.

4 The ACO Algorithm For Multicast Routing

The proposed ACO algorithm steps for multicast routing are as follows:

Step 1: Initialize network nodes;
Set NC:=0 ; τ0:=c;
Put m ants to the source node;

Step 2: Check bandwidth of all edges, deletes those edges that do not satisfy
the bandwidth require;

242 Z. Wang and D. Zhang

Step 3: Setup tabu table;
Set r:=1;
For k:=1 to m
Put the value of source node into tabu table tabk(r);

Step 4: Repeat this step until the tabu table tabk(r) is full;
Set r:=r+1;
For k:=1 to m
Random choose q and compare with q0;
If q ≤ q0

Then choose the next node s according to

s := arg max
u∈Jk(r)

{[τ(r, u)] · [η(r, u)]β} (11)

Else choose the node s according to the probability distribution given by
Equation (7).

Compute the delay to reach node s, and compare the result with delay Dmax;
If the result exceeds the constraints Dmax

Then the kth ant choose a new node;
Else
{
The kth ant moves to node s, and put s into tabk(r);
Pheromone local updating according to

τ(r, s) := (1 − ρ) · τ(r, s) + ρ · τ0 (12)

}
Step 5: Compute ∆kτ(r, s) and pheromone global updating;
For k:=1 to m set

∆kτ(r, s) :=
{

(Lgb)−1 : (r, s) ∈ global best tour
0 : otherwise

(13)

τ(r, s) := (1 − α) · τ(r, s) + α · ∆kτ(r, s) (14)

NC:=NC+1;

Step6: Check stop condition;
If (NC < NCmax)
Then empty all tabu table, and goto Step3;
Else Print the minimum cost multicast tree.

5 Experimental Results

We have performed simulation to investigate the performances of multicast rout-
ing algorithms based on ACO algorithm. A random generator developed by

An Improved ACO Algorithm for Multicast Routing 243

Table 1. CPU Time of ACO Algorithm

Nodes Edges Time(s)

20 32 0.27
40 89 0.45
80 172 1.42
120 239 2.68
160 336 5.37
180 371 8.19
200 427 9.73

Salama[2] is used to create links interconnecting the nodes. The random graphs
are generated using the above graph generator with an average degree 4,which
have the appearance roughly resembling that of geographical maps of major
nodes in the Internet .The source and the destination are randomly generated. Dt

for destination t is uniformly distributed in range [30ms,160ms].The bandwidth
and delay of each link are uniformly distributed in range [10,50]and [0,50ms]
respectively. The cost of each link is uniformly distributed in range [0,200]. In
Table 1, we have compared the CPU times of ACO algorithm for different com-
binations of node and edge.

Table 2. Predictive Accuracy Comparison

Algorithm Optimal Solutions Sub-optimal Solutions Invalid Solutions

HNN 75.6% 21.5% 2.9%
GA 78.4% 19.4% 2.2%
IA 78.9% 19.6% 1.5%
ACO 79.9% 18.2% 1.9%

Table1 results clearly show that the running time of ACO algorithm grows very
slowly with the size of the network. Therefore, our algorithm is very effective.

Furthermore, for the same multicast routing, we made 300 simulations by
ACO algorithm against Hopfield Neural Networks(HNN)[6],GA[7] and immune
algorithm(IA)[8]. The computation results are shown in Table 2.We can find that
ACO algorithm performances better than HNN,GA and IA. So our proposed
algorithm has good performance.

6 Conclusions

Multicast routing arises in many multimedia communication applications, and
this problem has been proved to be NP-Complete. In this paper, we studied the
bandwidth-delay-constrained least-cost multicast routing problem, and present
an ACO algorithm to solve the problem. The simulation results show that this

244 Z. Wang and D. Zhang

algorithm is an efficient algorithm. For further research, we will improve the ef-
fectives of ACO algorithm and study the multicast routing problem with general
constraint.

References

1. Wang,Z.,Crowcroft,J.:Quality of service for supporting multimedia applica-
tions.IEEE Journal on Selected Areas in Communications.14(1996)1228–1234

2. Salama,H.F.,Reeves,D.S.,Viniotis, Y.:Evaluation of multicast routing algorithms for
real-time communication on high-speed networks. IEEE Journal on Selected Areas
in Communications. 15(1997)332–345

3. Wang,Z.,Shi,B.:Solution to Qos multicast routing problem based on heuristic genetic
algorithm. Journal of Computer.24(2001)55–61

4. Dorigo,M.,Maniezzo,V. and Colomi A.:The ant system: optimization by a colony of
cooperation agents. IEEE Transaction on System, Man, and Cybernetics-Part B.
26(1996)1–13

5. Dorigo,M.,Gambardella, L.M.: Ant colony system:a cooperative learning ap-
proach to the traveling salesman problem.IEEE Transaction on Evolutionary
Computation.1(1997)53–66

6. Chotipat,P.,Goutam,C.,Norio S.:Neural network approach to multicast routing al-
gorithms for real-time communication on high-speed networks.IEEE Journal on Se-
lected Areas in Communications.15(1997)332–345

7. Feng,X.,Li,J.Z.,Wang J.V.,et al.:Qos routing based on genetic algorithm. Computer
communication.22(1999)1392–1399

8. Liu,F.,Feng,X.J.:Immune algorithm for multicast routing.Chinese Journal of
Computer.26(2003)676–681

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 245 – 248, 2005.
© IFIP International Federation for Information Processing 2005

Performance Modelling of Pipelined Circuit Switching
in Torus with Hot Spot Traffic*

F. Safaei1, A. Khonsari1, M. Fathy2, and M. Ould-Khaoua3

1 Institute for Studies in Theoretical Physics and Mathematics (I.P.M.)
2 Dept. of Computer Engineering, Iran Univ. of Science and Technology, Tehran, Iran

3 Dept. of Computing Science, University of Glasgow, UK
{safaei, ak}@ipm.ir, mahfathy@iust.ac.ir, mohamed@dcs.gla.ac.uk

Abstract. This paper proposes a new analytical model of PCS in torus in the
presence of hot spot traffic pattern. Results from simulation experiments show
close agreement with those predicted by the analytical model.

1 Introduction

Gaughan and Yalamanchili [1] have proposed PCS that combines aspects of Circuit
Switching (CS) and Wormhole Switching. When a message header encounters
blocking and cannot progress towards its destination, it releases the last reserved
channel by backtracking to the previous node, and then continues its search from that
node to find an alternative path. Recent studies [2, 3] have revealed that the
performance advantages of adaptive routing are more noticeable when traffic is non-
uniform due to the presence of hot spots [4]. This paper proposes a new analytical
model of PCS for computing the average message latency in the presence of hot spot
traffic in torus.

2 The Analytical Model

PCS and the router structure are discussed in detail in [1, 3]. The model is based on
the following assumptions.

i) The traffic model is based on Pfister and Norton approach [4]. In their method,
each generated message has a finite probability θ of being directed to the hot spot
node and probability (1-θ) of being directed to other network nodes. We usually
refer to these types of messages as hot spot and regular, respectively.

ii) Nodes generate traffic independently of each other, which follows a Poisson
process with a mean arrival rate of λg messages per node per cycle including
regular and hot spot fractions, θ λg and (1-θ λg), respectively. Message length is
M flits, each of which requires one cycle to cross from one node to the next.

iii) L virtual channels (L≥1) are used per physical channel.

* This research was in part supported by a grant from I.P.M. (No. CS1384-3-01).

246 F. Safaei et al.

The average message latency is composed of the average network latency,T , and
the average waiting time seen by a message at the source node, W . However, to
capture the effects of virtual channels multiplexing, the average message latency has
to be scaled by a factor, L , representing the average degree of virtual channels
multiplexing that takes place at a given physical channel. Therefore, we can write [2]

θθθ TT)1(TwhereL)WT(Latency r +−=+= (1)

In the above equation, rT and θT denote the average network latency for regular and

hot spot messages, respectively. The average number of hops that a regular message
makes across one dimension and across the network, k and rd respectively, are [3]

k2d,2/)1k(k r =−= (2)

Since each regular message travels, on average, rd hops to cross the network, the rate

of regular messages received by each channel, λr, can be written as

4c)1(2d)1(rgrgr λθλθλ −=−= (3)

Where, rc is the average time needed to setup a path for a regular r-hop header. The

number of source nodes for which one of 2Nj-1 channels can act as intermediate
channel to reach the hot spot node is given by [2]

;NNN
)1k(2

jr r
1j

0r r
−

=
−
=

=−
−≤≤

<+
=−>=

2k2rk 1-r-k2

kr 1r
N,2k2r if 0N rr

 (4)

The overall traffic rate, on the channel located j hops from the hot spot node, is

where
jrj θλλλ +=)N2/()N(1j

)1k(2

jr rgj −
−

== θλλθ (5)

In the above equation, each node generates, on average, θ λg hot spot messages in a
cycle, and

jθλ is the rate of hot spot traffic on a channel located j hops away from hot

spot node. In PCS, the network latency of an r-hop regular message can be written as

rr crMT ++= (6)

The latency seen by a hot spot message that is j hops a way from the hot spot node is

θθ cjMT
j

++= (7)

Where, θc is the average time needed to setup a path for a hot spot message header.

When a regular (or hot spot) message reaches a channel that is j hops away from the
hot spot node, the mean service time at the channel, considering both regular and hot
spot message with their appropriate weights, can be written as

jj
T)(T)(T jrjcj θθ λλλλ += (8)

 Performance Modelling of Pipelined Circuit Switching in Torus 247

Finally, by averaging all possible values of
rc and θc yields the overall average time

to set up a path, c , is given by

θθθ cc)1(c r +−= (9)

The average network latency seen by a hot spot message can be written as

)1N(NpwhereTpT j
)1k(2

1j jjj
−== −

= θθθθ (10)

We model the header behaviour as a Random Walk problem [3].
jc which is the

average time interval to reach the destination, satisfies the following equation

−≤≤++−
=++−

===
−+ 1rj11cpbc)pb1(

0jcpb)1c)(pb1(
cotherwiserjif0c

1jj1jj

0010
jj

 (11)

The average time to setup a path for an r-hop regular message and the time is needed
to setup a reserved path for hot spot message that is j hops away (1≤ j≤ 2(k-1)) from
the hot spot node are given by

jcc,rcc 0j0r +=+= θ (12)

The probability of blocking, can therefore written as

k/)k1(2pass,)k1(pass;Ppass)P(passpb 1
j

20
jL

1
j

2
L

0
jj −=−=⋅+⋅= (13)

Where 0
jpass and 1

jpass are the probability that a message has to visit one dimension

and the probability that it still has to visit both dimensions, respectively. To determine
the average time, W , that a message sees in the source node before entering into the
network, the injection channel is treated as an M/G/1 queue with a mean time waiting
of [2]

22
T

2
Tg

2
T

TC,T,))1(2()C1(TW σλρρρ ==−+= (14)

Where 2
Tσ is the variance of the service distribution. The average arrival rate on each

virtual channel is λg/L and service time,T , with an approximated variance
2)1d3MT(+−− yields the mean waiting time as

)])L(T1[2(]T)1d3MT(1)[L(TW g
22

g
2 λλ −+−−+= (15)

The probability,
jlP , that l virtual channels are busy at the physical channel that is j

hops away from the hot spot node, can be determined as follows

248 F. Safaei et al.

Ll)T(PotherwiseLl0if)T)(T1(P l
jjl

l
jjjjl jj

==<≤−= λλλ (16)

And the average multiplexing rate through the network is

==
−

= == L

1l l
L

1l l
2

j
)1k(2

1j j jjj
lPPlLwhereLpL θ (17)

Fig. 1 shows the latency results predicted by the model against those provided by the
simulator for Network size N = 8×8 torus, Message length is M=32 and 64 flits,
number of virtual channels L= 6, and fractions of hot spot traffic is θ=0.05 and 0.2.

8-ary 2-cubes, L=6, =0.05

0

120

240

360

480

600

720

0 0.0062 0.0124 0.0186

Traffic Generation Rate(messages/ cycle)

L
at

en
cy

(c
yc

le
s)

simulation
M=32
M=64

8-ary 2-cubes, L=6, =0.2

0

120

240

360

480

600

720

0 0.002 0.004 0.006 0.008 0.01

Traffic Generation Rate(messages/ cycle)

L
at

en
cy

(c
yc

le
s)

simulation
M=32
M=64

Fig. 1. Average message latency calculated by model vs. simulation

3 Conclusions

In this paper we proposed a new analytical model to compute the average message
latency of PCS in two-dimensional torus in the presence of hot spot traffic.
Simulation experiments have revealed that the results predicted by the model are in
good agreement with those obtained through simulations under different working
conditions.

References

1. P.Gaughan, S. Yalamanchili, “A family of fault-tolerant routing protocols for direct
multiprocessor networks”, IEEE TPDS, 6(5): 482-497, 1995.

2. H. Sarbazi-Azad, L. Mackenzie, M. Ould-Khaoua, “Hot Spot Analysis in Wormhole-routed
Tori”, IPCCC 2000. Conference proceeding of the IEEE International, 337-343, 2000.

3. F. Safaei, A.. Khonsari, M. Fathy, M. Ould-Khaoua, “An analytical model of Pipelined
Circuit Switching in hypercubes in the presence of hot spot traffic”, ICPP 2005 conference
proceedindg of the IEEE international, 485-492, June 2005.

4. G.J. Pfister, V.A. Norton, “Hot spot contention and combining in multistage interconnection
networks”, IEEE Trans. Computers, 34(10): 943-948, 1985.

An Incremental Compilation Approach

for OpenMP Applications

Maurizio Giordano and Mario Mango Furnari

Istituto di Cibernetica “E. Caianiello” - C.N.R.,
Via Campi Flegrei 34, 80078 Pozzuoli, Naples - Italy
{m.giordano, m.mangofurnari}@cib.na.cnr.it

Abstract. This work presents a new approach to software development
framework design for parallel programming: the Graphical Parallelizing
Environment1 (GPE). It adopts an incremental compilation process for
OpenMP programming based on automatic detection of parallelism and
user interaction for its calibration. GPE is extensible via plug-in modules
providing new capabilities. It is an experimental OpenMP programming
framework targeting shared-memory multiprocessors and clusters of PCs.

1 Introduction

In past years, several techniques were developed in the area of program au-
tomatic parallelization, like data and control dependence analysis [1], symbolic
and interprocedural analysis [3,4]. Several research projects [5,6] dealt with the
development of parallelizing compilers implementing most of these techniques.

Multithreaded applications, that were specifically targeted to shared-memory,
may now use Software DSM to run in distributed settings. There are proposals
[8,9] to adopt a single programming paradigm, like OpenMP, independently from
where the application will run, that is a multiprocessor, SMP or a cluster.

In this context, a pure automatic compiler-based approach to program par-
allelization has proved to be insufficient, since compilers cannot use information
available only to users. This is even worst if the same parallel program will run
on different multiprocessor architectures, or even on clusters of PCs.

In recent years, an alternative approach was proposed [5,6] that combines au-
tomatic and manual parallelization: the programmer interacts with the compiler
to supply his knowledge of the application. This additional information helps
the compiler in carrying on the hard task of parallelism analysis and discovery.

We developed a new environment for program parallelization, named Graphi-
cal Parallelizing Environment (GPE). It adopts an incremental approach for the
parallelization of programs based on both parallelism automatic detection (done
by a parallelizing compiler) and the user intervention to drive code restructuring
as well as parallelism annotation before generation of program executables.

The rest of the paper is so organized: section 2 describes the GPE architec-
ture; section 3 gives and overview of the GPE modules for the visualization and
modification of program parallelism; section 4 reports some conclusive remarks.
1 GPE software is a result of the POP European project: IST-2001-3307.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 249–252, 2005.
c© IFIP International Federation for Information Processing 2005

250 M. Giordano and M. Mango Furnari

2 GPE Program Development Cycle

According to the GPE approach, OpenMP program parallelization is the result
of a cyclic process in which, at each round, the following activities (see figure 1)
are carried out:

1. OpenMP program editing - first, the programmer writes the Fortran source
code with OpenMP annotations.

2. Compilation - the compiler performs data & control dependence analysis and
detects program parallelism accounting also for OpenMP parsed directives.

3. Parallelism visualization - program parallelism and its sources are shown to
users in a Hierarchical Task Graph [2] representation.

4. Parallelism modification - users restructure parallelism annotating the code
with OpenMP directives and transforming loops to extract/tune parallelism.

5. Parallel code generation - OpenMP annotated program tasks are translated
to Fortran code plus calls to a multithreaded library [7].

Steps 3 to 4 can be iterated to further tune application parallelism. Each mod-
ification to the source is saved in a program new version and version history is
kept by the GPE versioning module. The multithreaded code produced in step 5
is compiled on the target architecture to generate the executable. Performance
measurements and execution traces can be used in next rounds of the tuning.

Parallelism detection and task formation is done by the POP compiler [9]. It
is a source-to-source parallelizer that uses an aggressive approach for dependence
testing. Parallelism detection is synthesized in a compiler internal representation:
the Hierarchical Task Graph (HTG) [2]. User-compiler interaction relies on HTG
handling: parallelism visualization/calibrating is based on graph-manipulation.
We think that the HTG could be considered the intermediate program represen-
tation closer to the user conceptual view of the application parallel execution.

Fig. 1. The GPE architecture

An Incremental Compilation Approach for OpenMP Applications 251

3 GPE Modules

The GPE first design aimed to provide visualization and navigation of the pro-
gram HTG, that synthesizes results of compiler analysis and parallelism discov-
ery. We experienced that OpenMP program parallelization is often an incremen-
tal process involving both compiler techniques and programmer’s restructuring
decisions. The process is time-consuming as it implies hand-coding of many ver-
sions of the same program corresponding to different parallelization strategies.

Therefore, we redesigned the GPE to be an environment supporting the iter-
ative process of OpenMP programming and extensible with new functionalities,
added as plug-ins to the core system. With this new design the GPE has become
a framework in which new capabilities and tools can be quickly developed and
experimented. In what follows we describe the main GPE modules.

Visualization module - The GPE visualization module, named Hierarchical
Task Graph Visualization Tool (HTGViz), displays compiler analysis (paral-
lelism detection) results and provides facilities to navigate and correlate differ-
ent information about the application parallelism discovered by the compiler.
HTGViz offers three views of the application, that are hereafter described.

The HTG Visualization View is the main interface where HTGs of program
subroutines are drawn. It allows to navigate through the HTG structure across
hierarchy levels by means of a task expanding/collapsing facility. This feature
simplifies HTG navigation when the program size and complexity increases.

The Program Code View illustrates the code in textual format. The interface
shows the correspondence between program statements and HTG nodes during
all user actions, like HTG navigation and directive insertion.

The Vars View shows, for each task node, the list of variables used (read/
written) and their occurrences in the program. This helps the programmer in
detecting variables to privatize or share in OpenMP parallel sections and loops.

Modification modules - The Program transformation module supports the set
of loop transformations more frequently used by POP users during the experience
in OpenMP programming, i.e loop interchange, blocking and coalescing [10].

Transformation capabilities are based on graph-manipulation with the possi-
bility to choose different equivalent patterns. The module implements checks on
transformation applicability and inputs mainly based on data and control depen-
dence analysis. If the compiler detects constraint violations the transformation
is forbidden; otherwise the system allows the programmer to apply it.

The OpenMP editing module is a GPE extension providing an easy-to-use edi-
tor, based on graph manipulation, to assist users in inserting/modifying OpenMP
annotations. The module allows to restructure and overwrite parallelism specifi-
cation in terms of directives during compilation, before parallel code generation.

The editing tool partially automatizes the task of OpenMP directive inser-
tion/modification. It assists the user in generating well-formed directives offering
commands for fast pre-formatted editing operations. Upon directive insertion, a
form-like interface is prompted for the input of clauses and their arguments: it

252 M. Giordano and M. Mango Furnari

displays the variables used (read/written) in the code enveloped by the direc-
tive. This information is useful to set variables as private or shared in the parallel
threads. The tool performs directive applicability checks and syntax control.

The Program versioning module supports the tracking and re-using of in-
termediate versions during program development. Each code modification or
OpenMP editing is saved in a program new version. The module maintains a
history of program versions that can be navigated back and forth.

After the generation of the multithreaded binary and its execution, program-
mers may use runtime performance analysis information to restart application
tuning from an intermediate version. To this aim the versioning module has a
facility to store/reload program versions and history in/from a “project file”.

4 Conclusions

The main novelty of GPE is its design as an extensible environment to support
the incremental development cycle of OpenMP programs. At each round of the
cycle, the user interacts with the compiler to tune the detected parallelism ac-
cording to his knowledge of the application. GPE is extensible since new modules
and tools can be implemented and plugged-in the GPE core to offer new func-
tionalities, like modules supporting new analysis and transformation techniques.

Experiences of GPE usage in parallelizing OpenMP applications from NAS
and SPEC95 benchmarks proved that performance measurements and trace data
analysis are crucial to identify sources of performance drawbacks and to further
improve program parallelization in next compilation steps. The Program ver-
sioning module was developed and integrated in GPE to facilitate this task.

References

1. Banerjee, U.: Dependence analysis for supercomputing. Kluwer Academic Publish-
ers, (1988)

2. Girkar, M., Polychronopoulos, C.D.: The hierarchical task graph as a universal
intermediate representation. Int. J. Parallel Programming 22 (1994) 519–551

3. Hall, M.W., et al.: Interprocedural Compilation on Fortran D. Journal of Parallel
Distrib. Comput. 38(2) (1996) 114–129

4. Haghighat, M.R., Polychronopoulos, C.D.: Symbolic analysis for parallelizing com-
pilers. ACM Trans. on Programming Languages 18 (1996) 477–518.

5. Hall, M.W., et al.: Experience Using the ParaScope Editor. Proc. of Symp. Prin-
ciples and Practice on Parallel Programming (1993)

6. Liao, S., et al.: Suif explorer: An interactive and interprocedural parallelizer. Proc.
of Symp. on Principles and Practice of Parallel Programming (1999)

7. Martorell, X., et al.: A Library Implementation of the Nano-Threads Programming
Model. Proc. of the 2nd Intern. Euro-Par Conf. (1996) 644–649

8. Omni OpenMP compiler project. http:/phase.hpcc.jp/Omni/
9. POP Esprit Project IST 2001-3307: Performance Portability of OpenMP.

http://www.cepba.upc.es/pop
10. Wolfe, M.: High performance compilers for parallel computing. Addison–Wesley

Publishing Company (1995)

Enhanced Congestion Control Algorithm
for High-Speed TCP

Young-Soo Choi, Sung-Hyup Lee, and You-Ze Cho

School of Electrical Engineering and Computer Science,
Kyungpook National University, Korea

{yschoi, tenetshlee, yzcho} @ee.knu.ac.kr

Abstract. Current TCP congestion control can be inefficient and un-
stable in high-speed wide area networks due to its slow response with
a large congestion window. Several congestion control proposals have
already been suggested to solve these problems. In this paper, we pro-
pose a new variant of TCP for a high-speed network, which combines
delay-based congestion control with loss-based congestion control. Our
simulation results show that the proposed scheme performs better than
the existing high-speed TCP protocols in terms of fairness, stability, and
scalability, while providing TCP friendliness at the same time.

1 Introduction

The demand for high-speed applications such as bulk-data transfer, storage area
network, and grid networking has increased. It, however, has been reported that
as the bandwidth-delay product continues to grow, TCP underutilizes the band-
width and it will eventually become a performance bottleneck itself [1]. Recently,
various schemes have been designed. Such schemes include HSTCP [1], STCP [2],
and BIC [3] and two properties have been considered: TCP friendliness and scal-
ability. This is to ensure that a protocol does not take away too much bandwidth
from TCP, while utilizing a bandwidth of high speed networks efficiently.

In this paper, we propose a new variant of HSTCP, called eHSTCP (enhanced
HSTCP), which is a hybrid scheme of loss-based congestion control and delay-
based congestion control. First, we develop mechanism which avoids the effect
of backward path congestion. Second, eHSTCP refines the Additive Increase
Multiplicative Decrease (AIMD) mechanism of HSTCP to enhance scalability,
TCP friendliness, stability, and fairness.

The remainder of this paper is organized as follows: Section II introduces
the eHSTCP protocol. Section III presents the simulation results, and finally
conclusions are given in Section IV.

2 eHSTCP Protocol

If network congestion occurs in the backward path, delay-based congestion con-
trol protocols may overestimate RTT and unnecessarily decrease the congestion

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 253–256, 2005.
c© IFIP International Federation for Information Processing 2005

254 Y.-S. Choi, S.-H. Lee, and Y.-Z. Cho

window. By using the TCP timestamp option, our mechanism obtains samples
of queueing delay on the forward and backward paths separately. Note that the
sender and receiver clocks do not have to be synchronized since we are only
interested in the relative time difference. We define the effective RTT (eRTT) as

eRTT = RTT − db,q (1)

db,q = db − min(db) (2)

where RTT is a newly measured round-trip time, db,q is the backward queueing
delay, db is a measured backward delay and min(db) is the minimum of all
measured backward delays. Consequently, the eRTT indicates a round trip time
when there is no backward path congestion.

Because previous research has shown that the HSTCP provides acceptable
performances, we adopt the HSTCP as our baseline congestion control algorithm
throughout this paper. In order to improve scalability, fairness, and stability,
the proposed scheme uses the RTT which has up-to-date information about
congestion levels and the HSTCP’s AIMD mechanism is modified as follows.

Since random noise in RTT measurements cannot be avoided in practice, we
use the RTT as a binary feedback signal in additive increase mechanism. To
prevent throughput degradation from the reverse cross-traffic, we define N ′ as
follows:

N ′ = (Expected − cwnd

eRTT
) × RTTmin = cwnd × df,q/eRTT (3)

where Expected is the current congestion window size divided by RTTmin (the
minimum of all measured RTTs) and df,q is the forward queue delay. Conse-
quently, according to the Little’s Law, N ′ indicates the measured backlog when
there is no backward queueing delay.

If the measured backlog (N ′) is lower than threshold (N∗), we assume that
the network is underutilized and the HSTCP’s congestion control algorithm is
used. When the network is fully utilized, eHSTCP behaves like TCP Reno.
eHSTCP stays at the fully utilized region longer, because eHSTCP does not
increase its window size as quickly as HSTCP does when the critical region is
reached. This mechanism not only reduces packet loss, but also improves sta-
bility by avoiding unnecessary decrease of the congestion window. Additionally,
this mechanism leaves a buffer space for other traffic and thus makes eHSTCP
TCP friendly. From the equation (3), since each source behaves like TCP Reno
at the same throughput for a given queueing delay, the proposed mechanism can
significantly correct the RTT fairness problem as compared with other protocols.

Setting (1-β) as RTTmin divided by RTTmax ensures that the buffer is empty
while preventing buffer underflow (for more detail, see [5]). To prevent link un-
derutilization and exclude the effect of backward pach congestion, eHSTCP uses:

1 − βeHSTCP =
RTTmin

eRTT
(4)

Note that we use eRTT instead of RTTmax. By inspecting the raw data from
our simulation results, we found that the measured RTTs are frequently smaller

Enhanced Congestion Control Algorithm for High-Speed TCP 255

than the maximum RTT when a packet loss occurs. The main reason behind
this phenomenon is TCP burstiness [4].

To provide TCP friendliness which is comparable to that of HSTCP, we em-
ploy the following compensation algorithm. After a packet loss, if βeHSTCP is
smaller than βHSTCP , eHSTCP reduces its congestion window using βeHSTCP

and it enters a safety check phase. At the same time, wdesg is calculated using
βHSTCP . During this safety check phase, eHSTCP does not increase its con-
gestion window but monitor the backlog. If N ′ exceeds N∗ in the safety check
phase, eHSTCP assumes that βeHSTCP is too aggressive and reduces its conges-
tion window to wdesg. Therefore, it takes one RTT time for eHSTCP to decrease
its window size to the size of HSTCP. Otherwise, after the safety check phase,
eHSTCP enters the additive increase phase.

3 Simulation Results and Discussion

We use ns simulator and the topology used for the simulation is dumbbell net-
work. For background traffic, web traffic, 25 small TCP flows with a limited
congestion window size under 64, and 4 long lived TCP flows are created in
both directions. We use N∗=10 and the safety check phase =5×RTTmax.

In order to evaluate bandwidth scalability, we measure utilization and the
average packet loss rate of the bottleneck link. So as to evaluate stability for
high-speed TCP, we use the sample standard deviation normalized by the average
throughput of high-speed flows. Table 1 shows that link utilization of eHSTCP is
relatively comparable to that of STCP. Also, eHSTCP shows a good performance
among all protocols under the packet loss rate evaluation criterion. Additionally,
we found that eHSTCP showed the best stability.

In this experiment, two high speed flows with a different RTT are used. The
RTT of flow 1 is 40ms, while we vary the RTT of flow 2 between 120ms and
240ms. Table 2 depicts that eHSTCP outperforms other high-speed protocols in
terms of RTT fairness.

Fig. 1 shows the percentage of the bandwidth shared by each flow type with
different bottleneck bandwidth. For 20Mbps, all high-speed TCP protocols show
similar TCP friendliness. As the bandwidth increases, the share of the bandwidth
taken by the background traffic is substantially reduced due to the TCP scala-
bility problem. Note that, under 2.5Gbps, eHSTCP flows achieve slightly higher
throughput than HSTCP flows. The increase in eHSTCP bandwidth shares is

Table 1. Comparison of utilization, fairness, packet loss ratio, and stability under

2.5Gbps bottleneck link

HSTCP STCP BIC eHSTCP

Link utilization 0.92 0.99 0.95 0.99
Packet loss ratio(%) 0.0197 0.1281 0.0206 0.0065
Normalized standard deviation 0.148 0.149 0.107 0.047

256 Y.-S. Choi, S.-H. Lee, and Y.-Z. Cho

Table 2. The throughput ratio of two high-speed flows over various RTT ratios under

1Gbps bottleneck link

HSTCP STCP BIC eHSTCP

RTT ratio = 3 42.46 111.45 12.03 3.88
RTT ratio = 6 197.80 341.65 84.65 4.77

high-speed reg. tcp web small unused

0

10

20

30

40

50

60

70

80

90

HSTCP STCP BIC eHSTCP

20Mbps

0

10

20

30

40

50

60

70

80

90

HSTCP STCP BIC eHSTCP

2.5Gbps

high-speed reg. tcp web small unused

0

10

20

30

40

50

60

70

80

90

HSTCP STCP BIC eHSTCP

20Mbps

0

10

20

30

40

50

60

70

80

90

HSTCP STCP BIC eHSTCP

20Mbps

0

10

20

30

40

50

60

70

80

90

HSTCP STCP BIC eHSTCP

2.5Gbps

0

10

20

30

40

50

60

70

80

90

HSTCP STCP BIC eHSTCP

2.5Gbps

Fig. 1. A comparison of TCP friendliness for various bandwidth networks

due to the better utilization of the available bandwidth. In most cases, eHSTCP
shows good TCP friendliness but we did not present simulation results with
various bandwidth here due to lack of space.

4 Conclusion

In this paper, we propose a new variant of TCP for a high-speed network which
combines delay-based congestion control with loss-based congestion control. We
define the effective RTT and adopt it to refine the HSTCP’s AIMD mechanism.
We have shown that the proposed scheme outperforms other high-speed proto-
cols about fairness, scalability, and stability, while offering TCP friendliness.

Acknowledgement

This work was supported in part by the ITRC of the Ministry of Information
and Communication (MIC), Korea.

References

1. S. Floyd, “HighSpeed TCP for Large Congestion Windows,” RFC3649, 2003.
2. T. Kelly, “Scalable TCP: Improving Performance in Highspeed Wide Area Net-

works”, ACM SIGCOMM Computer Communication Review, vol.33, pp. 83-91,
2003.

3. L. Xu, K. Harfoush, and I. Rhee, “Binary Increase Congestion Control for Fast,
Long Distance Networks,” In Proceedings of IEEE Infocom, 2004.

4. Y. Choi, K. Lee, and Y. Cho, “Performance Evaluation of High-Speed TCP Proto-
cols with Pacing,” Lecture Notes in Computer Science, 2004.

5. R. Shorten and D. Leith, “H-TCP: TCP for high-speed and long-distance networks,”
In Proceedings of the PFLDnet, 2004.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 257 – 260, 2005.
© IFIP International Federation for Information Processing 2005

Advanced Software On-Demand Based on Functional
Streaming

Jeong Min Shim, Won Young Kim, and Wan Choi

Electronics and Telecommunications Research Institute (ETRI), Daejeon, South Korea
{jmshim, wykim, wchoi}@etri.re.kr

Abstract. Streaming is a technology that enables either real-time or on-demand
distribution of multimedia contents over network. Recently streaming technol-
ogy has been applied onto applications, and many deployment tools for enter-
prise applications have been developed. Software streaming is a technology to
provide software whichever users need on-demand in real-time by using
streaming technology without downloading and installing a full package in ad-
vance before its use. Software streaming technology has many issues that are
application load time, network fault-tolerant and etc. In this paper, we discuss
issues for software streaming technology. Then, we propose a new SOD sys-
tem based on functional streaming called Advanced Software On-Demand
(ASOD) system. Also, we present schemes to solve issues that are application
load time and network fault-tolerant.

1 Introduction

Streaming is the process of playing application while it is still downloading [1] [2].
Streaming has been mostly found on streaming media that lets users listen to or view
the digitized contents such as sound, animation and video, as it is being downloaded.

Recently streaming technology has been applied onto applications, and many com-
panies have developed deployment tools for enterprise applications such as App-
Stream’s AppStream.NOW platform [3], Softricity’s SoftGrid platform [4], Stream
Theory’s AppExpress platform [5] and SoftOnNet’s Z!Stream [6]. Software stream-
ing is a technology to provide software whichever users need on-demand in real-time
by using streaming technology without downloading and installing a full package in
advance before its use.

Software streaming technology still has many issues that are application load time,
network fault-tolerant and etc. To solve these problems, we will define software by
differentiating environment for launching, basic function and additional functions.
Basic function is first and certainly necessary contents to launch an application. Ad-
ditional functions are contents for each component (a set of the menus).

In this paper, we discuss issues for software streaming technology, and present ad-
vanced Software On-Demand (ASOD) system based on functional streaming using
basic function and additional functions. Also, we present schemes to solve issues that
are application load time and network fault-tolerant.

258 J.M. Shim, W.Y. Kim, and W. Choi

2 Issues in Existing Software On-Demand (SOD) Service

In existing SOD system, the client requests page contents to the streaming server
(only, when the page contents are not found in the local cache) when an application
tries to process a function of the application streamed to execute. To get contents,
client will send one or more request messages to the streaming server. Operation of
an application is suspended until the client receives all required contents.

We performed experiments to measure necessary contents to launch an application.
Table 1 show results of Application Launching Size (ALS) for Linux Application. As
shown in Table 1, in all application, a lot of contents are required when the applica-
tion is launched. This fact implies that a client must send a lot of page requests.
Also, users must wait for a long time after they request service.

Network is one of the important issues in SOD service. If a client loses connection
with a streaming server, it is not able to request a page to the streaming server. If
users try to use the function which is not stored in a local cache, the application will
be destroyed or the client system may be crashed. Consequently, if network connec-
tion fails, the service has to be stopped although users can use a function which is
stored pages in a local cache.

Table 1. Application Launching Size (ALS) versus total size of an application

Application Application Launching Size Total size
CBtracker 3.1 MB, of total size 100% 3.1 MB
Bubble Shooter 6.03 MB, of total size 99% 6.1 MB
Abiword 4.6 MB, of total size 15.7% 29.4 MB
OpenOffice 98.3 MB, of total size 41.5% 236.3 MB

3 Advanced Software On-Demand Based on Functional Streaming

3.1 Architecture of the ASOD System Based on Functional Streaming

To provide SOD service based on functional streaming, preliminary work that ana-
lyzes an application is needed. First, we define new transmission unit between a
client and a streaming server, named Functional Unit (FUint). The FUnit consists of
contents for one or more menus. There are two kinds of FUnit: (1) basic FUnit and
(2) extra FUnit. Basic FUnit is first and certainly necessary contents to launch an
application. Extra FUnit is contents for each component (a set of the menus). We
analyze software execution and extract necessary information for functional stream-
ing. We should be able to extract this information by extracting statistical data from
simulations.

Figure 1 is architecture of client and streaming server based on functional stream-
ing. A client system in SOD system consists of the following components: (1)
Streaming Application (SA), (2) Event Hooker (EH), (3) Application Streaming File
System (ASFS) and (4) Streaming Data Manager (SDM). SA is an application run-
ning through SOD service. EH intercepts functionality, is selected by user, of an
application when network fault occurs. ASFS communicates with the streaming

 Advanced Software On-Demand Based on Functional Streaming 259

server to get FUnits. SDM stores FUnits and information for FUnits streamed from
the streaming server, and maintains information for all FUnits of an application. SDM
also maintains relationship between the FUnits and functionalities.

A streaming server consists of (1) Streaming Data Package (SDP) and (2) Data
Package Information (DPI). SDP is FUnits, are extracted through Software Analyzer,
for applications. DPI maintains information for application packages and FUnits. DPI
is used to find out FUnit which is corresponding to function required from the client.

Fig. 1. Architecture of client and streaming server in the ASOD system

3.2 Techniques in the ASOD System Based on Functional Streaming

As experimental result in section 2.1, most applications need contents, called basic
FUnit, above 40% of the total software size to launch an application. An application
cannot launch until basic FUnit completely are arrived. In existing SOD system, a
client sends page request message of several tens and hundreds to streaming server to
get basic FUnit. Therefore, whenever the client requests the page, the streaming
server searches it and then transmits it to the client.

In the proposed system, application load time can be reduced by using basic FUnit.
When a client requests a software streaming service to the streaming server, a stream-
ing server sends immediately basic FUnit and FUnit information for the application to
launch the application to the client without another request of the client. Accordingly,
application load time must be reduced significantly.

The proposed SOD system supports network fault-tolerant. If a client loses its con-
nection to the streaming server, the client will be notified of the situation and client
may continuously use the application with the functionality that it might have. If a
menu clicked by a user is not in a local cache, process for the menu is ignored by EH.
Consequently, users can continuously use the application, although network fault
occurs.

In the proposed SOD system, we use a prefetching technique to reduce an applica-
tion suspension time. The prefetching is a technique that sends the FUnit to be ex-
pected from the streaming server to the client without user’s demand in advance.
There are three different ways to apply prefetching: (1) prediction by producers, (2)

260 J.M. Shim, W.Y. Kim, and W. Choi

prediction by static statistics, and (3) prediction by dynamic statistics. Prediction by
producers is that the order of FUnits for the application is decided by producers with-
out any statistics. A streaming server sends FUnit to a client in sequence when a ser-
vice is begun by request of a user. Prediction by static statistics is that content pro-
viders or packers decide a transmission-priority by using statistics collected from each
user. When an application through the SOD service is launched, the streaming server
first sends basic FUnit, and extra FUnits are transmitted by decided priority after.
After a priority is decided, it doesn’t change. Prediction by dynamic statistics is simi-
lar to prediction by static statistics. But, prediction by dynamic statistics updates a
priority of extra FUnits by using statistics continuously collected from each user that
uses an application provided through SOD service.

4 Conclusion

In this paper, we proposed advanced SOD system based on functional streaming for
more efficient SOD service. In the proposed SOD system, a transmission unit be-
tween a client and streaming server is FUnit. We also presented schemes to solve
issues in existing SOD system. To reduce application load time, a streaming server
sends basic FUnit without to wait for request message of a client when a service be-
gins. The proposed SOD system supports network fault-tolerant that users can con-
tinuously use functions which is stored in the local cache although network fault oc-
curs. Therefore, we introduce prefetching technique based on statistical information
to reduce the application suspension time significantly.

References

1. Bitpipe, “Streaming Media Services,” http://www.bitpipe.com.
2. California Software Labs (CSWL), “Basic Streaming Technology and RTSP Protocol,”

http://www.cswl.com.
3. AppStream Inc., “AppStream Technology,” http://www.appstream.com.
4. Softricity Inc., “The SoftGrid Application Virtualization Platform,” http://www.softricity.

com/home/index.asp.
5. Stream Theory, “The Enterprise Software Distribution Platform,” http://www.streamtheory.

com.
6. SoftonNet Inc., “Z!Stream Technology,” http://www.softonnet.com.

Can Out-of-Order Instruction Execution

in Multiprocessors Be Made
Sequentially Consistent?

Lisa Higham1 and Jalal Kawash2

1 Department of Computer Science,
The University of Calgary, Canada

higham@cpsc.ucalgary.ca
2 Department of Computer Science,

American University of Sharjah, UAE
jkawash@aus.edu

Abstract. We investigate all possible combinations of re-ordering of
read and write instructions and their effects on the correctness of pro-
grams that are designed for sequential consistency. With certain com-
binations of re-orderings, any program that accesses shared memory
through only reads and writes and that is correct assuming sequential
consistency, can be transformed to a new program that does not use any
explicit synchronization, and that remains correct in spite of the instruc-
tion re-ordering. With other combinations of re-ordering, such transfor-
mations do not exist, without resorting to explicit synchronization.

1 Introduction

Designers of concurrent algorithms typically assume sequential consistency, a
consistency model that is formalized by Lamport [11]. Sequential consistency
requires that memory operations of all processors appear to be “executed in some
sequential order, and the operations of each processor appear in this sequence
in the order specified by its program” (program order). Sequential consistency
is intuitive, but disallows many possible hardware and software optimizations.

Adve and Gharachorloo [1] identify several optimization techniques that
cause instructions to be re-ordered so that they appear to execute out of program
order. This is called instruction re-ordering. Write buffers with read bypasses,
overlapping writes, non-blocking reads, and optimizing compilers can lead to
all forms of instruction re-ordering. They also cite many commercial multipro-
cessors that utilize instruction re-ordering, such as the AlphaServer 8200/8400,
Cray T3D/T3E, and SparcCenter 1000/2000 (See Figure 1). Other examples
include the Java Virtual Machine (JVM), IBM PowerPC, Intel Itanium, and
.Net. Instruction re-ordering aims at improving the system’s performance but it
relaxes sequential consistency, making the job of programming multiprocessors
even harder.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 261–265, 2005.
c© IFIP International Federation for Information Processing 2005

262 L. Higham and J. Kawash

Architecture write-read write-write read-write read-read
re-ordering re-ordering re-ordering re-ordering

IBM 370 [1]
√

SPARC TSO [14,7]
√ √

[10]

SPARC PSO [14,7]
√ √ √

[10]
√

[10]

SPARC RMO [14,5]
√ √ √ √

IBM PowerPC [2]
√ √ √ √

DEC Alpha [3,5]
√ √ √ √

JVM [12,6]
√ √ √ √

Intel Itanium[9]
√ √ √ √

.Net [13]
√ √ √ √

Fig. 1. Examples of some commercial systems that utilize instruction re-ordering

Multiprocessor machines that incorporate instruction re-ordering are also
equipped with more powerful instructions than reads and writes, such as read-
modify-write and memory barrier instructions. These synchronization primitives
can be used to enforce orderings on instructions that otherwise might be re-
ordered causing incorrect computation. Using these powerful instructions, how-
ever, is expensive; excessive use can result in inefficient implementations, possibly
defeating the purpose of instruction re-ordering altogether.

Other related studies (see the full version of the paper for a bibliography [8])
provide programming strategies for high performance multiprocessors most of
which rely on the wise usage of synchronization.

2 Summary of Results

We assume that multiprocessors are coherent [4], requiring execution order to
maintain program order of instructions applied to the same memory location. If
a read of one memory location precedes in program order a write to a different
memory location and this read appears after this write in execution order, this is
called read-write re-ordering. Reordering types write-read, write-write, and read-
read are defined similarly. Call a shared memory multiprocessor program whose
shared memory consists of only atomic locations (that is, variables that support
only read and write instructions) a (read/write) multi-program. The fundamental
question guiding this work is:

Under what conditions is there a general transformation that transforms
any read/write multi-program that is correct under sequential consis-
tency to another read/write multi-program that is still correct in spite
of possible instruction re-ordering?

Such a transformation is called a read/write transformation and constitutes
inserting only additional read and write operations to a given read/write multi-
program, which solves some problem P under sequential consistency, but without

Can Out-of-Order Instruction Execution in Multiprocessors 263

altering its original semantics. Hence, the transformed multi-program is also a
read/write multi-program. The purpose of these additions is to restore program
order and maintain sequential consistency in spite of instruction re-ordering.
Since the semantics of the original program are maintained, the transformed
program still solves problem P .

single type two combinations three combinations

read-read
√

read-read, write-write
√

read-read, write-write, write-read ×
write-write

√
read-read, read-write × read-read, write-write, read-write ×

read-write
√

read-read, write-read × read-read, write-read, read-write ×
write-read

√
read-write, write-read

√
write-write, read-write, write-read

√
write-write, write-read

√
write-write, read-write

√

Fig. 2. Summary of results

The results of this investigation are summarized in Figure 2. The possibilities
(represented by

√
) in Figure 2 indicate the existence of a general read/write

transformation for any sequentially consistent program to a program that is still
correct in spite of the indicated instruction re-ordering combination.

The impossibilities of Figure 2 (represented by ×) indicate that there is no
general read/write transformation for the indicated combinations of instruction
re-ordering. That is, any read/write transformation fails to transform at least one
multi-program that is known to be correct for sequential consistency. Such gen-
eral transformations for the indicated combinations of instruction re-orderings
must augment the specified program with explicit synchronization operations.

More precisely, let A be an arbitrary read/write multi-program that solves a
problem P , under sequential consistency. The results of our research are:

1. For any combination of re-ordering types that excludes read-read re-ordering,
there exists a read/write transformation, which transforms A to a read/write
program A′ that solves P in spite of the re-ordering. The transformation is
general; it is correct for any read/write multi-program under any combina-
tion of read-write, write-read, and write-write re-orderings.

2. The exclusion of the read-read re-ordering is sufficient but not necessary.
For any combination of read-read and write-write re-ordering only, such a
read/write transformation still exists.

3. If both read-read and read-write (or both read-read and write-read) re-
ordering combinations are possible, there is no general read/write trans-
formation. Any correct general transformation must use stronger operations
than reads and writes, such as read-modify-write and memory barrier in-
structions, for at least some programs.

264 L. Higham and J. Kawash

3 Conclusion

The transformations we used are simple and general; they can be applied to any
read/write multi-program that is correct for sequential consistency. They are also
optimal for general transformations — these that apply to any multi-program
that is correct for sequential consistency. However, optimality for general trans-
formations does not necessarily imply optimality for individual multi-program
instances. When given a fixed instance, it may be possible to apply further
optimizations that exploit information from the given multi-program and the
problem it solves. Such information (from both programs and problems) is un-
available to general transformers.

Our results imply that the IBM PowerPC, DEC Alpha, JVM, and SPARC
TSO, PSO, and RMO (Figure 1) require the use of explicit synchronization in
order to solve certain problems. Hence, one of our future research directions is to
augment the target program with memory barrier instructions and to minimize
the number of such instructions.

References

1. S. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial.
IEEE Computer, pages 66–76, December 1996.

2. F. Corella, J. Stone, and C. Barton. A formal specification of the PowerPC shared
memory architecture. Technical Report RC18638, IBM, 1994.

3. C. C. Corportaion. The Alpha Architecture Handbook. Compaq Computer Corpo-
ration, 1998. Order number: EC-QD2KC-TE.

4. M. Frigo. The weakest reasonable memory model. Master’s thesis, Department of
Electrical Engineering and Computer Science, MIT, 1998.

5. L. Higham, L. Jackson, and J. Kawash. Specifying memory consistency of write
buffer multiprocessors. Technical Report 2004-758-23, Department of Computer
Science, The University of Calgary, August 2004. Submitted for publication.

6. L. Higham and J. Kawash. Java: Memory consistency and process coordination
(extended abstract). In Proc. 12th Int’l Symp. on Distributed Computing, Lecture
Notes in Computer Science volume 1499, pages 201–215, September 1998.

7. L. Higham and J. Kawash. Memory consistency and process coordination for
SPARC multiprocessors. In Proc. of the 7th Int’l Conf. on High Performance Com-
puting, Lecture Notes in Computer Science volume 1970, pages 355–366, December
2000.

8. L. Higham and J. Kawash. Impact of instruction re-ordering on the correctness
of shared-memory programs. Technical Report 2005/794/25, Department of Com-
puter Science, The University of Calgary, July 2005.

9. Intel Corporation. Intel Itanium architecture software developers manual, volumes
1-3. 2002.

10. J. Kawash. Limitations and Capabilities of Weak Memory Consistency Systems.
Ph.D. dissertation, Department of Computer Science, The University of Calgary,
January 2000.

11. L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. on Computers, C-28(9):690–691, September
1979.

Can Out-of-Order Instruction Execution in Multiprocessors 265

12. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 1997.

13. A. D. Robison. Memory consistency and .Net. Dr. Dobb’s Journal, pages 46–50,
April 2003.

14. D. Weaver and T. Germond, editors. The SPARC Architecture Manual version 9.
Prentice-Hall, 1994.

Efficiently Passive Monitoring Flow Bandwidth�

Zhiping Cai, Jianping Yin, Fang Liu, Xianghui Liu, and Shaohe Lv

School of Computer, National University of Defense Technology,
Changsha, 410073, China

caizhiping nudt@163.com, jpyin@nudt.edu.cn,

fangl nudt@163.com, liuxh@tom.com, chi.shaohe@gmail.com

Abstract. Using the flow-conservation law, we could reduce the number
of activated monitor agents used to monitor link bandwidth usage. In
this paper, we address the problem of efficiently passive monitoring flow
bandwidth based on flow-conservation, which could be reduced to weak
vertex cover problem. And the weak vertex cover problem is NP-hard.
We give an approximation algorithm with approximation ratio 2 to solve
the problem. The effectiveness of our monitoring algorithm is validated
by simulations evaluation over a wide range of network topologies.

1 Introduction

Bandwidth utilizations are critical for numerous important network management
tasks. Some novel tools and infrastructures for measuring network bandwidth
have been developed and proposed by researchers and industries.

The number of placed monitors of a monitoring system should be kept as
small as possible in order to reduce the deployment cost and the actual monitor-
ing operating cost [1]. Several measurements over backbone routers show each
IP router satisfies a flow-conservation law that, the sum of the traffic flowing
into router is approximately the same as those of the traffic flowing out [2]. The
problem of efficiently monitoring the network flowing based on flow-conservation
could be reduced to the weak vertex cover problem.

The paper is structured as follows. The weak vertex cover problem is brought
forward, and some approximation results for the weak vertex cover problem are
listed in the section 2. In next section, we give an approximation algorithm to
solve the weak vertex cover problem with approximation ratio 2. The effective-
ness of our monitoring algorithm is validated by simulations evaluation over a
wide range of network topologies in section 4. And we depict our further research
in the last section.

2 Weak Vertex Cover Problem

The problem of efficiently passive monitoring the network flowing based on flow-
conservation could be reduced to the weak vertex cover problem, which is NP-
hard [2],[3].
� This work is supported by the National Natural Science Foundation of China under

Grant No. 60373023.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 266–269, 2005.
c© IFIP International Federation for Information Processing 2005

Efficiently Passive Monitoring Flow Bandwidth 267

Definition 1. (Weak Vertex Cover) Given an undirected graph G = (V, E),
where ∀v ∈ V , d(v) ≥ 2 holds, we say S ⊆ V is a weak vertex cover Set of
G, if and only if every edge in G can be marked by performing the following
three steps:

(1) Mark all edges that are incident on vertices in S;
(2) Mark the edge if it is the only unmarked edge among all of the edges that

are incident on the same vertex;
(3) Repeat step (2) until no new edge can be marked.

For solving the problem of finding the minimum weak vertex cover set, Xi-
anghui Liu et al. [3] brought forward a greedy approximation algorithm which
gives an approximation ratio 2(1 + ln d), where d = maxv∈V {d(v)}. And Xi-
anghui Liu et al. [4] proved that the weak vertex cover problem is NP-complete.
Yong Zhang et al. [5] gave an approximation algorithm with approximation ra-
tio 1 + ln d. Zhiping Cai et al. [6] gave an approximation preserving reduction
from the vertex cover problem to the weak vertex cover problem. Due to this
reduction, it implied that it is difficult to get an approximation algorithm with
approximation ratio small than 2.

3 An Approximation Algorithm

We give a 2-approximation algorithm for the weak vertex cover by using the
primal-dual method for approximation algorithms, which has been used to derive
approximation algorithms for network design problems [7-9].

At the beginning, we give some inequalities that will be needed in proving
the performance guarantees of the algorithms and in giving the integer program-
ming formulation. In fact, we could get different primal-dual algorithms by using
different integer programming formulation [9].

Given a subset S of vertices, let E[S] denote the subset of edges that have
both endpoints in S. Let G[S] denote the subgraph (S, E[S]) induced by G, and
let ds(v) denote the degree of v in G[S]. We let b(S) = |E[S]| − |S| + 1 and
b(V) = |E| − |V |+ 1. Observe that if F is a weak vertex cover for G, then F ∩S
is clearly a weak vertex cover for G[S]. Hence we have following theorem. The
details of this proof are omitted due to space limitations.

Theorem 1. Let F be any weak vertex set. Then for any S ⊆ V , E[S] �= 0,
∑

v∈F∩S

(ds(v) − 1) ≥ |E[S]| − |S| + 1 = b(S)

By Theorem 1, the integer programming formulation of the weak vertex cover
problem is the following:

Min
∑

v∈V

wvxv

268 Z. Cai et al.

Subject to:

(IP)
∑
v∈S

(ds(v) − 1)xv ≥ b(S) S ⊆ V, E[S] �= 0

xv ∈ {0, 1} v ∈ V.

We construct a feasible solution to the dual of the linear programming relax-
ation of (IP). The linear programming relaxation is

Min
∑

v∈V

wvxv

Subject to:

(LP)
∑
v∈S

(ds(v) − 1)xv ≥ b(S) S ⊆ V, E[S] �= 0

xv ≥ 0 v ∈ V.

And its dual is

Max
∑
S

b(S)ys

Subject to:

(D)
∑
v∈S

(ds(v) − 1)ys ≤ wv v ∈ V

ys ≥ 0 S ⊆ V, E[S] �= 0.

Then an approximation algorithm is given as follows:
Algorithm WeakCover (G = (V, E)):

1. y = 0;F = 0;l = 0;
2. V ′ = V ;E′ = E;
3. While F is not a WVC for G

(a) l = l + 1;
(b) Recursively remove degree one vertices and incident edges from V ′ and

E′;
(c) S = Endblock(V ′, E′);
(d) Increase yS until ∃vl ∈ S, s.t.

∑
T :vl∈T (dT (vl) − 1)yT = wvl

(e) F = F ∪ {vl}
(f) Remove vl from V ′ and attached edges from E′.

4. For (j = l;j > 0;j −−)
(a) if F − {vj} is a WVC then F = F − {vj}

5. F ′ = F

And the Endblock procedure is defined as follows:

Procedure Endblock (V ′, E′):

1. Return the vertices of an endblock of (V ′, E′);

Note that the worst-case time complexity of the algorithm can be shown to be
O(|V ||E|).And the algorithm computes a 2 approximation for the Weak Vertex
Cover problem.The details of this proof are omitted due to space limitations.

Efficiently Passive Monitoring Flow Bandwidth 269

4 Simulations

The effectiveness of our monitoring algorithm is validated by simulations eval-
uation over a wide range of network topologies generated using the Waxman
Model [10]. Simulation result has been omitted due to paper size limitations and
the simulation shows the our proposed algorithmic solutions are not only theo-
retically sound but also they could give significant benefits over naive solutions
in practice for a wide variety of realistic network topologies.

5 Conclusions

In this paper, we have addressed the problem of efficiently passive monitoring
flow bandwidth. This problem could be abstracted to the weak vertex cover
problem, which is NP-hard. We have proposed a 2-approximation algorithm to
solve Weak Vertex Cover problem. Finally, we have verified the effectiveness of
our approximation algorithms through simulations evaluation.

Further research would be conducted to exploit knowledge of traffic flows in
the network to further reduce the required overhead for monitoring flow band-
width.

References

1. Kyoungwon Suh, Yang Guo, Jim Kurose, and Don Towsley. Locating Network
Monitors: Complexity, Heuristics, and Coverage. In Proc. IEEE INFOCOM 2005.

2. Breitbart Y., Chan CY., Garofalakis M., Rastogi R., Siberschatz A.: Efficiently
Monitoring Bandwidth and Latency in IP Networks. In Proc. IEEE INFOCOM
2001.

3. Xianghui Liu, Jianping Yin, Lele Tang: Analysis of Efficient Monitoring Method
for the Network Flow. Journal of Software, 2003,14(2): 300-304(in Chinese with
English abstract).

4. Xianghui Liu, Jianping Yin, Xicheng Lu: A Monitoring Model for Link Bandwidth
Usage of Network Based on Weak Vertex Cover. Journal of Software, 2004,15(4):
545-549(in Chinese with English abstract).

5. Yong Zhang and Hong Zhu: Approximation Algorithm for Weighted Weak Vertex
Cover. Journal of Computer Science and Technology, 2004,19(6): 782-786.

6. Zhiping Cai, Jianping Yin, Fang Liu, Xianghui Liu, Shaohe Lv: Efficiently Moni-
toring Link Bandwidth in IP Networks. In Proc. IEEE GLOBECOM 2005.

7. Dorit S. Hochbaum: Approximation Algorithm for NP -Hard Problems. PWS Pub-
lishing Company,1997.

8. A. Becker and D. Geiger: Approximation Algorithms for the Loop Cutest Problem.
In Proc. 10th Conference on Uncertainty in Artificial Intelligence.

9. F. A. Chudak, M. X. Goemans, D. S. Hochbaumn, and D. P. Williamson: A Primal-
Dual Interpretation of Two 2-Approximation Algorithms for the Feedback Vertex
Set Problem in Undirected Graphs. Operations Research Letters, 1998, 22 :111-118.

10. B.M.Waxman: Routing of Multipoint Connections. IEEE Journal on Selected Areas
in Communications, 1988, 6(9):1617-1622.

A Heuristic for Scheduling Parallel Programs
with Synchronous Communication Model
in the Network Computing Environments

Mingyu Zhao and Tianwen Zhang

School of Computer Science and Technology Harbin, Institute of Technology,
Harbin 150001,China

zhmy@21cn.com

Abstract. Most heuristics for scheduling address asynchronous com-
munication DAG, but they are not suitable for the synchronous ones.
The proposed PRGSC algorithm avoids the deadlock that is caused by
the synchronous communication, but also it can alleviate impact of syn-
chronous communicating delay. Simulation shows that the PRGSC al-
gorithm has better performance than the CASC algorithm which deals
with the same type of problems.

1 Introduction

Scheduling problem is fundamental and highly important in the parallel system
research domain [1]. Most of scheduling heuristics target to the asynchronous
scheduling problems. But applications in the network computing environment
may depend on the synchronous communication to ensure the reliability. Never-
theless, synchronization introduces delay for the sender. Furthermore, synchro-
nization may result in deadlock situations between communicating tasks.

With regards to synchronous scheduling, there have been few researches and
algorithms proposed [3, 4]. Although these algorithms studied deadlock detec-
tion, they can merely manage the direct deadlock between processors, but not
the circular deadlock among multiprocessors.

This paper proposed a heuristic: Parameters Relation Graph based Syn-
chronous Clustering (PRGSC) for the synchronous scheduling problems. It can
fully detect and avoid the deadlock situation, while has better scheduling quality.

2 Definitions

Parallel applications can be depicted as weighted Directed Acyclic Graph, G =
(V,E, τ, β), where V = {n1, n2, . . . , nv} represents the set of tasks to be executed,
and the weighted, directed edges (ni, nj) ∈ E represents communication between
tasks. The weight of task n is w(n), representing the execution time. Edge (ni, nj)
represents a message sent from ni to nj , and the weight of the edge refers to the
message transportation time, denoted β(ni, nj). We use tlevel(ni) + blevel(ni)

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 270–273, 2005.
c© IFIP International Federation for Information Processing 2005

A Heuristic for Scheduling Parallel Programs 271

to evaluate node ni’s relevant importance, where tlevel and blevel are defined in
[1]. The execution of task can be divided into three phases: receiving, computing
and sending. Therefore, four attributes are required to measure the start time
and finish time of these three phases:

Definition 1. r(v) is the time that v starts receiving messages.

Definition 2. R(v) is the time that v finishes receiving messages, and it is also
the start time of computing phase.

Definition 3. s(v) is the time that v starts sending messages, and it is also the
finish time of computing phase.

Definition 4. S(v) is end of the sending phase of a task when it receives ac-
knowledgments from all the recipient tasks.

These values can be evaluated by the equations defined in [3].

3 The Proposed Heuristic

3.1 Selection of Nodes and Processors

In the synchronous scheduling, unlike the asynchronous one, scheduling a node
changes not only the time properties of unscheduled nodes, but also those of
scheduled nodes. Thus, except for decreasing the start time of unscheduled
part, every scheduling step has to evaluate the impact on scheduled part in
synchronous model.

Therefore, PRGSC tries four methods of scheduling a node in every schedul-
ing step:

1. Among the edges between scheduled nodes and ready nodes, choose the one
(np, nf) with highest priority. An edge’s priority is defined as the sum of two
nodes’ priorities.

2. Choose np with highest priority among the scheduled nodes which have ready
child nodes, firstly; then, select the critical child node nf in the ready child
nodes set of np.

3. Choose nf with highest priority among the ready nodes, then select the
critical parent nodes np in the set of parent nodes of nf .

4. Assign the ready node with highest priority onto a new processor without
changing the makespan.

PRGSC compares each zeroing result and uses the one that produces the
lowest makespan and no deadlock in each step. PRGSC zeros the edge (np, nf)
by adding nf into cluster clust(np), i.e., setting nf rightly behind the last node
nl. If nl isn’t a parent of nf in the original DAG, produce a pseudo-edge (nl, nf)
with weight of zero.

272 M. Zhao and T. Zhang

3.2 Deadlock Detection

Definition 5. Deadlock is a status. Under this status, there is a subset D of
tasks. For every element that belongs to D, its complete time is decided by the
others. That is, D = {vi : 1 ≤ i ≤ m,m ≥ 2} ∈ V , for every task vi ∈ D,
S(vi) = fi(S(v1), S(v2), S(vi−1), S(vi+1), . . . , S(vm)), where fi is a function.

Every step changes the scheduling by zeroing a certain edge or adding a
pseudo-edge. Represent the scheduled graph of step k with Gk(V,Ek). Say that
assign node nf to processor P at step k, and nl is the last node on P at step
k − 1, then Ek = Ek−1 − (ni, nf) + (nl, nf), where ni ∈ P , (ni, nf) ∈ Ek, and
β(nl, nf) = 0. Provide the definition accordingly:

Definition 6. In the kth step, Parameters relation graph is G
′
k(V

′
, E

′
k), where

the elements of set V
′

are values of r,R, s and S of nodes n in V , denoted as
n.r, n.R, n.s and n.S respectively. If the value of element a has some effect on
that of element b, then (a, b) ∈ E

′
k. All possible members of E

′
k are listed below:

1. {(n.r, n.R), (n.R, n.s), (n.s, n.S)} ⊆ E
′
k, n ∈ V .

2. If (n, c) ∈ Ek and β(n, c) �= 0, then {(n.s, c.R), (c.r, n.S)} ⊆ E
′
k.

3. If (n, c) ∈ Ek and β(n, c) = 0, then (n.S, c.r) ∈ E
′
k.

According to definition 1-4 and the assumption that tasks on the same pro-
cessor have no communication cost, E

′
k of step k can be incrementally derive

from E
′
k−1: E

′
k = E

′
k−1 − {(ni.s, nf .R), (nf .r, ni.S)} + {(nl.S, nf .r)}.

Due to the construction scheme, we can derive two theorems following:

Theorem 1. G
′
k includes a circuit, iff the current schedule is deadlock.

Theorem 2. The schedule is deadlock, iff there is a circuit in G
′
k through nf .r.

For the sake of space, the proofs are ignored.
As it need to traverse the PRG G

′
k breadth-first to compute all the param-

eters and determine if exist a circuit in current schdule, the complexities of
parameters computing and deadlock detection are both O(v+e). For every node
scheduling, deadlock determination and time parameters update are the major
operations. Thus, the complexity of PRGSC is O(v(v + e)).

4 Simulation Experiment

250 random generated graphs are used for validating the performance of PRGSC.
These graphs are separated into 5 groups according to their CCR [5], values of
which are 0.1, 0.5, 1.0, 2.0 and 10.0 respectively. Each group has 50 graphs, which
are separated into 10 subgroups according to the number of nodes, valuing from
50 to 500, 50 incremental. Every subgroup contains 5 graphs.

Among all the previous researches, CASC is most similar to ours, but it can
only determine and avoid the direct deadlock between 2 processors. We replace
the deadlock detection function in CASC with the one mentioned above. Table 1

A Heuristic for Scheduling Parallel Programs 273

Table 1. The average improving comparisons for random generated DAGs

Size CCR=0.1 CCR=0.2 CCR=1.0 CCR=2.0 CCR=10.0

50 10.13% 10.08% 13.78% 12.56% 9.28%
100 4.58% 6.69% 13.11% 11.70% 17.33%
150 6.31% 5.76% 10.33% 9.02% 9.28%
200 4.65% 7.72% 5.75% 10.36% 12.23%
250 2.08% 5.21% 6.05% 5.38% 9.51%
300 -0.07% 3.55% 5.55% 7.18% 7.36%
350 2.11% 3.15% 6.50% 5.15% 6.39%
400 3.03% 1.73% 3.80% 6.67% 5.49%
450 3.30% 3.78% 4.75% 4.45% 5.35%
500 3.47% 3.82% 3.32% 5.95% 6.82%

is the comparison of the scheduling quality of PRGSC and modified CASC. The
measures in the table are the average makespan improvement of the 5 graphs in
every subgroup. We can conclude from these experiment results that PRGSC has
better performance than CASC consistently, except for the situation of CCR=0.1
and graph size of 300.

5 Conclusions

Parallel computing in the synchronous communication environment has differ-
ent impacts on scheduling method. This paper presents a scheduling algorithm
used for parallel application in synchronous communication, proves the validity
of the deadlock determination method analytically and its efficiency experimen-
tally. PRGSC has lower complexity, breaks the limitation of direct deadlock
determination and has better scheduling result than CASC.

References

1. Y.K. Kwok and I. Ahmad, Static Scheduling Algorithms for Allocating Directed
Task Graphs to Multiprocessors, ACM Computing Surveys, Dec.1999, vol.31, no.4,
pp. 406–471.

2. A. Gerasoulis and T. Yang, A Comparison of Clustering Heuristics for Scheduling
DAGs on Multiprocessors, J. Parallel and Distributed Computing, Dec. 1992, vol.
16, no. 4, pp. 276–291.

3. D. Kadamuddi and J. Tsai, Clustering Algorithm for Parallelizing Software System
in Multiprocessors, IEEE Transactions on Software Engineering, Apr.2000, vol. 26,
pp. 340–361.

4. B.R. Arafeh, A Task Duplication Scheme for Resolving Deadlocks in Clustered
DAGs, Parallel Computing, 2003, vol. 29, pp. 795–820.

5. Y.K. Kwok and I. Ahmad, Benchmarking and Comparison of the Task Graph
Scheduling Algorithms, J. Parallel and Distributed Computing, Dec. 1999, vol.59,
no. 3, pp. 381–422.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 274 – 277, 2005.
© IFIP International Federation for Information Processing 2005

A Formal Model for Network Processor Workload*

Xiao Ming Zhang, Zhi Gang Sun, and Min Xuan Zhang

School of Computer, National University of Defense Technology,
410073, Changsha, China

xiaomingzone@gmail.com

Abstract. Due to the heterogeneity of network processor architectures and
constantly evolving network applications, it is currently a challenge to
characterize the network processor workloads. In this paper, we formally model
the task-level workloads of network processors as reactive dataflow process
network (RDPN). RDPN is a suitable model of computation for formally
describing the behaviors of packet-level parallel processing and event
interaction with control point of network processors. We extend the expressive
capability of RDPN by using three transformations (i.e., clustering,
decomposing and duplicating) to analyze the model and support the further
design space exploration of network processors.

1 Introduction

A router in core/edge networks is functionally split into control plane (also known as
control point) and data plane. Network processors (NPs) are usually located on data-
plane of routers and implements functional processing tasks, i.e. packet forwarding,
security control and QoS (Quality of Service). Control plane and data plane of routers
are interacted with each other in event-driven mode. A special case of interactive
transaction would be that control plane constantly updates the forwarding tables of the
data plane. These packet processing tasks and interactive transactions are called
workloads of NPs. Due to the heterogeneity of network processor architectures and
constantly evolving network applications, it is currently a challenge to characterize
the network application workload.

Applications based on dataflow processing can be formally modeled by some MoC
(Model of Computation) [1, 2, 3, 4, 5, 6]. In this paper, we introduce a novel dataflow
process network (DPN) [7] model called Reactive DPN (RDPN) to model application
workloads in NP domains. In RDPN model, reactive interfaces are added to basic
DPN process and used for describing interactive events between control and data
planes, while packet dataflow processing in data plane is still modeled as basic DPN.
The remarkable work on this model is that we introduce three transformations (i.e.,
clustering, decomposing and duplicating) to analyze the model and support the further
development of network processor design space.

* The work has been co-supported by National Sciences Foundations of China (NSFC) under

grant No.2003CB314802�Hi-Tech Research and Development Program of China (863)
under grant No.2003AA115130.

 A Formal Model for Network Processor Workload 275

The remainder of this paper is structured as follows. Section 2 presents the basic
structure of our RDPN model. Section 3 then describes three transformations of
RDPN. Section 4 explores some implementations of RDPN. Finally, we draw some
conclusions in Section 5.

2 RDPN Model

The NP application workload represents a serial of packet processing functions. It can
be naturally represented by DPN model, which makes parallelism and communication
within an application explicit. A single functional task in the workloads is defined as a
process and communicates with other processes through unbounded FIFO channels.
All elements stored on the channels will be abstracted as tokens, including packets,
events and control information.

However, DPN model has vulnerability to describing interactive behaviors
between data plane and control plane because of its dataflow-aware feature. A DPN
process referring to a task of data plane interacts with control plane through control
channels, and with other process of data plane through data channels. We call this
special DPN model as reactive DPN (RDPN). A single process model is illustrated in
Fig. 1(a), where COCI, respectively denote the input and output control channels
between data and control planes, and DODI, respectively denote input and output
dataflow channels in data plane. The process consists of read channel actions, write
channel actions and a set of internal function actions { L210 ,, fff } mapping input

channels to output ones.

3p
4p

2p

1psrc snk

cp

1c

2c

3c

4c

5c

6c

7c

8c

CI CO

DODI

L210 ,, fff

Fig. 1. The structure of our RDPN model, where (a) is the structure of a single process and
(b) is the whole RDPN model of the packet processing structure in NP domains

Within our single process model, there is an implicit controller with the function
firing rules and blocking read restriction drawn with dashed boxes. The controller
itself checks firing rules of every function in a sequential order with blocking reads.
When a function is activated, it reads input channels with blocking read and write
output channels with non-blocking write. When all input arguments are present the
function will be evaluated instantaneously. After evaluating the function, the
controller checks the firing rules again until a valid firing is found.

From the single process model, the NP workloads can be described by the RDPN
model, which is defined as multiple processes connected with each other according to

276 X.M. Zhang, Z.G. Sun, and M.X. Zhang

the process network topology. Our RDPN is an open system, which interacts with
external environments through channels. Fig. 1(b) shows an example of RDPN for NP
workloads, where src and snk processes respectively denote input and output packet
streams of data plane, while cp process denotes the control plane. The packet stream
kernel represents the packet processing workload, consisting of process 1p ~ 4p and
channel 3c ~ 6c . Channel 1c , 2c , 7c and 8c are environmental interactive channels.

When there is interaction between data and control planes, the behaviors of our
RDPN model act as DPN. There are two types of interactive events between data and
control plane: down events are used for control plane downloading control
information (i.e. NP configuration or routing update) to data plane; up events are used
for data plane uploading local information (i.e. local states or packets) to control
plane. Down events will disrupt the pipelining of packet flow and deadlines of packet
processing, while up events not do so. We handle these two types of interactive events
in two different ways: (1) the up events are only treated in the same way as normal
dataflow throughout the RDPN. (2) we use event reactive point (ERP) to control the
moment when down events would be applied within the data plane. In more details,
before processing an input event the packet input to the network conceptually needs to
be frozen and all data must be processed internally. Only when all data has been
processed, the event can be applied and the dataflow can be continued.

3 Transformation of RDPN

RDPN model is constructional and hierarchical. We address three transformations of
RDPN: clustering, decomposing and duplicating. Clustering decomposing are
used to support hierarchical modeling. Duplicating is used to develop task-level
parallelism on the network processor architectures.

When multiple communicate with each other frequently or exchange a
large amount of dataflow between them, clustering these processes into a single
process can avoid the overhead of communication through channels.

A complex process in RDPN can be discomposed into several relatively simple
processes in order to analyze the feature and structures of RDPN and develop the
task-level parallelism of the network processor workload. We assume that a single
process of RDPN is a program described with some kind of programming language
(such as C /C ++). Thus decomposing of a process is the same action as translating a
program into RDPN, which provides a bridge between the actual workload programs
and our formal RDPN model.

A complex task would be distributed to multiple components for parallel
implementation. Duplicating a single process of RDPN is used to support this
situation. To transform a process into multiple duplicates, we introduce a switch
process which plays the role of schedulers to map input channels to the duplicates,
and a select process which selects one duplicate to output its processing results. A
RDPN model with duplicating structure can be easy to be mapped into NP
architectures based on multi-processors.

and

 processes

on

 A Formal Model for Network Processor Workload 277

4 Implementation of RDPN

We implement RDPN software framework in C++ programming environment by
using concepts of object-oriented approach. All Processes of RDPN are implemented
by classes. The behaviors of the classes depend on the operational semantics of
RDPN. Actions in RDPN are implemented by member functions of the classes.
Similarly, all channels are implemented as classes in which these channels are
implemented by dynamic lists with FIFO operation.

In our RDPN software framework, every process is treated as an instantiation of its
corresponding class, which is assigned a separate thread of execution. To implement
event interactions between data and control planes, three threads are introduced to
monitor src, snk and cp process in NP domains (referring to Fig. 1(b)). In the RDPN
framework, the run-time environment coordinates the execution of all these threads.

5 Conclusion

In this paper, we have proposed a formal model for NP workloads, called RDPN. Our
RDPN is used to describe packet processing behavior in data plane as well as the
interactive transactions between data and control planes. Transformations of RDPN
can extend the expressive capability of RDPN and support design space exploration
of NP architectures. Furthermore, modeling NP workloads as RDPN is a start-point of
our design space exploration of NP architectures. The next work will be to use the
model for application optimization, allocation of processing tasks, developing novel
NP architectures and mapping applications to NP architecture.

References

1. G. Kahn. The Semantics of a Simple Language for Parallel Programming. In J.L. Rosenfeld,
editor, Information Processing 74, Proceedings, pages 471–475, Stockholm, Sweden,
August 1974. North-Holland, Amsterdam, The Netherlands, 1974

2. E. Lee. Overview of the Ptolemy project. Technical Memorandum UCB/ERL No. M01/11,
University of California, EECS Dept., Berkeley, CA, March 2001

3. A. Girault, B. Lee, and E. Lee. Hierarchical finite state machines with multiple concurrency
models. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems,
18(6):742-760, June 1999

4. K. Strehl, et al. FunState - an internal design representation for codesign. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 9(4):524–544, Aug. 2001

5. B. Kienhuis, E. F. Deprettere. Modeling Stream-Based Applications using the SBF model
of computation. IEEE Workshop on Signal Processing Systems (SIPS 2001), Antwerp,
Belgium, September 26-28, 2001

6. M.C.W. Geilen, T. Basten. Reactive Process Networks. In Fourth ACM International
Conference on Embedded Software, Proceedings, pages 137–146. Pisa, Italy, 27-29
September, 2004. ACM Press, New York, NY, USA, 2004

7. E. A. Lee and T. M. Parks. Dataflow Process Networks. Proceedings of the IEEE, May
1995. (http://ptolemy.eecs.berkeley.edu/papers/processNets)

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 278 – 284, 2005.
© IFIP International Federation for Information Processing 2005

Coping with Data Dependencies
of Multi-dimensional Array References

Lin Qiao, Weitong Huang, and Zhizhong Tang

Department of Computer Science and Technology,
Tsinghua University, Beijing, 100084, PR China

{qiaolin, hwt}@cic.tsinghua.edu.cn,
tzz-dcs@tsinghua.edu.cn

Abstract. This paper presents a new static data dependence analysis approach,
Dependence Difference Inequality Test, which can deal with coupled subscripts
for multi-dimensional array references for software pipelining techniques for
nested loops. The Dependence Difference Inequality Test (DDIT) replaces
direction vectors with dependence difference inequalities as constraints to
variables in a linear system. The method presented in this paper extends the
applicable range of the Generalized Lambda Test and seems to be a practical
scheme to analyze data dependence. Experimental results show that the number
of data independences checked by the DDIT algorithm is slightly smaller than
that manually. It is also shown that our method is better than other traditional
data dependence analysis methods without increasing time cost: it increases the
success rate of the Generalized Lambda Test by approximately 14.19%.

1 Introduction

Data dependence analysis plays an important role in automatic detection of implicit
parallelism in programs written in conventional sequential languages. Dependence
analysis techniques estimate, at compile-time, the run-time interactions between
different operations or between different instances of the same operation [1]. It is at
the core of data dependence analysis strategies to estimate data dependence between
two operations in which multi-dimensional array references are involved [2].

Mathematically the problem can be reduced to that of checking whether or not a
system of m linear equations with 2n unknown variables has a simultaneous integer
solution, which satisfies the constraints for each variable in the system. It has been
proved that a loop can be software-pipelined with any value of initiation interval if the
dependence difference inequalities do not satisfy simultaneously [3]. That is to say,
dependence difference inequalities can act as additional constraints to each variable in
the system of m linear equations on their own or with other constraints, such as
direction vectors.

The paper is the ongoing work of [3]. We focuses on applying dependence
difference inequalities for analyzing data dependence. The algorithm the paper
presents, called Dependence Difference Inequality Test (DDIT), can handle coupled

 Coping with Data Dependencies of Multi-dimensional Array References 279

subscripts for multi-dimensional array references statically. Experimental results
shows that our method is better than the Generalized Lambda Test.

This paper is organized as follows. Section 2 first introduces the Lambda Test and
the Generalized Lambda Test, and then Section 3 discusses the Dependence
Difference Inequality Test. Section 4 gives experimental results. The Last section
draws a conclusion.

2 The Lambda Test and the Generalized Lambda Test

This section introduces the Lambda Test and the Generalized Lambda Test that are
the cornerstone of the DDIT algorithm.

Geometrically, a linear equation in the system defines a hyperplane π in R2n
spaces. The intersection S of m hyperplanes corresponds to the common solutions to
all linear equations in the system [2] [4]. It is obvious that there exists no data
dependence if S is empty. The bounds introduced by the Lambda Test or by the
Generalized Lambda Test, with any given direction vectors, define a bounded convex
set V in R2n. If any of hyperplanes in the system does not intersect V, it is clear that S
can not intersect V. However, even if every hyperplane intersects V, it is still possible
that S and V are disjoint. And if S and V are disjoint, there exists a hyperplane which
contains S and is disjoint from V. Furthermore, the hyperplane is a linear combination
of hyperplanes in the system. On the other hand, if S intersect V, there is no such a
linear combination [2].

In summary, the Lambda Test or the Generalized Lambda Test first applies the
Banerjee Inequalities to test each hyperplane in the system, and then checks these
hyperplanes simultaneously if every hyperplane intersects V. These two methods are
efficient and precise to analyze the system beneath V. In fact, they are equivalent to a
multi-dimensional version of the Banerjee Inequality because they can determine
simultaneous constrained real-valued solutions. The tests form linear combinations of
coupled references that eliminate one or more instances of index variables when
direction vectors are not considered. On the other hand, once direction vectors are
considered, they can generate new linear combinations that use a pair of relative index
variables. Simultaneous constrained real-valued solutions exist if and only if the
Banerjee Inequalities find solutions in all linear combinations generated [2].

3 Dependence Difference Inequality Test

This section takes account of m linear equations, m ≥ 2, and gives a detailed
description of the Dependence Difference Inequality Test.

Without losing generality, all m linear equations are assumed to be connected;
otherwise they be partitioned into smaller systems. Furthermore, it is hypothesized
that there are no redundant equations. An arbitrary linear combination of m linear

equations can be written as
1

0
m

i ii
Fλ

=
= where Fi = ai,0 + aix, ai = (ai,1, ai,2, …, ai,2n)

for 1 ≤ i ≤ m, and x = (x1, x2, …, x2n)
T. The domain of λ = (λ1, λ2, …, λm) is the whole

Rm space. Let Fλ = −λb + (λa1′, λa2′, …, λa2n′)x where b = (−a1,0, −a2,0, …, −am,0)
T

280 L. Qiao, W. Huang, and Z. Tang

and ak′ = (a1,k, a2,k, …, am,k)
T for 1 ≤ k ≤ 2n. It needs to be determined whether or not

Fλ = 0 intersects V in R2n space for arbitrary λ.

Definition 1. The coefficient of each variable in Fλ is a linear function of λ in Rm
which is ψk = λak′ for 1 ≤ k ≤ 2n. The equation ψk = 0 is termed a ψ-equation, which
corresponds to a hyperplane in Rm, called a ψ-plane. Let φk = ψ2k−1 + ψ2k for 1 ≤ k ≤ n.
The equation φk = 0 is called a φ-equation, which still corresponds to a hyperplane in
Rm, called a φ-plane.

In general, each ψ-plane or φ-plane divides Rm into two closed half-spaces, i.e.,
ψk

+ = {λ|ψk ≥ 0}, ψk
− = {λ|ψk ≤ 0}, φk

+ = {λ|φk ≥ 0}, and φk
− = {λ|φk ≤ 0}. These ψ-

planes and φ-planes divide the whole space into some regions, denoted by (∩1≤k≤2nψk
∗)

∩ (∩1≤k≤nφk
∗) for ψk

∗∈{ψk
+, ψk

−} and φk
∗∈{φk

+, φk
−}. It is obvious that each region is a

cone in Rm space. Furthermore, every region has several hyperlines as the frames of
their boundaries. Note that such a hyperline can be determined by m − 1 hyperplanes

in Rm space uniquely, there are at most
3

1

n

m −
 hyperlines. As a special case, there

are at most 3n lines in R2 space if m = 2.

Definition 2. A hyperline determined by arbitrary m − 1 ψ-planes and/or φ-planes in
Rm space is termed a λ-line which corresponds to a λ-equation, that is,

1

2

1

0

0

0m

ξ
ξ

ξ −

=
=

⋅⋅ ⋅
=

, (1)

where ξi ∈{ψ1, ψ2, …, ψ2n} ∪ {φ1, φ2, …, φn} and ξi ≠ ξj for 1 ≤ i, j ≤ m − 1, i ≠ j.
Mathematically Eq. (1) can be represented as

ξ = UλT = 0, (2)

where ξ = (ξ1, ξ2, …, ξm−1)
T,

1,1 1,

1,1 1,

m

m m m

u u

u u− −

=U

K

M O M

L

, and λ = (λ1, λ2, …, λm). On the

other hand, it can also be of the form

1 2

1 2

... m

mv v v
λλ λ= = = (3)

since it passes through the origin of the coordinates, where v = (v1, v2, …, vm) denotes
the direction vector of the λ-line. Let ui = (ui,1, ui,2, …, ui,m) be the normal vector of
the hyperplane determined by the equation ξi = 0 for 1 ≤ i ≤ m − 1. We have v is
orthogonal with every ui for 1 ≤ i ≤ m − 1 because the λ-line belongs to every
hyperplane, i.e.,

 Coping with Data Dependencies of Multi-dimensional Array References 281

v = u1 × u2 × … × um−1. (4)

Thus, we have

1 2

1,1 1,2 1,1T

1

1,1 1,2 1,1

...

...

...

...

m

m
m

j j
j

m m m mm

u u u
v

u u u

λ λ λ

λ
=

− − −−

= = =
u

v

u

, (5)

where

()
1,1 1, 1 1, 1 1,

1

1,1 1, 1 1, 1 1,

... ...

1

... ...

j j m
j

j

m m j m j m m

u u u u

v

u u u u

− +
+

− − − − + −

= − . (6)

Definition 3. Given an equation of the form vλT = 0 where λ = (λ1, λ2, …, λm), v =
(v1, v2, …, vm), and v1, v2, …, vm are not zero simultaneously, a canonical solution of
the equation is defined as

()2 1

1, 0, if 0 and 0 for 1 ,

, ,0,...,0 if 0 for 1
i j i j

i

v v i j m

v v v i m

λ λ= = ∃ = ∀ ≠ ≤ ≤
= − ∀ ≠ ≤ ≤

. (7)

Definition 4. The set Λ is denoted to be the set of all canonical solutions to ψ-
equations and φ-equations. The hyperplane in R2n corresponding to Fλ = 0, where λ is
a canonical solution in the Λ set, is called a λ-plane.

Theorem 1 [5]. Suppose that a bounded convex set V is defined by the limit of Eq. (2)
and Eq. (5) presented in [3]. Given a line in Rm corresponding to an equation vλT = 0,
if Fλ = 0 intersects V in Rm for any fixed point λ ≠ 0 in the line, such as its canonical
solution, then for every λ in the line Fλ = 0 also intersects V.

Theorem 1 shows that there are at most 2n ψ-planes and n φ-planes, and there are

no more than
3

1

n

m −
 λ-lines determined by these hyperplanes. Each of λ-line

generates a canonical solution according to Definition 3, and each canonical solution

forms a λ-plane in light of Definition 4. That is, there are at most
3

1

n

m −
 λ-planes to

be tested, which is the same as the number of λ-planes checked by the Lambda Test
and the Generalized Lambda Test.

4 Experimental Results

We test the DDIT through the NASA benchmark code. For the sake of clarity, we just
draw out 100 loops at random, in which the number of operations varies from 17 to
354. As shown in Table 1, among these loops only 3 loops are above 4-level-nested,

282 L. Qiao, W. Huang, and Z. Tang

including two 5-level-nested loops and one 6-level-nested loops. In addition, when a
data dependence analysis approach is applied, total 45154 pairs of array references
with coupled subscripts have to be tested, 62.57% of which is 3-dimensional.

Table 1. Statistics of extracted loops

 Levels of nested loops
 Total 1 2 3 4 Others
Number of loops 100 18 25 29 25 3
 Dimension of arrays
 Total 1 2 3 4 5
Pairs of array references tested 45154 3178 5484 28252 6888 1352

In order to reduce the number of variables of linear systems and to validate our
static data dependence analysis approach, we employ an innerprocedural constant
propagation technique, manually, before invoking the DDIT algorithm. Except that,
no other symbolic value propagation techniques or interprocedural dependence
analysis techniques [6] are applied even if they are able to improve on the DDIT
algorithm.

Table 2 reveals the success rate of the DDIT algorithm for multi-dimensional array
references, by which we mean how often the DDIT detects a case where there is no
data dependence. In the table dependences proved means they have been checked
manually or by the DDIT algorithm; dependences assumed means they have been
assumed to be dependent because of lacking of further detailed information, which
can be found when nonlinear coupled subscripts are involved in pairs of array
references or coupled subscripts can not be determined at compile-time at all; and
independences proved means these data independences have been confirmed.

Table 2. The success rate of the DDIT for multi-dimensional array references

 Dependences proved Dependences assumed Independences proved
 Number Percent Number Percent Number Percent

Manually 722 13.16 154 2.81 4608 84.03 2-dimensional
Checked by DDIT 786 14.33 235 4.29 4463 81.38
Manually 5612 19.86 945 3.35 21695 76.79 3-dimensional
Checked by DDIT 6481 22.94 1060 3.75 20711 73.31
Manually 984 14.29 336 4.88 5568 80.83 4-dimensional
Checked by DDIT 1011 14.68 360 5.23 5517 80.09
Manually 90 6.66 135 9.98 1127 83.36 5-dimensional
Checked by DDIT 90 6.66 141 10.63 1121 82.91

Manual analysis results show that for the 2-dimensional array references 84.03% of
them can be parallelized by the ILSP algorithm, for the 3-dimensional 76.79%, for the
4-dimensional 80.83%, and for the 5-dimensional 83.36%. When the DDIT is applied
it is founded that 81.38% of pairs of 2-dimensional array references, 73.31% of pairs
of the 3-dimensional, 80.09% of pairs of the 4-dimensional, and 82.91% of pairs of
the 5-dimensional are independent. That is, the DDIT algorithm detects no data

 Coping with Data Dependencies of Multi-dimensional Array References 283

dependences for 31812 pairs of multi-dimensional array references, 75.79% of overall
41976 pairs. It is shown that the number of data independences checked by the DDIT
algorithm is slightly smaller than that manually.

We use the Generalized Lambda Test to test the same dataset, as shown in Table 3.
When the Generalized Lambda Test is applied it is founded that 78.52% of pairs of 2-
dimensional array references, 57.60% of pairs of the 3-dimensional, 61.21% of pairs
of the 4-dimensional, and 78.55% of pairs of the 5-dimensional are independent. That
is, the Generalized Lambda Test detects no data dependences for 25857 pairs of
multi-dimensional array references, 61.60% of overall 41976 pairs. It can be
concluded that the number of data independences checked by the DDIT algorithm is
significantly greater than that checked by the Generalized Lambda Test: the
increasing success rate was about 14.19%. It is satisfying.

Table 3. The success rate of the GLT for multi-dimensional array references

 Dependences proved Dependences assumed Independences proved
 Number Percent Number Percent Number Percent
2-dimensional array references 913 16.65 265 4.83 4306 78.52
3-dimensional array references 9543 33.78 2436 8.62 16273 57.60
4-dimensional array references 1824 26.48 848 12.31 4216 61.21
5-dimensional array references 109 8.06 181 13.39 1062 78.55

5 Conclusion

This paper has presented a new data dependence analysis approach, Dependence
Difference Inequality Test, for our software pipelining algorithm ILSP. The DDIT
extends the applicable range of the Generalized Lambda Test and is able to deal with
linear coupled subscripts for multi-dimensional array references by employing
dependence difference inequalities as constraints to variables in a linear system on
their own or with others.

As the same as the Generalized Lambda Test, The DDIT only ascertains whether
or not real-valued solutions exist because it is based on equality consistency checking.
However, it is implemented for the ILSP algorithm in particular. Experimental results
shows that compared to the Generated Lambda Test the DDIT increases the success
rate without increasing time cost. Therefore, the DDIT seems to be a practical scheme
to analyze data dependence for the ILSP algorithm.

On the other hand, a dynamic data dependence analysis approach is presented in
[7], which can work with this method together to coping with data dependencies for
software pipelining.

Acknowledgement

This work was partially supported by National Nature Science Foundation, grant
number 60173010, of P. R. China.

284 L. Qiao, W. Huang, and Z. Tang

References

1. Petersen, P. M., Padua, D. A.: Static and Dynamic Evaluation of Data Dependence Analysis
Techniques. IEEE Transactions on Parallel and Distributed Systems 7 (1996) 1121–1132

2. Chang, W. L., Chu, C. P., Wu, J.: The Generalized Lambda Test: A Multi-Dimensional
Version of Banerjee’s Algorithm. International Journal of Parallel and Distributed Systems
and Networks 2 (1999) 69–78

3. Qiao, L., Huang, W. T., Tang, Z. Z.: A Static Data Dependence Analysis Approach for
Software Pipelining. In: Jin, H., Reed, D., Jiang, W. (eds.): Proceedings of IFIP
International Conference on Network and Parallel Computing, Beijing, Lecture Notes in
Computer Science. Springer-Verlag, Berlin Heidelberg New York (2005) accepted by
NPC’05

4. Li, Z., Yew, Y. C., Zhu, C. Q.: An Efficient Data Dependence Analysis for Parallelizing
Compilers. IEEE Transactions on Parallel and Distributed System 1 (1990) 26–34

5. Qiao, L.: On Data Dependencies in Software Pipelining. Doctorial Dissertation, Department
of Computer Science, Tsinghua University, Beijing (2001)

6. Johnson, S. P., Cross, M., Everett, M. G.: Exploitation of Symbolic Information in
Interprocedural Dependence Analysis. Parallel Computing 22 (1996) 197–226

7. Qiao, L., Huang, W. T., Tang, Z. Z.: A Dynamic Data Dependence Analysis Approach for
Software Pipelining. In: Jin, H., Reed, D., Jiang, W. (eds.): Proceedings of IFIP
International Conference on Network and Parallel Computing, Beijing, Lecture Notes in
Computer Science. Springer-Verlag, Berlin Heidelberg New York (2005) accepted by
NPC’05

QoS-Based Dynamic Channel Allocation
for GSM/GPRS Networks

Jun Zheng1 and Emma Regentova2

1 Department of Computer Science,
Queens College - The City University of New York, USA

zheng@cs.qc.edu
2 Deaprtment of Electrical and Computer Engineering,

University of Nevada, Las Vegas, USA
regent@egr.unlv.edu

Abstract. Efficient channel allocation is important for meeting the
quality of service (QoS) requirements of both GSM voice calls and GPRS
packets in integrated GSM/GPRS networks. In this paper, we propose a
new dynamic channel allocation scheme with guard channel, channel de-
allocation/re-allocation for voice call and packet queue for GSM/GPRS
networks. An analytic model with general GPRS channel requirement
is developed to evaluate the performance of the proposed scheme. Nu-
merical results demonstrate that the scheme can adapt to different QoS
requirements of the system by adjusting the number of guard channels
and the size of packet queue. Compared to some conventional schemes,
the proposed scheme achieves better performance of QoS provisioning.

1 Introduction

General Packet Radio Service (GPRS) utilizes the existing GSM network infras-
tructure to provide end-to-end packet-switched service [1]. To ensure the required
quality of service (QoS) of the voice and data in the integrated
GSM/GPRS networks, the channel allocation scheme has to optimally use the
scarce radio resource. Dynamic resource allocation is believed to be a judicious
solution for the problem.

Dynamic channel allocation in GSM/GPRS networks has received a consid-
erable attention in recent studies. For example, Lin et al. [2] investigated four
resource allocation algorithms, i.e., fix resource allocation (FRA), fix resource
allocation with queue capability (FRAQ), dynamic resource allocation (DRA)
and dynamic resource allocation with queue capability (DRAQ). In the dynamic
schemes, partial resources can be allocated to the GPRS packet request. This
kind of dynamic allocation can substantially reduce the GPRS dropping proba-
bility. It is also indicated that the voice queuing mechanism could significantly
lower the GSM voice call incompletion probability. In [3], Lin et al. studied the
buffering mechanisms for the dynamic resource allocation by employing both the
voice queue and the packet queue. The results have demonstrated that packet

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 285–294, 2005.
c© IFIP International Federation for Information Processing 2005

286 J. Zheng and E. Regentova

queuing greatly reduces the GPRS packet dropping probability while the per-
formance of the voice call slightly degrades. Chen et al. [4] proposed a channel
de-allocation scheme (DAS) which decreases the GSM voice call incompletion
probability by de-allocating a channel from on-going GPRS packet to new ar-
rived GSM voice call if there is no free channel in the system. In [5], the authors
employed both DAS and packet queue. It was shown that although the packet
buffering mechanism can lessen the packet dropping probability, it increases the
voice call incompletion probability even with the DAS in use. Recently, Zhang
and Soong [6] introduced a channel re-allocation scheme (RAS) that re-allocates
released idling channels to the GPRS data using partial resources. Results con-
firm that RAS sharply decreases the GSM voice call incompletion probability at
the expense of the slight increment of the GPRS packet dropping probability.

In all the above studies, the new and handoff GSM voice calls are not differ-
entiated. However, in the real systems, handoff calls always have a higher priority
than new voice calls. This is because termination of a former is more noticeable,
hence more annoying for users than blocking of a new call. In this paper, we
enforce the priority of handoff voice calls, and propose a dynamic channel allo-
cation scheme with guard channel, channel de-allocation/re-allocation for voice
call and packet queue. In the proposed scheme, the guard channel is for lowering
the dropping probability of handoff calls. Channel de-allocation/re-allocation for
voice call lessens both the new and handoff voice call blocking probabilities and
the packet queuing is used for reducing the packet dropping probability. By dy-
namically adjusting the guard channel capacity and the packet queue size, the
scheme can adapt to the QoS requirements of the system on the new/hadnoff
voice call blocking probability and GPRS packet dropping probability.

To study the system performance under the proposed dynamic channel al-
location scheme, we derive an analytic model. In contrast with the models in
[2][3][4][5] that have adopted a specific maximum numbers of channels for GPRS
packet for the sake of analytical simplicity, we derive a model with generalized
GPRS channel requirement based on the one presented in [6]. That offers more
versatility to the performance analysis.

The rest of this paper is organized as follows. In the next section, we introduce
the QoS-based dynamic channel allocation scheme with guard channel, channel
de-allocation/re-allocation for voice call and packet queue. The analytical model
for evaluating the performance of the proposed scheme is developed in Section
3. Numerical results are presented and discussed in Section 4, and followed are
the conclusions drawn in Section 5.

2 QoS-Based Dynamic Resource Allocation Scheme

We consider the GSM/GPRS network is homogeneous such that we only need to
analyze one cell case. Assume the base station (BS) of each cell has C channels
shared by GSM voice calls and GPRS data packets. The maximum number of
channels for data packet transmission is M . A type-m GPRS call is the GPRS
packet transmitted using m(m = 1, ...,M) channels. Assume the number of free

QoS-Based Dynamic Channel Allocation for GSM/GPRS Networks 287

channels in the system is CF which equals to C−nvn−nvh−
∑M

m=1 mngm
, where

nvn is the number of new voice calls in service, nvh is the number of handoff
voice calls, ngm

is the number of type-m ongoing GPRS packet transmissions.
The proposed scheme reserves g channels as guard channels only for serving
handoff GSM voice calls. The remaining (C − g) channels are shared by both
new/handoff GSM voice calls and GPRS calls. The size of the packet queue is B,
and the number of GPRS calls buffered in the packet queue is denoted as nPQ.

The state of the system changes according to the arrival and the completion
of new/handoff GSM voice call and GPRS call. For the new GSM voice call
arrival, the call will be served if CF > g. The handoff voice call will be served if
CF > 0. Upon arrival of GPRS packet, M channels are allocated if CF ≥ M+g. If
g < CF < M+g, (CF −g) channels are allocated to the GPRS call. If CF ≤ g and
the number of buffered GPRS calls is less than B, the GPRS call will be buffered
in the packet queue. Otherwise, the GPRS packet is dropped. For a new arrived
voice call, if CF ≤ g, channel de-allocation allows one channel from an ongoing
type-m (m > 1) GPRS call (or degradable GPRS call) to service the arrived
voice call. If no degradable GPRS call exists, the arrived new voice call will be
blocked. For handoff voice call, if CF = 0, channel de-allocation will be applied to
service the call if there exists a degradable GPRS call in the system. Otherwise,
the handoff voice call will be forced to terminate. Note that the channel is de-
allocated from the GPRS call with the highest number of channels, e.g. a type-m
GPRS call can be degraded if there is no type-q (q = m+1, ...,M −1,M) GPRS
call in the BS. Upon the channel release due to the GSM voice call termination
or handoff or completion of the GPRS packet transmission, if there are degraded
GPRS calls in the system and no GPRS call buffered in the packet queue, the
released channels will be re-allocated to upgrade the transmission of these calls.
The re-allocation is performed using ”worst degraded first upgrading” policy [6].
That is, a type-m GPRS call can be upgraded if all type-q (q = 1, 2, ...,m − 1)
GPRS calls have been upgraded to type-M . If there are GPRS calls buffered in
the packet queue, the released channels are used to service the buffered GPRS
call instead of re-allocating for degraded on-going GPRS calls.

To demonstrate the performance of the proposed scheme, we compare it with
three other dynamic resource allocation schemes described below.

(1) Scheme 1 (referred as DRA1) is the same as the DRA proposed in [2];
(2) Scheme 2 (referred as DRA2) is the same as the scheme with channel de-
allocation/re-allocation for voice call in [6];
(3) Scheme 3 (referred as DRA3) is similar to the proposed scheme except the
channel de-allocation/re-allocation for voice call is not applied.

3 Analytic Model

For the purpose of performance analysis of the proposed dynamic channel alloca-
tion scheme, we develop an analytic model. We assume that the new GSM voice
call, the handoff GSM voice call and the GPRS packet all follow the Poisson

288 J. Zheng and E. Regentova

process with arrival rate λvn, λvh and λg, respectively. The voice call holding
time and the cell residence time are assumed to be exponentially distributed with
means 1/µch, 1/µcr, respectively. Then the channel holding time for voice call
is exponentially distributed with rate µv = µch +µcr. If one channel is allocated
to a GPRS packet, the packet transmission is assumed to follow the exponential
distribution with mean 1/µg. Thus the mean packet transmission time is also
exponentially distributed with mean 1/mµg when m channels are allocated. The
handoff of the GPRS packet transmission is not considered, because the trans-
mission time of individual packet is negligible, and transmission is completed
before the handoff procedure starts [3].

The dynamic resource allocation scheme is modeled as a (M + 3)-dimension
Markov process. A state in this process is denoted as s = (nvn, nvh, ng1 , ng2 , ...,
ngM−1 , ngM

, nPQ). The state space S of the Markov process is given by

S =
(
s = (nvn, nvh, ng1 , ng2 , ..., ngM−1 , ngM

, nPQ) |
0 ≤ nvn + nvh +

∑M
k=1 kngk

≤ C − g, 0 ≤ nvn ≤ C − g,

0 ≤ nvh ≤ C − g, 0 ≤ ngk
≤ �C−g

k �(k = 1, 2, ...,M), nPQ = 0
)

⋃ (
s = (nvn, nvh, ng1 , ng2 , ..., ngM−1 , ngM

, nPQ) |
0 ≤ nvn +

∑M
k=1 kngk

≤ C − g, C − g < nvn + nvh +
∑M

k=1 kngk
≤ C,

0 ≤ nvn ≤ C − g, 0 ≤ nvh ≤ C, 0 ≤ ngk
≤ �C

k �(k = 1, 2, ...,M), nPQ ≥ 0
)

(1)

Denote the steady state probability for state s as πs. For all states s ∈ S ,∑
s∈S πs = 1. To find the steady state probability matrix Π, we need to obtain

the generator matrix Q = [qs→s′]s∈S,s′∈S, where qs→s′ (s ∈ S, s′ ∈ S) is the
transition rate from state s = (nvn, nvh, ng1 , ng2 , ..., ngM−1 , ngM

, nPQ) to state
s′ = (n

′
vn, n

′
vh, n

′
g1

, n
′
g2

, ..., n
′
gM−1

, n
′
gM

, n
′
PQ).

Given below are some definitions for deriving the generator matrix Q.

– IA: The indicator function which equals to 1 (0) when the event A is true
(false).

– ngα
: The first non-zero value in the sequence (ngM

, ngM−1, ..., ng2), where
α = max(m | ngm

> 0,m = M,M − 1, ..., 2). For (ngM
, ngM−1, ..., ng2) ≡ 0,

α is set to -1. Thus if α ≥ 2, there exists a degradable GPRS call.
– ngβ

: The first non-zero value in the sequence (ng1 , ng1 , ..., ngM−1), where
β = min(k | ngk

> 0, k = 1, 2, ...,M − 1). For (ng1 , ng2 , ..., ngM−1) ≡ 0, β is
set to -1. Thus if β ≥ 0, there exists a degraded GPRS call.

– M: The state space of the GPRS call type, M = (1, 2, ...,M − 1,M).

To obtain the transition rate qs→s′ , we consider two cases according to the
arrival and completion events of new/handoff GSM voice call and GPRS call.
Case 1: New/handoff GSM voice call and GPRS call arrival

The transitions from state s to all possible next state s′ for new/handoff
GSM voice call and GPRS call arrival are shown in Table 1, where the first
column shows the changes between s and s′ followed with the condition for the
transitions, transition rates and the event related to the transition.

QoS-Based Dynamic Channel Allocation for GSM/GPRS Networks 289

Case 2: New/handoff GSM voice call and GPRS call completion
Table 2 shows the state transitions under new/handoff GSM voice call and

GPRS call completion. Here we discuss in detail the case of type-m GPRS call
completion and nPQ = 0 that channel re-allocation can be used by allocating
the released m channels to upgrade degraded GPRS calls in the system. In
this case, upon the type-m GPRS call completion, the new state becomes s1

= (n∗
vn, n∗

vh, n∗
g1

, ..., n∗
gm

, ..., n∗
gM

, n∗
PQ), where n∗

vn = nnv, n∗
vh = nvh, n∗

gm
=

ngm
− 1, n∗

gk
= ngk

(k ∈ M− {m}), n∗
PQ = nPQ. An index θ (1 ≤ θ ≤ M − 1) is

introduced such that

θ−1∑
k=1

n∗
gk

(M − k) ≤ m ≤
θ∑

k=1

n∗
gk

(M − k) . (2)

Inequality (2) implies that when a type-m GPRS call leaves the BS, all the
type-1 to type-(θ − 1) GPRS calls and some of the type-θ GPRS calls can be
upgraded to type-M GPRS calls. Denote

δ = �m − ∑θ−1
k=1 n∗

gk
(M − k)

M − θ
�

as the number of type-θ calls that can be upgraded to type-M calls. δr = δ −
δ(M − θ) is the number of channels that can upgrade a type-θ call to type-
(θ + δr). If

∑M−1
k=1 n∗

gk
(M − k) ≤ m which means that all the type-1 to type-

(M − 1) calls can be upgraded to type-M calls, we set θ to M . If β = 0 which
means that there is no data call in the BS or all the data calls are type-M , we
set θ to -1.

The transition rate qs→s can be obtained as

qs→s = −
∑

s′ �=s,s∈S,s′∈S

qs→s′ (3)

Table 1. Transitions from s to s′ for new/handoff GSM voice call and GPRS call
arrival. A: New GSM voice call, B: Handoff GSM voice call, C: Type-m GPRS call.

Next state s′ Condition Rate Event

n
′
vn = nvn + 1 CF > g λvn A

n
′
vn = nvn + 1, n

′
gα−1 = ngα−1 + 1,

n
′
gα

= ngα − 1
CF ≤ g and α ≥ 2 λvn A

n
′
vh = nvh + 1 CF > 0 λvh B

n
′
vh = nvh + 1, n

′
gα−1 = ngα−1 + 1,

n
′
gα

= ngα − 1
CF = 0 and α ≥ 2 λvh B

n
′
gM

= ngM + 1 CF ≥ M + g λg C

n
′
gCF −g

= ngCF −g + 1 g < CF < M + g λg C

n
′
PQ = nPQ + 1 CF ≤ g, B > 0 and nPQ < B λg C

290 J. Zheng and E. Regentova

Table 2. Transitions from s to s′ for new/handoff GSM voice call and GPRS call
completion. D: New GSM voice call, E: Handoff GSM voice call, F: Type-m GPRS call.

Next state s′ Condition Rate Event

n
′
vn = nvn − 1, n

′
g1 = ng1 + 1,

n
′
PQ = nPQ − 1

nPQ > 0 nvnµv D

n
′
vn = nvn − 1, n

′
gβ

= ngβ − 1,

n
′
gβ+1 = ngβ+1 + 1

nPQ = 0 and β > 0 nvnµv D

n
′
vn = nvn − 1 nPQ = 0 and β = −1 nvnµv D

n
′
vh = nvh − 1, n

′
g1 = ng1 + 1,

n
′
PQ = nPQ − 1

CF ≥ g and nPQ > 0 nvhµv E

n
′
vh = nvh − 1, n

′
gβ

= ngβ − 1,

n
′
gβ+1 = ngβ+1 + 1

CF ≥ g, nPQ = 0 and β > 0 nvhµv E

n
′
vh = nvh − 1 CF ≥ g, nPQ = 0 and β = −1 nvhµv E

n
′
vh = nvh − 1 CF < g nvhµv E

n
′
PQ = nPQ − 1 nPQ > 0 ngmmµg F

n
′
gm

= ngm − 1 nPQ = 0 and θ = −1 ngmmµg F

n
′
gk

= 0(k = 1, 2, ..., θ − 1),

n
′
gθ

= ngθ − δ − 1,

n
′
gθ+δr

= ngθ+δr
+ 1,

n
′
gM

= ngM +
∑θ−1

k=1 ngk + δ

nPQ = 0 and 1 ≤ θ ≤ M − 1 ngmmµg F

n
′
gk

= 0(k ∈ M − {M}),
n

′
gM

=
∑M

k=1 ngk − 1
nPQ = 0 and θ = M ngmmµg F

From Table 1 and 2 and Eq. (3), we can derive the generator matrix Q for the
(M +3)-dimension Markov chain. To obtain the steady-state probability matrix
Π, we need to solve the linear equation Πe = 1 and ΠQ = 0, where e is a unary
column vector. This is done using a numerical method introduced in [7].

Knowing the steady-state probability πs of the Markov chain, we can calcu-
late the handoff GSM voice call arrival rate as

λvh =
∑
s∈S

(nvn + nvh)πsµcr (4)

Since the steady-state probability πs and the handoff call arrival rate λvh are
mutually related, an iterative algorithm is applied to compute πs and λvh as
in [8].

To measure the performance of the proposed scheme, we use the following per-
formance metrics - new GSM voice call blocking probability Pvn, handoff GSM
voice call forced termination probability Pvh, GPRS packet dropping probability
Pg and channel utilization u.

The new GSM voice call will be blocked if the number of free channels CF ≤ g
and the GPRS calls in the BS are all type-1. Then, the new GSM voice call
blocking probability Pvn is represented as

QoS-Based Dynamic Channel Allocation for GSM/GPRS Networks 291

Pvn =
B∑

nP Q=0

∑
nvn+nvh+ng1≥C−g,

ngk
=0(k∈M−{1}),s∈S

πs (5)

The handoff GSM voice call will be forced to terminate if the number of free
channels CF = 0, and the GSM calls in the BS are all of type-1. The handoff
GSM voice call dropping probability Pvh is obtained as

Pvh =
B∑

nP Q=0

∑
nvn+nvh+ng1=C,

ngk
=0(k∈M−{1}),s∈S

πs (6)

The GPRS packet will be dropped if the number of free channels CF ≤ g
and the packet queue is full. The GPRS packet dropping probability Pg is then
represented as

Pg =
∑

nvn+nvh+ng1≥C−g,
nP Q=B,s∈S

πs (7)

The channel utilization u can be expressed as

u =

∑
s∈S

(
nvn + nvh +

∑M
k=1 kngk

)
πs

C
(8)

It should be noted that the above-mentioned performance metrics are in-
fluenced by the number of guard channels g and the packet queue size B. To
measure the QoS of the system, we use a system award Q which is expressed as

Q = α(1 − Pvn) + β(1 − Pvh) + γ(1 − Pg) (9)

where α, β and γ are weighting factors which indicate the contribution of Pvn,
Pvh and Pg to the system’s QoS, respectively. Notice that α + β + γ = 1. The
weighting factors are determined by the system’s overall revenue and service
objectives. A larger Q indicates higher performance of the scheme.

4 Numerical Results

Based on the derived analytic model, we can evaluate the performance of the
proposed dynamic resource allocation scheme. We normalize the parameters λvn,
λg, µcr and µg by µch as done in [2][3]. The number of channels C in the BS is
assumed to be 7.

Figures 1(a) through 1(d) compare the performance of the proposed scheme
with that of other three schemes under different GPRS traffic load ρg. The
parameters are set as M = 2, B = 4, g = 1, µch = 1/180, µcr = 0.2µch, µg =
100µch and ρv = 2. Fig. 1(a) shows that DRA1 and DRA2 without packet queue
capability have a higher Pg compared to that of DRA3 and the proposed scheme

292 J. Zheng and E. Regentova

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
g

ρ
g

(a)

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
v
n

ρ
g

(b)

1 2 3 4 5
0

0.01

0.02

0.03

0.04

0.05

P
v
h

ρ
g

(c)

1 2 3 4 5

0.3

0.4

0.5

0.6

0.7

0.8

u

ρ
g

(d)

DRA1

DRA2

DRA3

Proposed

DRA1

DRA2

DRA3

Proposed

DRA1

DRA2

DRA3

Proposed

DRA1

DRA2

DRA3

Proposed

Fig. 1. Performance comparison for different schemes. (a) Pg, (b) Pvn, (c) Pvh, (d) u.

with packet queue. DRA3 has lower Pg than that of the proposed scheme because
DRA3 does not use channel de-allocation/re-allocation for voice calls. From Fig.
1(b), we can see that Pvn is ranging from low to high for DRA2, the proposed
scheme, DRA1 and DRA3. By using channel de-allocation/re-allocation for voice
call, DRA2 and the proposed scheme achieves lower Pvn. Since the proposed
scheme employs the packet queue and guard channels that results in higher Pvn,
DRA2 outperforms the proposed scheme in terms of Pvn. DRA3 has the highest
Pvn because it uses the packet queue and guard channels without channel de-
allocation/re-allocation for voice call. Fig. 1(c) shows that Pvh ranging from low
to high are DRA2, the proposed scheme, DRA3 and DRA1. From Fig. 1(d),
one can observe that the proposed scheme achieves the best channel utilization.
Followed are DRA3, DRA2 and DRA1.

Figure 2(a) to 2(d) show the system award Q as a function of B and g for
different system QoS requirements. They correspond to four cases with varying
weight factors for the system award Q: (a) α = 0.8, β = 0.1 and γ = 0.1, (b)
α = 0.1, β = 0.8 and γ = 0.1, (c) α = 0.1, β = 0.1 and γ = 0.8 and (d) α =
0.4, β = 0.3 and γ = 0.3. Other parameters are set as M = 2, µch = 1/180,
λvn = 2µch, λg = 200µch, µcr = 0.4µch, µg = 100µch, 0 ≤ g ≤ 5, 0 ≤ B ≤ 6.
For Fig. 2(a), we can find g = 0 and B = 1 produce the best value of Q. This
is due to the fact that Pvn is the most important factor in the system award Q
(α = 0.8) and larger g and B will result in higher Pvn. In Fig. 2(b), the best Q is
achieved for g = 1 and B = 3. In this case, the system emphasizes Pvh (β = 0.8)
and one channel is reserved only for handoff voice calls. Fig. 2(c) shows the best
Q produced when g = 0, B = 6. In this case, the system prefers GPRS packet
to GSM voice call (γ = 0.8) and a larger packet queue size is used to reduce

QoS-Based Dynamic Channel Allocation for GSM/GPRS Networks 293

0

2

4

6

0

2

4

0

0.5

1

Bg

Q

0

2

4

6

0

2

4

0.8

0.9

1

Bg

Q

0

2

4

6

0

2

4

0.4

0.6

0.8

1

Bg

Q

0

2

4

6

0

2

4

0.5

1

Bg

Q

(a) (b)

(c) (d)

Fig. 2. System award Q vs. B and g for(a) α = 0.8, β = 0.1 and γ = 0.1, (b) α = 0.1,
β = 0.8 and γ = 0.1, (c) α = 0.1, β = 0.1 and γ = 0.8 and (d) α = 0.4, β = 0.3 and
γ = 0.3

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Q

a b c d

DSA1 DSA2 DSA3 Proposed

Fig. 3. System award comparison for different schemes. (a) α = 0.8, β = 0.1 and γ =
0.1, (b) α = 0.1, β = 0.8 and γ = 0.1, (c) α = 0.1, β = 0.1 and γ = 0.8 and (d) α =
0.4, β = 0.3 and γ = 0.3.

Pg. Finally, for the case shown in Fig. 2(d), the system has no preferences for
new/handoff GSM voice call or GPRS packet, we can find that the best Q is
achieved by g = 0, B = 4.

We then compare the system award Q of the four dynamic resource allocation
schemes as shown in Fig. 3 for the same four cases and parameters as for Fig 2.
Q values of DSA3 are obtained using the optimal combination of g and B.
The results demonstrate that the proposed scheme always outperforms other

294 J. Zheng and E. Regentova

three reference schemes because it is furnished by the capability of adjusting
the number of guard channels g and packet queue size B to meet the system’s
QoS requirements.

5 Conclusion

In the integrated GSM/GPRS networks, the GSM voice and the GPRS packet
services use the same resources that makes the channel allocation a critical issue
for the QOS provisioning for both. In this paper, we have discussed a new dy-
namic channel allocation scheme with guard channel, channel de-allocation/re-
allocation for voice call and packet queuing. The developed analytical model
with generalized GPRS data channel requirement has allowed for evaluating the
performance of the proposed scheme. The numerical results indicate that by ad-
justing the number of guard channels and the size of the packet queue, one can
attain dynamical adaptation to different QoS requirements of the system.

References

1. Y.-B. Lin, H. C.-H. Rao and I. Chlamtac, ”General Packet Radio Service (GPRS):
architecture, interfaces and deployment,” Wirel. Commun. Mob. Comput., vol. 1,
pp. 77-92, 2001.

2. P. Lin and Y. -B. Lin, ”Channel allocation for GPRS,” IEEE Trans. on Vehicular
Technology, vol. 50, no. 2, pp. 375-387, Mar. 2001.

3. P. Lin, ”Channel allocation for GPRS with buffering mechanisms,” Wireless Net-
works, vol. 9, pp. 431-441, 2003.

4. W. Y. Chen, J.-L. C. Wu and L. Lu, ”Performance comparison of dynamic re-
source allocation with/without channel de-allocation in GSM/GPRS networks,”
IEEE Communications Letters, vol. 7, no. 1, pp. 10-12, Jan. 2003.

5. W. Y. Chen, J.-L. C. Wu and H. H. Liu, ”Performance analysis of dynamic resource
allocation with finite buffers in cellular networks,” IEICE Trans. Fundementals, vol.
E87-A, no. 7, pp. 1692-1699, July 2004.

6. Y. Zhang and B. Soong, ”Performance evaluation of GSM/GPRS networks with
channel re-allocation scheme,” IEEE Communications Letters, vol. 8, no. 5, pp.
280-282, May 2004.

7. W. J. Stewart, Introduction to the Numerical Solution of Markov Chains, Princeton
University Press, 1994.

8. Y. -B. Lin, ”Performance modeling for mobile telephone networks,” IEEE Network
Magazine, vol. 11, no. 6, pp. 63-68, 1997.

Distributed Active Measuring Link Bandwidth
in IP Networks�

Zhiping Cai, Jianping Yin, Fang Liu, Xianghui Liu, and Shaohe Lv

School of Computer, National University of Defense Technology, China
caizhiping nudt@163.com, jpyin@nudt.edu.cn, fangl nudt@163.com,

liuxh@tom.com, chi.shaohe@gmail.com

Abstract. Link bandwidth is obviously critical for numerous network
management tasks. Taking into account the issues of measuring costs
and network-wide view for large IP network, a distributed measuring
system would be an ideal monitoring architecture for active measuring
link bandwidth. In this paper, we address the problem of efficiently mea-
sure assignment, which optimizing goal is to reduce the cost of measuring
all links bandwidth. We show that this problem is NP-hard and propose
an approximation algorithm with approximation ratio 2. The effective-
ness of our measuring algorithm is validated by simulations evaluation
over a wide range of network topologies.

1 Introduction

Link bandwidth is obviously critical for numerous network management tasks,
including identifying and relieving congestion points, proactive and reactive re-
source management and traffic engineering, as well as providing and verifying
QoS guarantees for end-user applications. Some novel tools and infrastructures
for measuring network bandwidth have been developed and proposed by re-
searchers and industries, like as SNMP and RMON measurement probes [1],
Cisco’s NetFlow tools [2], the IDMaps [3], [4], packet-pair algorithms for mea-
suring link bandwidth [5], [6] and the Pathchar [7] tool for estimating Internet
link characteristics.

These measurement tools periodically query and collect detailed traffic data
on packet flows for monitoring and measuring network flows and bandwidth
usage. Unfortunately, probes processing queries can adversely impact routers
performance and active probe message transfers can result in significant volumes
of additional network traffic [8].

As an example, Pathchar [7] is unique in its ability to measure the bandwidth
of every link on a path accurately while requiring special software on only one
host. This mean it could easily be widely deployed. Although excellent as a
testing tool, the problem with Pathchar is that it is slow and can consume
significant amounts of network bandwidth [6]. The distance between measuring

� This work is supported by the National Natural Science Foundation of China under
Grant No. 60373023.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 295–302, 2005.
c© IFIP International Federation for Information Processing 2005

296 Z. Cai et al.

station and destination link is greater, the probe messages would consume more
bandwidth. So using a distributed active measuring architecture can reduce the
overall measuring cost and the impact on network bandwidth.

Another key consideration in using the distributed measuring architecture is
these measurement tools can only measure links included in the routing trees of
the measuring stations [9]. To measure all link of the network, it must install some
distributed measuring stations. Thus, taking into account the issues of measuring
costs and network-wide view for large service provider network, a distributed
measuring system would be an ideal monitoring architecture for active measuring
link bandwidth.

The costs of measuring the same link bandwidth are different in sending
probe messages from different measuring stations. Hence, once we have selected
a set of measuring stations, we need to determine the measurement strategies to
minimize the measuring cost for measuring all link of a network. Our work focuses
on optimizing the measure assignment for measuring all links bandwidths.

The main contributions of our work are as follows: We first show that the
problem of minimizing the measuring costs in a given network with some given
measuring stations is NP-hard. Then using greedy heuristics and dynamic pro-
gramming, we propose an approximation algorithm with an approximation ratio
2. The effectiveness of our measuring algorithm is validated by simulations eval-
uation over a wide range of network topologies.

The paper is structured as follows. We bring forward the measure assignment
problem and provide the integer programming formulation in the section 2. In
next section, we give an approximation algorithm to solve the measure assign-
ment problem. The result of simulations evaluation is shown in section 4. And
we depict our further research in the last section.

1.1 Related Work

Y. Bejerano et al. [8] and J. Walz et al. [10] study link monitoring and delays in
IP networks based on a single Network Operations Center(NOC) . In order to
monitor links not in its routing tree, the NOC uses the IP source routing option
to explicitly route probe packets along the links [8]. Unfortunately, due to se-
curity problems, many routers frequently disable the IP source routing option.
Consequently, approaches that rely on explicitly routed probe packets for delay
and fault monitoring may not be feasible in today’s ISP and Enterprise environ-
ments [11]. On the other hand, the distributed monitoring infrastructures would
be better than a single point-of-control due to reducing the measurement cost.

There is recently significant interest in developing network monitoring infras-
tructures that allow ISPs to monitor their network links [12]. A key consideration
in the design of monitoring infrastructures is to develop low-cost solution. In par-
ticular, the idea of placing and operating monitors at all nodes in a network is
not cost-efficient. Instead, there has been significant recent in replying on tomo-
graphic techniques that use only a few probing nodes (beacons) for monitoring
the health of all network links [12], [13], [14], [15],[16].

Distributed Active Measuring Link Bandwidth in IP Networks 297

Once the beacons are located, the smallest set of probes must still be deter-
mined. Our work focuses on determining and optimizing the probes assignment
for measuring the link bandwidths. The majority of work on network tomogra-
phy on either topology discovery [4], [17] or link delay monitoring [11]. Some
recent research showed that active measurements can also be used to pinpoint
failure in IP networks [11], [18]. For measuring link bandwidths, the measur-
ing model and cost are different from that of topology discovery or link delay
monitoring. We develop different strategies and algorithms based on different
bandwidth measuring technology.

2 Bandwidth Measure Assignment Problem

2.1 Problem Formulation

A number of tools estimate network link bandwidth using Variable Packet Size
(VPS) probing technology, like as Pathchar [7], Clink [19] and Pchar [20]. The
key element of the technique is to measure the RTT from the measuring sta-
tion to each hop of the path as a function of the probing packet size [9]. VPS
uses the Time-To-Live field of the IP header to force probing packets to expire
at a particular hop. The router at that hop discards the probing packets, re-
turning ICMP “Time-exceeded” error messages back to the measuring station.
The measuring station uses the received ICMP packets to measure the RTT to
that hop.

We model the Service Provider or Enterprise IP network by an undirected
graph G(V,E), where the graph nodes V , denote the network routers and the
edges, E, represent the communications links connecting them. For measuring
the bandwidth of a link e ∈ E, a measuring station s must be selected firstly for
sending probe message, where s ∈ V such that e belongs to s’s routing tree (i.e.,
e ∈ Ts). Consequently,the measuring station s must send two probe messages to
the end-points of e, which travel almost identical routes except for the link e.

Once having selected a set S of monitoring stations, a measuring system des-
ignated for measuring the bandwidths of all network links has to find a measure
assignment M ⊆ {m(s, u)|s ∈ S, u ∈ V }, where each message m(s, u) repre-
sents a probe message that is sent from the measuring station s to node u.The
measure assignment M are required to satisfy a covering assignment constraint
which ensures that for every edge e = (u, v) ∈ E, there is a measuring station
s ∈ S such that e ∈ Ts and M contains the messages m(s, u) and m(s, v). The
covering assignment constraint essentially ensures that every link is measured by
some stations. Note that although we only consider the problem of measuring all
network links in this paper, our results also apply to the problem of measuring
only a subset of links of interest.

We associate a positive cost cs,t with sending a probe message along the path
Ps,t between any pair of nodes s, t ∈ V . For every intermediate node x ∈ Ps,t

both cs,x and cx,t are at most cs,t and cs,x + cx,t ≥ cs,t. Typical example of this
cost model are the fixed cost model, where all messages have the same cost, and

298 Z. Cai et al.

the hop count model, where the message cost is the number of hops in its route.
Moreover, we denote by hs,t the number of hops in path Ps,t.

Definition 1 (Measure Assignment). Given an undirected graph G = (V,
E), where V denotes the set of nodes, E represents the edges between two nodes.
Let Tv be a route tree for every node v ∈ V . And S ⊆ V denotes a set of mea-
suring stations. We say M ⊆ {m(s, u)|s ∈ S, u ∈ V } is a Measure Assignment,
if there is a measuring station s ∈ S for every edge e = {u, v} ∈ E such that
e ∈ Ts and m(s, u) ∈ M ,m(s, v) ∈ M . The cost of a Measure Assignment M is
COSTM =

∑
m(s,u)∈M cs,u.

To reduce the network burden, the measuring cost is preferable to as few as
possible. We are interested in the following optimization problem.

Definition 2 (Measure Assignment Problem-MA). Given an undirected
graph G = (V,E) and a routing tree Tv, for every node v ∈ V . Let S ⊆ V denotes
a set of measuring stations. The Measure Assignment problem is to determine
the measure assignment with the minimum cost.

2.2 Integer Programming Formulation for the MA Problem

Given an undirected graph G = (V, E), where V denotes the set of nodes, E
represents the edges between two nodes. Let Tv be a route tree for every node
v ∈ V . And S ⊆ V denotes a set of measuring stations. Let M denotes a Measure
Assignment. The binary variable xs,u indicates whether there is a probe message
from s to u in M . And the binary variable ys,u,v indicates whether the routing
tree of s includes edge (u, v). We give the integer programming formulation of
the measure assignment problem as follows.

Min
∑

m(s,u)∈M

cs,u

Subject to:
∑
s∈S

xs,uxs,vys,u,v ≥ 1, for each {u, v} ∈ E (1)

xs,u ∈ {0, 1}, for each u ∈ V, s ∈ S (2)

ys,u,v ∈ {0, 1}, for each {u, v} ∈ E, s ∈ S (3)

The first constraint makes sure that each edge can be measured from at least
one measuring station which routing tree constains this edge.

2.3 Hardness of the MA Problem

The MA problem could be proved to be NP-hard by presenting a polynomial
reduction from the well-known Vertex Cover problem [21] to the MA problem.
The details of this proof are omitted due to space limitations.

Theorem 1. Given a set of measuring stations S, the MA problem is NP-hard.

Distributed Active Measuring Link Bandwidth in IP Networks 299

3 Approximation Algorithm for Measure Assignment
Problem

We give a 2-approximation algorithm for the measure assignment problem using
dynamic programming strategy.

3.1 An Approximation Algorithm

For measuring the bandwidth of any edge e ∈ E, at least one station s ∈ S must
send two probe message, one to each end point of e. So the measuring cost is
the sum of two probe message cost, i.e. cs,u + cs,v. Note that cs,u is zero while
s = u. While the probe assignment M has contained one probe message ms,u

or ms,v, the measuring cost would be cs,v or cs,v respectively. We pick a station
to minimize the measuring cost for every edge by using dynamic programming
strategy. And the approximation algorithm is given as follows.
Algorithm (G = (V,E), S ⊆ V, {cs,u|s ∈ S, u ∈ V }):
1. M = Φ;
2. E′ = E;
3. for each edge (u, v) ∈ E;

(a) Cost(u, v) = min(u,v)∈Ts
(cs,u + cs,v);

4. while (|E′| �= 0)
(a) Pick min(u∗,v∗)∈E′Cost(u∗, v∗)
(b) E′ = E′ − (u∗, v∗)
(c) M = M ∪ {m(s∗, u∗),m(s∗, v∗)}
(d) for each edge (u′, v′) ∈ E′ ∩ Ts∗ ,s.t. u′ ∈ {u∗, v∗} or u′ ∈ {u∗, v∗}.

Suppose that u′ ∈ {u∗, v∗}.
i. Cost(u′, v′) = min(u,v)∈Ts

{(cs,u′ + cs,v′), cs∗,v′);

It is not hard to see that this algorithm is effectively equivalent to the fol-
lowing: start with M = Φ and E′ = E. Compute the measuring cost for each
edge. The measuring cost of each edge is the sum of two probe message cost,
i.e. cs∗,u + cs∗,v, while s∗ is the station which minimize the measuring cost. Pick
one edge (u∗, v∗) from E′ that achieves the minimum the measuring cost. Let it
be measured by station s∗. Add these two probe messages m(s∗, u∗),m(s∗, v∗)
to the Measure Assignment M . And remove the edge u∗, v∗ from E′. Adjust the
measuring cost of these edges which incident with the picked edge. Repeat until
M cover all links.

Note that there exists a implementation of this algorithm takes O(|E|2) time.
Then we prove the algorithm is a 2-approximation algorithm.

Theorem 2. The approximation ratio of the approximation algorithm is 2.

Proof. In any measuring assignment, at least one probe message can be associ-
ated with each edge e. Let it be the message that is sent to the farthest endpoint
of e from the measuring station. Let M ′′ be the optimal probe assignment and let

300 Z. Cai et al.

s′′e be the station that measures edge e in M ′′. So, in M ′′, the cost of measuring
edge e = (u, v) is at least max{cs′′

e,u, cs′′
e,v}. Let s∗ be the selected station for

measuring edge e in the assignment M returned by the approximation measure
assignment algorithm. So we have the following inequality:

Cost(u, v) ≤ cs∗e,u + cs∗e,v ≤ cs′′
e,u + cs′′

e,v ≤ 2max{cs′′
e,u, cs′′

e,v}. (4)

Thus,we have COSTM ≤ 2COSTM ′′ . ��

4 Simulations

In this section, we present simulation results of comparing the performance of
the various algorithms that solve the measure assignment problem. The main
objective of the simulations is to demonstrate that our proposed algorithmic
solutions are not only theoretically sound but also they could give significant
benefits over naive solutions in practice for a wide variety of realistic network
topologies. The simulations are based on network topologies generated using the
Waxman Model [22], which is a popular topology model for networking research.
Different network topologies are generated by varying three parameters: (1)n,
the number of nodes in the network graph; (2)α, a parameter that controls the
density of short edges in the networks; and (3)β, a parameter that controls the
average node degree.

We compare the performance of three algorithms: the naive random assign-
ment algorithm, the simple probe assignment algorithm [16] and our approxi-
mation algorithm. The comparison is in terms of the total measuring cost. We
denote the cost of measuring all link for these algorithms by COSTr, COSTs

and COSTa respectively.
Table 1 presents one set of simulation results.We have obtained similar results

for other parameter settings. The third and fourth columns in the table represent
the maximum and average degree of the nodes in the generated network graph
respectively. Our results indicate that using our approximation algorithm can
reduce measuring cost. And the result of our algorithm is better than is better
than the other two algorithms.

We have obtained the other simulation result by adjusting the number of mea-
suring stations. We compute the measuring cost on having selected 50,75,100,125,
150 measuring stations respectively. From figure 1, we can know that the mea-
suring cost would be reduced by adding the number of measuring stations. And
our algorithm is better than the naive assignment.

Table 1. Comparisons of Measuring Algorithms on Different Topologies

n α β Maximum
Degree

Average
Degree

COSTr COSTs COSTa

400 0.1 0.06 8 2.45 723 616 503

400 0.5 0.02 11 3.43 901 844 711

400 0.5 0.06 26 4.94 1988 1773 1475

Distributed Active Measuring Link Bandwidth in IP Networks 301

50 75 100 125 150
600

800

1000

1200

1400

1600

1800

2000

Approximation Algorithm
Simple Algorithm
Naive Random Algorithm

Fig. 1. Measuring Cost on Different Algorithms

5 Conclusion

In this paper, we have addressed the problem of efficiently measure assignment
in IP networks. This problem is shown NP-hard. We have proposed an approx-
imation algorithm with approximation ratio 2 to solve the measure assignment
problem. Finally, we have verified the effectiveness of our approximation algo-
rithms through simulations evaluation. This work is helpful to efficiently measure
link bandwidth in IP networks.

Further research would be conducted to develop novel algorithms based on
different measuring technology.

References

1. W. Stallings: SNMP, SNMPv2, SNMPv3, and RMON 1 and 2. Addison-Wesley
Longman, Inc., 1999.

2. Cisco Systems: NetFlow Services and Applications, White Paper, 1999

3. P. Francis, S. Jamin, V. Paxson, L. Zhang, D.F.Gryniewicz, and Y. Jin: An Ar-
chitecture for a Global Internet Host Distance Estimation Service. In Proc. IEEE
INFOCOM 1999.

302 Z. Cai et al.

4. S. Jamin, C. Jin, Y. Jin, Y. Raz, Y. Shavitt, and L. Zhang: On the Placement of
Internet Instrumentation. In Proc. IEEE INFOCOM 2000.

5. J.C.Bolot: End-to-End Packet Delay and Loss Behavior in the Internet. In. Proc.
ACM SIGCOMM 1993.

6. K. Lai and M. Baker: Measuring Bandwidth. In Proc. IEEE INFOCOM 1999.
7. V.Jacobsen: Dynamic Distance Maps of the Internet Paths,

ftp://ftp.ee.lbl.gov/pathchar, April 1997.
8. Breitbart Y., Chan CY., Garofalakis M., Rastogi R., Siberschatz A.: Efficiently

Monitoring Bandwidth and Latency in IP Networks. In Proc. IEEE INFOCOM
2001.

9. R.S. Prasad, M. Murray, C. Dovrolis, K. Claffy: Bandwidth Estimation: Metrics,
Measurement Techniques, and Tools. IEEE Network, 2003, 17(6):27-35.

10. J. Walz, B. Levine: A Hierachical Multicast Monitoring Scheme. In Proc. Net-
worked Group Communication 2000.

11. Y. Bejerano, R.Rastogi: Robust Monitoring of Link Delays and Faults in Networks.
In Proc. IEEE INFOCOM’03, 2003.

12. R. Kumar, J. Kaur: Efficient Beacon Placement for Network Tomography. In Proc.
ACM Internet Measurement Conference 2004, October 2004.

13. K. Claffy, T.E. Monk, D. McRobb: Internet Tomography, Nature, January, 1999.
14. J. D. Horton, A. Lopez-Ortiz: On the Number of Distributed Measurement Points

for Network Tomography. In Proc. ACM SIGCOMM IMC’03. 2003,pp.204-209.
15. Kyoungwon Suh, Yang Guo, Jim Kurose, and Don Towsley. Locating Network

Monitors: Complexity, Heuristics, and Coverage. In Proc. IEEE INFOCOM 2005.
16. M. Adler, T. Bu, R.K. Sitaraman, D. Towsley: Tree Layout for Internal Network

Characterizations in Multicast Network. In Proc. Networked Group Comm,2001.
17. N. Spring, R. Mahajan, D. Wetherall: Measuring ISP Topologies with Rocketfuel.

In Proc. ACM SIGCOMM’02. 2002.
18. H. X. Nguyen, P. Thiran: Active Measurment for Multiple Link Failure Diagnosis

in IP Networks. In Proc. PAM’04. April, 2004.
19. A. B. Doweny: Using Pathchar to Estimate Internet Link Characteristics. In Proc.

ACM SIGCOMM’99. Sept,1999.
20. CAIDA: http://www.caida.org/tools/. Oct, 2002.
21. Dorit S. Hochbaum: Approximation Algorithm for NP-Hard Problems. PWS Pub-

lishing Company,1997.
22. B.M.Waxman: Routing of Multipoint Connections. IEEE Journal on Selected Areas

in Communications, 1988, 6(9):1617-1622.
23. Zhiping Cai, Jianping Yin, Fang Liu and Xianghui Liu: Distributed Monitoring

Model With Bounded Delay For Evolving Networks. Journal of Software, 2005,11.
24. Zhiping Cai, Wentao Zhao, Jianping Yin and Xianghui Liu: Using Passive Mea-

suring to Calibrate Active Measuring Latency. In Proc. ICOIN2005, Lecture Notes
in Computer Science 3391, C.Kim(eds.), Springer-Verlag, 2005.

25. Zhiping Cai, Jianping Yin, Fang Liu, Xianghui Liu, Shaohe Lv: Efficiently Moni-
toring Link Bandwidth in IP Networks. In Proc. IEEE GLOBECOM 2005.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 303 – 309, 2005.
© IFIP International Federation for Information Processing 2005

Preferential Bandwidth Allocation
for Short Flows with Active Queue Management

Heying Zhang, Liu Lu, Liquan Xiao, and Wenhua Dou

School of Computer, National University of Defense Technology, 410073,�
Changsha, Hunan, China

hey_zhang@hotmail.com, douwh@vip.sina.com

Abstract. Several fair queueing mechanisms based on stateless core
(SCORE)/dynamic packet state (DPS) architecture have been proposed to
address the scalability problem of stateful architectures. However, most of these
mechanisms indiscriminatingly label every packet in edge routers while only a
small fraction of the packets that come from fast flows will be dropped by core
routers. Moreover, these mechanisms usually apply simple techniques to detect
congestion, which makes them unable to control the queue length. In this paper,
a new fair bandwidth allocation mechanism is proposed. In the new mechanism,
edge routers only label the packets of long flows so that the bandwidth is
preferentially allocated to short flows and the remaining is fairly allocated
among the competing long flows. Furthermore, routers can keep the queue
length at a reference value using active queue management (AQM) algorithm.
The simulation results show that this mechanism performs well in many
aspects.�

1 Introduction

In current Internet, routers simply forward each incoming packet to its destination,
regardless of which flow it belongs to. Therefore, some greedy, unresponsive flows
will unfairly obtain more bandwidth than the conservative, responsive ones when
congestion occurs. Such a situation will probably cause the danger of congestion
collapse and the starvation of conformant flows.�

The stateless core architecture, or SCORE for short, is proposed to achieve
approximate fairness and reasonable scalability simultaneously. The key technique
used to implement the SCORE network is the dynamic packet state (DPS), which
inserts the flow state information into the header of packets. In the SCORE/DPS
network architecture, routers are divided into edge routers and core routers. Edge
routers maintain per-flow state and insert it into the header of the incoming packet [1-
4]. Core routers use the simple first-in first-out (FIFO) queueing and drop the
incoming packet based on the state information carried in its header when congestion
occurs.�

Unfortunately, the existing mechanisms based on SCORE/DPS architecture have
the following limitations. First, they label every packet passing through edge routers,
which is not really necessary since only packets of high-bandwidth flows will be

304 H. Zhang et al.

dropped probabilistically when the network becomes congested. Moreover, it is
showed by recent measurement that most of the traffic is actually carried by a small
number of flows, while the large remaining amount of flows is very small both in size
and lifetime [5,6]. So it is reasonable to just maintain the state of these minority flows
that tend to occupy more bandwidth than others and label their packets. Second, these
mechanisms treat short flows and long flows equally. In fact, the throughput and
delay of the short-lived TCP (Transmission Control Protocol) flows will deteriorate
severely when competing with the long-lived flows due to lack of sufficient packets to
activate duplicate acknowledgments and the dependence on timeout to detect packet
loss. Although several approaches have been proposed to deal with short flows
preferentially, they cannot allocate bandwidth fairly among the competing long flows
[7,8]. Third, to the best of our knowledge, none of these proposed SCORE/DPS
mechanisms applies specific approach to control the queue length, which corresponds
to the queueing delay experienced by the backlogged packets.�

In order to address these issues, we propose a new fair bandwidth sharing
mechanism in this paper. The features of the new mechanism include simplifying the
operation of routers, protecting short flows and achieving fairness among long flows.
We use a well-designed AQM (Active Queue Management) algorithm, called
proportional integral based series compensation and position feedback compensation
(PIP), to detect congestion and control queue length [9]. So the proposed mechanism
is called FPIP (fair PIP).�

The rest of the paper is organized as follows. In section 2, we describe FPIP in
detail, including the core router and edge router. In section 3, we evaluate the
performance of FPIP through extensive simulations. Finally, we conclude in
section 4.�

2 FPIP Framework

In this section, we present FPIP, a packet labeling and queue management mechanism
that significantly simplifies the operation of routers without affecting the performance
by taking into account the ubiquitous heavy-tailed distribution of the Internet traffic.
We apply the network model comprised of edge routers and core routers. For each
active flow, the edge routers maintain a traffic counter that tracks how many bits have
been observed so far and determine whether the flow is short or long. When a packet
comes from a short flow, the traffic counter of the flow increases. Otherwise, the flow
rate is estimated and inserted into the header of the packet. The routers estimate the
aggregate arrival rate of short flows and the number of active long flows, and then
calculate the fair share based on them. In addition, a notable feature of FPIP is the use
of AQM algorithm in detecting congestion and controlling the queue length, from
which the delay-sensitive applications such as Web or Telnet can benefit.�

2.1 Estimating the Flow Arrival Rate�

To protect short flows, we should distinguish them from long flows at first and then
decrease their loss rates. In our mechanism, the edge router maintains a traffic counter
for each active flow, which is used to record the number of the bits sent by this flow.
Once the traffic counter exceeds a certain “bit threshold”, noted as bitThresh, the flow

 Preferential Bandwidth Allocation for Short Flows 305

will be considered long. Otherwise, it is considered short. For the long flows, the edge
routers estimate their arrival rates and label their packets. Instead, for the short flows,
only their traffic counters increase.

We use the exponential averaging formula to estimate the long flow arrival rate.
Let k

it∆ be the time interval between the kth and the (k-1)th packet of flow i. The

estimated rate of flow i is calculated as

old
i

Ktk
i

k
i

Ktnew
i retler r

k
ir

k
i ∆−∆− +∆−=)1(. (1)

where k
il is the length of the kth arrival packet of flow i and Kr is a constant.�

2.2 Estimating the Aggregate Arrival Rate of Short Flows�

To calculate the bandwidth that can be allocated to long flows, we should estimate the
aggregate arrival rate of short flows at first. For each arrival packet, the router checks
its label to see which kind of flow it comes from. If the packet label equals to zero,
the packet is thought of as coming from short flow. Let l be the length of the arrival
packet and t∆ be the inter-arrival time of the consecutive packets that come from
short flows. The router calculates the aggregate arrival rate of short flow, denoted by
sRate, as follows�

sRateetlesRate s
k

s
k KtkkKt ∆−∆− +∆−=)1(.

(2)

where Ks is a constant.�
If the label of the arrival packet is greater than zero, the packet is thought of as

coming from long flow. sRate is also updated according to (2), where l equals to zero.
By doing so, sRate will reflect the real aggregate arrival rate of short flows even if
there have been no packets from short flows for a long period of time.�

Now, the bandwidth that can be obtained by long flows is readily available:

{ }sRateCCl −= ,0max . (3)

2.3 Estimating the Number of Active Long Flows�

In FPIP, the routers calculate the fair share rate based on two variables: the bandwidth
allocated to long flows and the number of the active long flows (Nactivel). The former
has been determined easily, while the latter is a lot harder to estimate. Several
approaches have been proposed previously to address this issue [10-12]. Since these
approaches are motivated by some specific goals, none of them can be copied here.�

In this paper, we introduce a new method to estimate the number of the active long
flows. According to our method, the router is required to maintain a state table for
tracking the arrival time (denoted by prevtime) of the packet that has lately arrived
from each long flow. For each arrival packet, if its label is greater than zero, the
prevtime of the corresponding flow in the state table is checked. If it equals to zero,
the number of active long flows increases and the prevtime is set to the current time.
Otherwise, only the prevtime is replaced by the current time. In order to estimate the
number of the flows sharing the bandwidth during a longer period of time rather than
that of the flows currently having packets in the buffer, the flow table is not updated

306 H. Zhang et al.

when there is packet leaving the queue. Instead, it is updated periodically with a
constant frequency, which can be viewed as a background task, for it is shifted from
the high-speed data-forwarding path. When the update timer expires, entries of the
table are checked one by one. If the interval between the current time and the
prevtime of a flow is greater than a certain threshold (Tn), which means there is no
packet from that flow in the last Tn time units, the flow is considered terminated.
Thus, Nactivel is reduced and the prevtime of the flow is reset to zero.�

2.4 Estimating and Adjusting the Fair Share Rate�

The problem of the fair bandwidth sharing occurs along with the presence of the
network congestion, and the estimation of the fair share rate depends further on it.
Therefore, it is of great importance to correctly detect congestion. In this paper, we
apply AQM algorithm in congestion detection for the following reasons: (1) The
packet drop probability calculated by AQM is a good representation of the congestion
degree; (2) AQM algorithm is able to detect congestion and control queue length
simultaneously. In our mechanism, we use a robust AQM algorithm called PIP [9].

The packet drop probability p(k) determined by PIP is regarded as a measure of
congestion. When p(k) is greater than a random variable, it is likely that the link is
congested and the fair share rate (Rfair) should be calculated. Let the capacity of the
output link be C. Suppose sRate is less than C. Rfair is calculated as

0>−= Nactivel
Nactivel

sRateC
R fair .

(4)

When p(k) is less than a random variable, the link is considered uncongested. To
avoid under-utilization of the link, when the estimated rate of the accepted traffic
(cRate) is less than the output link capacity C, the fair share rate is adjusted as follows�

},min{ old
fair

new
fair R

cRate

C
CR = .

(5)

The accepted rate is also estimated by exponential averaging:�

cRateetlecRate c
k

c
k KtkKt ∆−∆− +∆−=)1(. (6)

The implications of the parameters in (6) are similar to those in (1). Now, the
incoming packet of the long flow will be dropped with the following probability

},0max{rob
i

fairi

r

Rr
p

−
= .

(7)

3 Simulations

In this section, we use NS simulator to evaluate the performance of FPIP and compare
with CSFQ and RED [13]. In the simulations, we use the network topology with
multiple congested links shown in Fig.1. The number of congested links varies from
one to five. The capacities of all the access links are 30 Mbps, and those of the
congested links are 10 Mbps. The propagation delay of each link is 5 ms. Each router
is connected with five UDP flows which terminate at the next router and send at 4
Mbps. Thus, all the links between neighboring routers are congested.

 Preferential Bandwidth Allocation for Short Flows 307

�

Fig. 1. Network topology used in the simulations

In the first experiment, a TCP flow traverses all the congested links. Fig.2 shows
the bandwidths achieved by the TCP flow as a function of the number of congested
links. We compare the bandwidth achieved by each flow through the normalized
bandwidth, which is defined as the ratio of the allocated bandwidth to the ideal
bandwidth. In RED, the TCP flow is submerged by the high-speed unresponsive
flows. The TCP flow achieves more bandwidth under FPIP than that under CSFQ.
Fig.3 shows the queue dynamics in router r under CSFQ and FPIP when the number
of the congested links is 5. For CSFQ, the queue length of each router is about 300
Kbytes in steady state, while for FPIP, the queue length is 25 Kbytes.

In the second experiment, the TCP flow is replaced by a UDP flow (denoted by
UDP0 in Fig. 1) sending at its fair share rate 1.67 Mbps. Fig. 4 shows the normalized
bandwidth achieved by UDP0. Similarly, RED has the worst performance. FPIP
performs slightly better than CSFQ.

Fig. 2. Bandwidth achieved by TCP flow Fig. 3. The queue dynamics of CSFQ and FPIP
�

In the last experiment, a Web flow traverses all the congested links. Fig. 5 shows
the response time of the Web flow traversing different numbers of congested links.
We cannot show the result under RED, for the client of the Web flow cannot even
receive a single response from the server. For the other two mechanisms, when the

308 H. Zhang et al.

Fig. 4. Bandwidth achieved by UDP flow Fig. 5. The response time of web flow

number of the congested links increases, the response time of the Web flow also
increases. Moreover, the increase under CSFQ is faster than that under FPIP.

4 Conclusions

In this paper, we present a new fair bandwidth allocation mechanism called FPIP. By
labeling only the packets of long flows at edges, the mechanism greatly reduces the
amount of flow state required and the processing done on it. In the core of the
network, routers only drop packets from long flows with probability, while short
flows will not be dropped as long as the capacity of the output link will satisfy their
bandwidth demand. Furthermore, to provide low delay service, the core routers apply
AQM mechanism to detect congestion and control queue length, which is beneficial
to the adaptive flows and delay-sensitive applications. The results of simulations
show that FPIP can obtain approximate fairness among long flows, keep queue length
at a desired value and reduce the response time of Web flows.�

References

1. Stoica, I., Shenker, S., Zhang, H.: Core-stateless Fair Queueing: Achieving Approximately
Fair Bandwidth Allocations in High Speed Networks. In Proceedings of ACM SIGCOMM
1998, Vancouver (1998) 118-130

2. Cao, Z., Wang, Z., Zegura, E.: Rainbow Fair Queueing: Fair Bandwidth Sharing Without
Per-flow State. In Proceedings of IEEE INFOCOM 2000, Tel-Aviv, Israel (2000) 922-931

3. Clerget, A., Dabbous, W.: Tag-based Fair Bandwidth Sharing for Responsive and
Unresponsive Flows. In Proceedings of IEEE INFOCOM 2001, An-chorage, AK (2001)

4. Ngin, H.T., Tham, C.K.: A Control-Theoretical Approach for Achieving Fair Bandwidth
Allocations in Core-Stateless Networks. Computer Networks, Vol.40, (2002) 727-741

5. Mahajan, R., Floyd, S.: Controlling High Bandwidth Flows at the Congested Router.
AT&T Center for Internet Research at ICSI (ACIRI), TR-01-001 (2001)

6. Brownlee, N., Claffy, K.C.: Understanding Internet Traffic Streams: Dragonflies and
Tortoises Brownlee. IEEE Communications Magazine, Vol.40, (2002) 110-117

7. Zhang, Y., Qiu, L., Keshav, S.: Speeding up Short Data Transfers: Theory, Architecture
Support, and Simulation Results. In Proceedings of NOSSDAV 2000, Chapel Hill, NC,
USA (2000)

 Preferential Bandwidth Allocation for Short Flows 309

8. Guo, L., Matta, I.: The War Between Mice and Elephants. Technical Report BU-CS-2001-
005, Boston University (2001)

9. Zhang, H.Y., Liu, B.H., Dou, W.H.: Design of a Robust Active Queue Management
Algorithm Based on Feedback Compensation. In Proceedings of ACM SIGCOMM 2003,
Karlsruhe, Germany (2003) 277-286

10. Lin, D., Morris, R.: Dynamics of Random Early Detection. In Proceedings of ACM
SIGCOMM 1997, Cannes, France (1997) 127-137

11. Li, J.S., Leu, M.S.: Network Fair Bandwidth Share Using Hash Rate Estimation.
Networks, Vol. 40, (2002) 125-141

12. Ott, T.J., Lakshman, T.V., Wong, L.: SRED: Stabilized RED. In Proceedings of IEEE
INFOCOM 1999, New York, USA (1999) 1346-1355

13. Floyd, S., Jacobson, V.: Random Early Detection Gateways for Congestion Avoidance.
IEEE/ACM Transactions on Networking, Vol.4, (1993) 397-413

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 310 – 316, 2005.
© IFIP International Federation for Information Processing 2005

A New Self-tuning Active Queue Management Algorithm
Based on Adaptive Control

Heying Zhang1, Baohong Liu2, Liquan Xiao1, and Wenhua Dou1
�

1 School of Computer, National University of Defense Technology, 410073,�
Changsha, Hunan, China

hey_zhang@hotmail.com, douwh@vip.sina.com�
2 Institute of Automation, National University of Defense Technology, 410073,�

Changsha, Hunan, China�
liu_baohong@hotmail.com

Abstract. Most Active Queue Management (AQM) algorithms based on
control theory have difficulty in obtaining desirable performance once the
network conditions or the traffic patterns change out of the presumed ones they
are designed for. To address these problems, a new self-tuning AQM algorithm
called STR is proposed in this paper. STR has the ability of keeping minimum
variance between the instantaneous queue length of the router and the reference
value by estimating the parameters of the model of controlled object online and
adjusting the packet drop probability accordingly. The performance of STR is
evaluated through extensive simulations. The results show that STR is robust
against the great changes of the network parameters and the traffic load.

1 Introduction

Congestion control is very important to the stability and scalability of Internet. To
improve the performance of traditional end-to-end congestion control, IETF (Internet
Engineering Task Force) strongly suggests using active queue management (AQM) in
routers [1]. RED (Random Early Detection) is one of the well-known AQM
algorithms [2]. Many simulations and tests show that the performance of RED is very
sensitive to its parameter settings [3]. This is considered partly due to lack of
systematic analysis during the design of RED. In view of this, many AQM algorithms
based on control theory have been proposed in recent years [4-11]. These algorithms
are usually characterized by simple implementation and easy configuration. However,
they have some disadvantages. For example, these algorithms are usually designed
based on the linearized model of the controlled object, which is made up of TCP
(Transmission Control Protocol) and the queue dynamics. While the accurate model
of the controlled object is nonlinear and time-varying in real networks. The
inaccuracy of the model will lead to dissatisfied performance for AQM algorithms
especially in terms of robustness and stability. Moreover, the parameters of most
AQM algorithms are determined according to some specific network conditions.
When the real network condition is far from that presumed, the performance of the
algorithm will become unpredictable. In view of the fact that AQM algorithms with

 A New Self-tuning AQM Algorithm Based on Adaptive Control 311

fixed parameters are not very suitable for the highly variable network conditions,
some adaptive AQM algorithms have been proposed recently [12]. Unfortunately,
they cannot solve the problems thoroughly.

The rest of this paper is organized as follows. In section 2, we describe the design
of STR in detail. In section 3, the performance of STR is evaluated through
simulations. Finally, we give the conclusions in section 4.

2 The Self-tuning Active Queue Management

Through detailed analyses, we find that it seems impossible to establish accurate
model of TCP and the queue dynamics with fixed parameters. To efficiently control
congestions even if the network conditions change widely, the AQM algorithm should
identify the parameters of the controlled object timely and adjust the control laws, i.e.
the packet drop probability, accordingly. So we use the self-tuning regulator to design
AQM algorithm, which combines the recursive least square parameter identification
and the minimum variance control as illustrated in Fig.1. In TCP/AQM system, the
reference input r of the system is the reference queue length. The controlled object is
made up of TCP window adjustment scheme and the queue dynamics. And the input u
and output y of the controlled object is the packet drop probability and the queue
length respectively. The estimator identifies the parameters of the model of controlled
object. The regulator adjusts the packet drop probability according to the identified
parameters. The estimator and regulator compose the self-tuning AQM algorithm.

�

Fig. 1. Structure of self-tuning regulator�

Now we will give the design of STR in detail. First of all, two key parameters of
the system should be determined. One is the order n of the controlled object. The
other is the delay d from the input of the controlled object to its output. If the
parameters n and d of a system are unknown, it is feasible to select large values for
them [13]. In [6], the differential equation model of TCP and queue dynamics is
linearized about the operating point and a second-order system model is gained. So n
can be selected as 2. Considering the stochastic disturbance frequently occurred in the
network, we choose n=3 to guarantee the convergence of the parameter identification.
In TCP/AQM system, the packet drop rate will delay one RTT (Round Trip Time)

312 H. Zhang et al.

before affecting the queue length. To decrease the number of parameters which
require identifying, we choose the sample cycle T=RTT. Then the delay between the
packet drop and the change of the queue length is one sample cycle, namely d=1.

After determining n and d, the controlled object can be repr esented by:

)4()3()2(

)1()3()2()1()(

321

0321

−+−+−
+−=−+−+−+

kpbkpbkpb

kpbkqakqakqakq
.

(1)

where q(k) is the queue length and p(k) is the packet drop probability.
Equation (1) can be rewritten as:�

θϕ)()()1(0 kkpbkq T+=+ .
(2)

where

[]Tbbbaaa 321321 ,,,,, −−−=θ
�

[]Tkpkpkpkqkqkqk)3(),2(),1(),2(),1(),()(−−−−−=ϕ

(3)

Calculating the variance between q(k+1) and the reference value q0, we yield:

[] []2

00
2

0)()()1(qkkpbEqkqE T −+=−+ θϕ .
(4)

We have the following condition when the minimum variance is gained:

0)()(00 =−+ qkkpb T θϕ .
(5)

Then, we get the packet drop probability of STR:�

[]θϕ ˆ)(
ˆ
1

)(0

0

kq
b

kp T−=
 .

(6)

where
0b̂ is the estimated value of b0 and θ̂ is the estimated value of θ . To simplify

the parameter identification and guarantee its convergence, we will determine the
value of b0 by experiments and use the basic least squares method to estimate θ .
Since θ is variable rather than constant in real networks, we will use the recursive
parameter identification algorithm with forgetting property which is suitable for the
slowly variable parameter estimation. The estimation method is represented by:

[]
[]

[] −−−=

−−−+−−=

−−−−−+−=
−

)1()1()(
)(

1
)(

)1()1()1()()1()1()(

)1(ˆ)1()1(ˆ)()()1(ˆ)(ˆ

1

0

kHkkKI
k

kH

kkHkkkkHkK

kkkpbkqkKkk

T

T

T

ϕ
λ

ϕϕλϕ

θϕθθ .

(7)

where λ is the “forgetting factor” ranging between 0.95 and 1. Generally, let
0)0(ˆ =θ , IH α=)0(, where α is positive and large enough and I is a unit matrix. In

TCP/AQM system, we will change the value of λ as follows [13]:

>

≤+−
=+

Ek

Ekk
k

)(

)()1)((
)1(

0

00

ελ
ελλλ

λ
 .

(8)�

 A New Self-tuning AQM Algorithm Based on Adaptive Control 313

where, 0λ is the lower bound of λ and set to 0.95. E is a constant.)(kε is the

prediction error and defined as follows:

)1(ˆ)1()1(ˆ)()(0 −−−−−= kkkpbkqk T θϕε .
(9)

3 Simulations

We implement STR algorithm in NS simulator and compare its performance with PI
and ARED. The network topology is shown in Fig.2. The propagation delays of
connections range between 40 ms and 240 ms. The link between routers r1 and r2 is
the only congested link with the capacity being 100 Mbps and the delay being 10 ms.
The buffer size of the routers is 800 packets, with the average packet size being 500
bytes. The flows from si to di are forward, while those from di to si are backward. The

reference queue length of STR and PI is 100 packets. For STR, E=20, 4
0 10ˆ −=b . The

parameters of PI are selected according to [7]. The minimum and maximum queue
thresholds of ARED are 50 packets and 150 packets respectively.

s1

s2

sn dn

d2

d1

r1 r2

�

Fig. 2. Network topology used in the simulations

In the first experiment, we evaluate the responsiveness and robustness of STR
when the traffic load changes. At the beginning of the simulation, there are 500
forward TCP flows. At t=100s, 450 TCP flows stop. And at t=200s, the stopped 450
TCP flows started again. The queue dynamics of STR, PI and ARED are depicted in
Fig.3. It’s easy to find that STR can keep small queue length and oscillations in either
heavy or light load condition. For PI, the buffer is almost full when the traffic load is
heavy. It however becomes empty frequently when the traffic load is light. For
ARED, the queue oscillations are very large in heavy load condition.

The second experiment evaluates the performance of STR when the unresponsive
flows and short TCP flows exist. At the beginning of the simulation, there are 100
FTP flows. At t=100s, 50 ON/OFF flows based on UDP protocol and 300 web flows
based on HTTP protocol started simultaneously. The queue dynamics of STR, PI and
ARED are shown in Fig.4. We can find that the queue length of PI increases abruptly
and changes in a wide range when the ON/OFF flows and web flows exist. The queue

314 H. Zhang et al.

�

Fig. 3. Queue dynamics when the traffic load changes

�

Fig. 4. Queue dynamics under mixed traffic

oscillations of ARED become large. On the contrary, both the queue length and
oscillations of STR remain small all the time.

In the last experiment, all the routers in Fig.2 use AQM algorithm with the same
configuration. At the beginning of the simulation, there are 100 forward TCP flows.
At t=100s, 100 backward TCP flows joined. The queue dynamics of STR, PI and
ARED are shown in Fig.5. When the backward traffic is active, the queue length of PI
becomes unstable and the queue oscillations of ARED also become large. In contrast,
both the queue length and the oscillations of STR have no evident changes.

 A New Self-tuning AQM Algorithm Based on Adaptive Control 315

�

Fig. 5. Queue dynamics under bi-directional traffic

We also evaluate the performance of STR when the capacity of the bottleneck link
is small, i.e. 15 Mbps. The results are similar to those described above. For space
limitation, we don’t show them here.

4 Conclusions

This paper proposes a new self-tuning active queue management algorithm called
STR. Through estimating the parameters of the model of controlled object online and
adjusting the packet drop probability accordingly, STR can minimize the variance
between the transient queue length and the reference queue length, and eliminate the
limitation of configuring AQM algorithms according to some specific network
conditions. The results of the extensive simulations indicate that STR can keep the
queue length at low level and achieve high link utilization simultaneously even when
the network conditions change widely.

References

1. Braden, B., et al.: Recommendations on Queue Management and Congestion Avoidance in
the Internet. RFC2309, (1998)

2. Floyd, S., Jacobson, V.: Random Early Detection Gateways for Congestion Avoidance.
IEEE/ACM Transactions on Networking, Vol.1, (1993) 397-413

3. Firoiu, V., Borden, M.: A Study of Active Queue Management for Congestion Control. In
Proceedings of IEEE INFOCOM 2000, Tel-Aviv, Israel (2000) 1435-1444

4. Misra, V., Gong, W.B., Towsley, D.: Fluid-based Analysis of a Network of AQM Routers
Supporting TCP Flows with an Application to RED. In Proceedings of ACM SIGCOMM
2000, Stockholm, Sweden (2000) 151-160

316 H. Zhang et al.

5. David, L., Steven, L.: Random Early Marking for Internet Congestion Control. In
Proceedings of IEEE Globecom1999, Rio de Janeiro, Brazil (1999) 1747-1752

6. Hollot, C., Misra, V., Towsley, D., Gong, W.B.: A Control Theoretic Analysis of RED. In
Proceedings of IEEE INFOCOM 2001, Anchorage, Alaska, USA (2001) 1510-1519

7. Hollot, C., Misra, V., Towsley, D., Gong, W.B.: On Designing Improved Controllers for
AQM Routers Supporting TCP Flows. In Proceedings of IEEE INFOCOM2001,
Anchorage, Alaska, USA (2001) 1726-1734

8. Ren, F.Y., Lin, C.: Speed up the Responsiveness of Active Queue Management System.
IEICE Transactions on communication, Vol.2, (2003) 630-636�

9. Zhang, H.Y., Liu, B.H., Dou, W.H.: Design of a Robust Active Queue Management
Algorithm Based on Feedback Compensation. In Proceedings of ACM SIGCOMM2003,
Karlsruhe, Germany (2003) 277-286�

10. Ren, F.Y., Lin, C., et al.: A Robust Active Queue Management Algorithm Based on
Sliding Mode Variable Structure Control. In Proceedings of INFOCOM2002, New York,
USA (2002) 64-79�

11. Ren, F.Y., Ren, Y., Shan, X.M.: Design of a Fuzzy Controller for Active Queue
Management. Computer Communications, Vol.25, (2002) 874-883

12. Wu, W., Ren, Y., Shan, X.M.: A Self-configuring Proportional-Integral Controller for
AQM Routers Supporting TCP-like Flows. In Proceedings of 7th Asia Pacific Conference
on Communications. Tokyo, Japan (2001) 368-371�

13. Wu, G.Y.: System Identification and Adaptive Control. Harbin Institute of Technology
Press, Harbin, China (1987) (in Chinese)

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 317 – 320, 2005.
© IFIP International Federation for Information Processing 2005

Research on Multi-agent System Automated Negotiation
Theory and Model

Weijin Jiang1, Yusheng Xu2, Ding Hao1, and Shangyou Zhen2

1 Department of computer, Zhuzhou Institute of Technology, Zhuzhou 412008, P.R. China
jwjnudt@163.com

2 College of Mechanical Engineering and Applied Electronics,
Beijing University of Technology, Beijing 100022, P.R. China

yshxu520@163.com

Abstract. The communication between agents has some special requirements.
One of them is asynchronous communication. Used communication sequence
process (CSP) to descript a model of agents communication with shared buffer
channel. The essence of this model is very suitable for the multi-agents
communication, so it is a base for our next step job. Based on the
communication model, explored the distributed tasks dealing method among
joint intention agents and with description of relation between tasks we give a
figure of agents’ organization. Agents communicate with each other in this kind
of organization. The semantics of agent communication is another emphasis in
this paper. With the detailed description of agents’ communication process,
given a general agent automated negotiation protocol based on speech act
theory in MAS, then we use CSP to verify this protocol has properties of safety
and liveness, so prove it is logic right. At last a frame of this protocol’s
realization was given.

1 Introduction

The theory of Multi-Agent Automated Negotiation involves extensive applying fields
and many kinds of methods. The theory mainly lies in Argument Based Automated
Negotiation, Game Theoretic Models and Heuristic Approaches. In application, it can
be divided into two categories, Agent’s Negotiation within MAS and Self-interested
between different MAS. Those theories supporting the interior collaboration of MAS
are like Self-interested, Joint Intentions and Shared Plans, no matter which are have
differences, they have been working under the premise of identical intention and
target of Agent within MAS. This text will discuss the Joint Intentions in Multi-Agent
Automated Negotiation of MAS[1-4].

If Multi-Agent in MAS interacts successfully�there must be three conditions dem-
anded to be satisfied as below:

1) Communication Structure, that is, how to dispatch and take over information
between Agent�

2) Communication Language, that is, Agent is required to understand the
signification of the information;

3) Interaction Rules, that is, how to organize the conversation between Agent.

318 W. Jiang et al.

Regarding to the research of Agent Communication Structure, we have proposed
TTMAS communication model in the previous parts. In the second section, it will be
stressed to analyze Agent’s asynchronous communication mechanism[5,6]. As to the
research of Agent Communication Language, presently there have been many abroad,
like KQML, FIPA, ACL, Agent Talk, etc., so the language is not the emphasis in our
text. Then, research of Interaction Rules is the second emphasis in the text. In the
third part, the text will set forth the agreement of Agent Automated Negotiation and
its validation. In the forth part, it illustrates and analyzes the complete frame of Agent
Automated Negotiation. The fifth is the conclusion of the text.

2 Agent Communication Mechanism Analyses

Definition 1. Agent is a status course which can accomplish the task automatically
with the ability and agreement of communication, for example, PA represents the
course of Agent A.

Definition 2. The course of Agent make the Agent’s ability which can be marked as
Ability

AP and TASK
AP means to be able to fulfill the task.

The moving status of the static Agent in MAS can be classified as Active, Wait and
Run. Agent in the Wait status will be activated after receiving the requests from other
Agent and then run. Agent in Run status will negotiate with other Agent or provide
services according to the Try-best principle. Stateouter stands for the Run status of
Agent:

Stateouter�����Wait | Active | Run

Agent’s collaborating course observed from the outer MAS is the process that
Agent runs in the Iouter=Stateouter*

Definition 3. Contain the protocol system extremely locking the state, including
STOP process in its CSP expression formula.

Definition 4. Contain alive protocol system that lock, its CSP expression formula will
certainly include part exported to have pass ring of returning.

Theorem 1. In an Agent’s collaborating process with Safety and Liveness, the
circulation of Wait Active Run Wait in Iouter will appear at least once to Agent’s
launch and acceptance.

Attestation� Obviously�in the circulation of Wait Active Run Wait, if any
one part of Agent can not fulfill the circulation, it means something happened
unexpectedly cause the deadlock or livelock to the system during the collaborating
process, so the theorem attested.

Definition 5. Buffer channel C is such an Agent which set independent state switch
and message buffer to all its relevant Agents and transmit messages for these Agents.

 Research on Multi-agent System Automated Negotiation Theory and Model 319

3 MAS Interior Agent Cooperation Model

When Multi-Agent in MAS begins cooperation, for the reason that there is a conform
joint intension between Agent, the process of Multi-Agent in MAS works according
to the principal of "From each according to his ability�abide by the law and behave
oneself", that is, each Agent is trying its best to cooperated with other Agent[7,8].�

3.1 Automatic Negotiation in Agent Protocol

Agent automatic negotiation is the main method for multi-Agent to negotiate, which
focus on three aspects lieing in negotiation protocol, negotiation object and
negotiation policy. Negotiation protocol and negotiation object act as the textual
points, but the negotiation policy is clampinged how to look for in Agent each from of
negotiation space best in order to reach consistence, concretion content visible
literature cited.

Present hypotheses 1 to ensure negotiation agent could each other have partner
faith in against due to MAS interior Agent according to Try-Best principle proceed
synergic�furthermore MAS possess concurrent combine intent.

Hypotheses 1. Negotiation Agent knows each other in negotiation policy.

Be on the negotiation with the result that decision agent toward inter network
communication negotiatory condition of Agent automatic negotiatory course mission
due to specific assignment require different communication quality guarantee AND
specific network insurance. Text take mission negotiation AND inter network
communication negotiation as agent automatism negotiation in process two phase.

Definition 6. MAS interior agent automatic negotiation course could include two
phases. The first phase is based on multi-Agent automatic negotiation whose
negotiation object includes task starting time, task ending time and the relation of the
tasks; The second phase is the negotiation of Agent’s communicating conditions
whose negotiation object include corresponding security policy and network service
quality�QOS�.

According to the top analysis talks about with the correlative language behavior
academic theories, we say the Agent automatic negotiation correspondence in the
procedure to state row word certain for: request, promise�refuse, advise, counter
advise. In view of agreement presence overtime event and agent unsolicited message
transmission�so increase overtime�timeout�status and inform �inform�state
row word that. Communication protocol engine of the communication process state as
follows of the agent�

Stateinner ��:= Started| Requested | Accepted | Refused | Promised | Informed |
Advised | CAd-vised | Timeout | Stopped

Agent automatic negotiation protocol can be divided into information transmission
layer, buffer channel layer and Agent negotiation protocol layer from bottom to top,
of which buffer channel layer C is one of the needed layers between Agents to realize
asynchronous communication. If it will realize point-to-point synchronous

320 W. Jiang et al.

communication between Agents, it can do communication directly through channel C.
As to the description of Agent automatic negotiation, it mostly focus on Agent
negotiation protocol layer�while for the other layers, it only describes their services
and running environment in brief. In essence, the function of Agent negotiation
protocol layer is the description of process.

The service provided by each protocol layer:

a. Information transmission layer: being in position to transmit information data
between Agents in sequential way and correctly;

b. Buffering channel C0 and C1 layer: providing Agent automatic negotiation layer
with the services described in 2.2.;

c. Agent automatic negotiation protocol layer�supplying Agent with credibility,
efficient negotiation control and policy.

4 Conclusions

This text provides a common and communication-based Agent cooperation mode by
studying mutual behavior of Agent cooperation. The text also uses some effective
format ways to depict automatic negotiation protocol of Agent process and verify the
validity of the protocol’s logic. Finally, the text makes an implementation frame for
this agreement. While using blackboard mode to realize buffer channel in this
implementation frame, it provides a deployed agreement stack extra and at last it
presents performance analysis and expandable analysis. In addition, as to negotiation
between Agent in MAS, because the advantage difference of Agent group negotiating
with Agent which has a conform joint intension has great differences on negotiation
principle and strategy, the self-interested Agent’s negotiation agreement between
MAS is our next work under research.

References

1. Jennings N R ,Faratin P, Lomuscio A R et al.: Automated negotiation: prospects. Methods
and challenges[C]. Pacific Rim International Conference on Artificial Intelligence, (2000)

2. Grosz B, Sidner C.: Plans for discourse[A]. In: P. Cohen, Morgan J, Pollack M. eds.
Intentions in communication [M]. Bradford Books, MIT Press, (1990)

3. Wang Bin . Zhang Yao-xue, Chen Song-qiao: A communication method of MAS based on
blackboard architecture[J]. Mini-Micro Systems, 23(11), (2002) 1355-1358

4. In G. Agha and F.: Decindio, editors, Concur-rent Object-Oriented Programming and Petri
Nets, Lecture notes in Computer Science[M]. Springer-Verlag, Berlin, (1998)

5. Jiao Wen-pin, Shi Zhong-Zhi.: Modeling dynamic architectures for multi-agent system[J].
Chinese Journal of Computers, 23(7),(2000) 732-737

6. Mao Xin-jun: Anon-terminating active computing model in multi-agent systems[J]. Journal
of Computer Research & Development, 36(7) , (1999) 769-775

7. Jiang Weijin: Modeling and Application of Complex Diagnosis Distributed Intelligence
Based on MAS. Journal of Nanjing University(Natural Science), 40(4) ,(2004) 483-496

8. Jiang Weijin: Research on Diagnosis Model Distributed Intelligence and Key Technique
Based on MAS. Journal of Control Theory & Applications, 20(6), (2004) 231-236

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 321 – 326, 2005.
© IFIP International Federation for Information Processing 2005

Adaptive Congestion Control in ATM Networks

Farzad Habibipour, Mehdi Galily, Masoum Fardis, and Ali Yazdian

Iran Telecommunication Research Center, Ministry of ICT,
 Tehran, IRAN

habibipor@itrc.ac.ir

Abstract. In this paper an adaptive minimum variance controller is proposed to
minimize the rate of stochastic inputs from uncontrollable high priority sources.
This method avoids the computations needed for pole placement design of the
minimum variance controller, and utilizes an online recursive least squares
algorithm in direct tuning of the controller parameters.

1 Introduction

Congestion control of ATM (Asynchronous Transfer Mode) network with its wide
use in high bandwidth communication systems is the source of attention and subject
of active research [1]. There are different types of communication services which are
categorized in high priority sources including Constant Bit Rate (CBR) and Variable
Bit Rate (VBR), and best effort sources often considered as Available Bit Rate (ABR)
sources. On the basis of QoS (Quality of Service) requirements, congestion control is
possible by regulating the queue length at bottleneck nodes via active controlling of
Available Bit Rate (ABR) [2]. Another important factor is the unavoidable delay of
closed loop systems in high speed links such as satellite ATM networks or IP ATM.
The Round Trip Time (RTT) delay is the time from the moment control information
is sent to the source until an appropriate action takes place, and is the source of
instability in simple control systems [3]. In this paper, a direct minimum variance self
tuning regulator is proposed to be used with an online recursive least squares
algorithm to estimate the appropriate control parameters and to adaptively regulate the
queue length to the nominal value. The simulation results show the efficiency of the
method in comparison to a proportional-integral rate matching controller.

2 Queue Length Dynamics

Each bottleneck node of an ATM network has an output buffer to prevent cell loss,
but the queue length of cells in the limited size buffer should be controlled to avoid

overflow. Denoting the queue length at time n by ()nq , the queue length dynamics is

written by a simple linear equation

 () () () ()nnrnqnq µ−+=+ 1 (1)

322 F. Habibipour et al.

where ()nr is the total number of cells receiving in the time interval)1,[+nn , and

()nµ is the number of cells that depart from this node at the same time. The rate of

input cells to the buffer, ()nr , consists of inputs from M controllable ABR sources

and a rate of cells from uncontrollable high priority sources (CBRs and VBRs)

denoted by ()nr u . Clearly:

 () () ()
=

+=
M

m

uc
m nrnrnr

1

 (2)

A high performance tracking control method, actually results in optimal use of

buffer and network capacity. ()nq is referred to as the controlled variable and

()nr c
m s are the M control signals. The available bandwidth for ABR, () ()nrn u−µ ,

is a stochastic value since the rate of VBR traffic is time varying. Therefore the

uncontrolled traffic, ()nr u , can be simply modeled by a filtered random disturbance

sequence to the system.
There are noticeable round trip time delays in a congestion controlled feedback

loop:

 () ()mm
c

m dnunr −= (3)

where ()num is the available bit rate to the mth source calculated at time n, but is

considered by the source md time units later. We suppose minimum and maximum

limits for these time delays:

 max21min0 ddddd M ≤≤≤≤≤≤ L (4)

By defining a nominal queue length value (Q), and the error variable () Qnq − , a

simple proportional integral control law can be used

 () () () () ()[]Qkknqknqknuanu mmm 2121 11 +−−++−= (5)

where ma is the rate allocation coefficient for source m, and 1k and 2k are control

parameters which are constant for all of the sources. Typically

=

=
M

m
ma

1

1 (6)

The control signals of the different sources are computed by dividing a unified
control signal proportional to the rate allocation coefficients:

 () () ()nuanudnr mmm
c

m ==+ (7)

 Adaptive Congestion Control in ATM Networks 323

To design the pole placement controller, the queue length dynamics are
reformulated in frequency domain (Z-domain). A colored noise process is first
assumed for the rate of uncontrolled sources:

 () () ()nezCnr u = (8)

Where ()ne denotes a Gaussian random sequence. By definition of

() () Qnqny −= , the tracking problem is simplified to the regulation problem, and

the dynamical model is described by

 () () () () () ()nezCnuzBnyzA += (9)

in which

 () ()() 1deg; max
1 maxmax +=+= + dzAzzzA dd (10)

and

() ()() minmax0
1

1 deg; dddzBazazazB d
d

d
d −==+++= −

− K (11)

3 Minimum Variance Controller

The minimum variance control law is designed to minimize the cost function defined
as the expectation of the controlled signal in equation 9:

 (){ }nyEJ 2= (12)

Equation (9) is then reconfigured as

 () ()
() () ()

() ()000 dne
zA

zC
dnu

zA

zB
dny +++=+ (13)

where min0 dd = is the minimum time delay for a control action to appear in output,

and hence is the prediction horizon of the minimum variance controller. Equation (13)
can be further modified to yield

 () ()
() () () () ()

() ()ne
zA

zzG
nezFdnu

zA

zB
dny ++++=+ 100 (14)

()zF and ()zG are computed as the quotient and remainder polynomials of

dividing ()zCz d 10 − to ()zA from the following Diophantine equation:

 () () () ()zGzFzAzCz d +=−10 (15)

By a few mathematical manipulations through the noise innovation model, the
following equation is obtained [4]:

324 F. Habibipour et al.

 () () () () ()
() () ()

() ()ny
zC

zzG
nu

zC

zFzzB
nezFdny +++=+ 10 (16)

The second part of which is considered as the prediction model

 () () ()
() () ()

() ()ny
zC

zzG
nu

zC

zFzzB
ndny +=+ 0ˆ (17)

And to minimize the prediction error, () ()ndnydny 00 ˆ +−+ , the minimum

variance control law is obtained

 () ()
() () ()ny

zFzB

zG
nu −= (18)

4 Self Tuning Regulator

The pole placement design of the minimum variance controller via equations (15) and

(18) is just applicable if the polynomials of the model in equation (9), i.e. ()zA ,

()zB , and ()zC , are definite; but this is not the case in real situation. So there is a

need to utilize an estimation method either for these parameters or directly for the
control parameters in equation (18). Using an identification method to estimate the
parameters of the model in equation (9) is followed by the hard computation of the
Diophantine equation and is not efficient. Another approach is the direct tuning of the
controller parameters. To start, equation (16) is parameterized in backward difference
form as follow

() () () () () ()() () ()0
1*

1
1*1*

1*0

1
dnezRnyzSnuzR

zC
dny +++=+ −−−

−
 (19)

in which () ()1*1*
1

−− = zFzR . Recursive Least Squares (RLS) algorithm is

proposed to estimate the polynomials ()1* −zR and ()1* −zS as the coefficients of

the regressors of input (()nu) and output (()ny). The ()1*

1
−zC

 coefficient can be

considered as a filter on regressors, and is commonly replaced by a stable filter of the

rational form
()
()1*

1*

−

−

zP

zQ
:

 () ()
() () () ()

() ()ny
zP

zQ
nyandnu

zP

zQ
nu ff 1*

1*

1*

1*

−

−

−

−

== (20)

 Adaptive Congestion Control in ATM Networks 325

Therefore the RLS algorithm is formulated to estimate the coefficients of

()1* −zR and ()1* −zS in the following model

 () () () () () ()0
1*1*

0 dnnyzSnuzRdny +++=+ −− ε (21)

where

()
() l

l

k
k

zszsszS

zrzrrzR
−−−

−−−

+++=

+++=

K

K
1

10
1*

1
10

1*

 (22)

The recursive least squares estimation is performed via

() () () () () () () () ()
() () () () ()[]

[]lk
T

T

T
ff

ssrr

lnynyknunun

ndnnydnyzSdnuzRnyn

KK

KK

00

00
1*

0
1* 1ˆ

=

−−=

−−−=−−−−= −−

θ
φ

θφε
 (23)

5 Simulation Results

Three ABR sources with different round trip time delays are assumed, one of which
has an allocation rate coefficient of 0.5 and the others have equal coefficients of 0.25.
The output service rate of the node is 10000 cells per time unit and the traffic of high
priority sources is modeled as a filtered random process with a Gaussian input
sequence (

xm =5000,
xσ =2500). Nominal time delays of ABR sources are

5,4,3 321 === ddd ; 3=M , and the desired queue length is 3000. The nominal

queue length is 3000 and the maximum buffer size is 5000. Simulation results of the
proposed controller are compared to the simple control structure of equation (4).
Fig. 1 presents a comparison of the queue length values for the proportional integral
control method, and the adaptive minimum variance controller. Both methods have

Fig. 1. Tracking control of queue length, Upper: Control feedback loop, Lower: The self tuning
minimum variance regulator

326 F. Habibipour et al.

Fig. 2. Queue length when a failure is occ-
urred to ABR source 2 at t=600

Fig. 3. Bit rate available to ABR sources

regulated the queue length to 3000, but their mean values and standard deviations are
different. Obviously, the minimum variance controller has resulted in lower variance
of the queue length about the nominal value. Figs. 2 and 3 depict the robustness of the
system when one of the ABR sources is failed.

6 Conclusions

The self tuning minimum variance regulator proposed in this article, is designed to
minimize the effect of stochastic disturbance inputs of the high priority sources to the
system. While the queue length dynamics at bottleneck nodes is undetermined and the
round trip time delays are uncertain and time varying for controlled ABR sources, an
online recursive least squares algorithm can directly tune the control parameters to
achieve the desired performance. The proposed controller is automatic and just needs
good estimations of the minimum and maximum limits of the time delays. This
adaptive system is also robust to the changes in network conditions, and the failure of
ABR sources, to prevent buffer overflow and efficient use of network resources.

Reference

1. Imer O.C., Compance S., Basar T., Srikant R.: Available bit rate congestion control in
ATM networks, IEEE Control Systems Magazine, Vol. 135, (2001) 38-56

2. Altman E., Basar T., Srikant R.: Congestion control as a stochastic control problem with
action delays, Automatica, Vol. 35, (1999) 1937-1950

3. Liansheng Tan, Yang S.H.: Rate-based congestion controllers for high speed computer
networks, IFAC 15th Triennial World Congress, (2002) Barcelona, Spain

4. Astrom K.J., Wittenmark B.: Adaptive Control, Addison-Wesley, 2nd Edition, (1995)

Secure Password Pocket for Distributed Web
Services�

Jae Hyung Koo1 and Dong Hoon Lee2

1 Center for Information Security Technologies (CIST),
Korea University, Seoul, Korea

ideao@cist.korea.ac.kr
2 Graduate School for Information Security (GSIS),

Korea University, Seoul, Korea
donghlee@korea.ac.kr

Abstract. Password authentication (PA) is a general and well-known
technique to authenticate a user who is trying to establish a connection
in distributed web services. The main idea of PA is to remove com-
plex information from users so that they can log on servers only with a
human-memorable password at anywhere. So far, many papers have been
proposed to set up security requirements and improve the efficiency of
PA. Most papers consider practical attacks such as password guessing,
impersonation and server compromise which occur frequently in the real
world. However, they missed an important and critical risk. A revealed
password of a user from a server may affect other servers because most
people tend to use a same password on different servers. This enables
anyone who obtains a password to easily log onto other servers. In this
paper, we first introduce a new notion, called “password pocket” which
randomizes user’s password even if he/she types a same password on dif-
ferent servers. When our password pocket is used, an exposed password
does not affect other servers any more. The cost of a password pocket is
extremely low since it needs to store only one random number securely.

1 Introduction

In a client-server environment, there exist several mechanisms to authenticate a
client trying to log on a server such as cryptographic secure module, biometric
data, information which only legitimate user knows and so on. Cryptographic
module adopts mathematically secure algorithms such as message authentica-
tion code [7,15] and digital signature in public key infrastructure (PKI) [10,11].
In spite of providing very strong user authentication, cryptographic module is
not widely installed in many servers because of its high cost and difficulty in
key management. Biometric authentication [6,12] is also hard to take in since in-
stallation cost is too high. Furthermore, users generally do not like to give their
� This work was supported (in part) by the Ministry of Information&Communications,

Korea, under the Information Technology Research Center (ITRC) Support Pro-
gram.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 327–334, 2005.
c© IFIP International Federation for Information Processing 2005

328 J.H. Koo and D.H. Lee

biometric information because of privacy. Password based authentication is a
typical technique using information which a person knows and does not require
high cost for additional devices such as biometric information scanner. The only
requirement for users is to memorize passwords which they registered in server.
Thus, password authentication is the most attractive one.

Although password based authentication (shortly PA in this paper) is a nice
solution, PA still has a drawback. If a user wants to log on multiple servers,
he/she should memorize a number of passwords. Obviously, it is hard for user
to memorize several passwords. One approach to remedy the drawback is single-
sign-on (SSO in short) [14]. As the name denotes, a user can get services from
different servers without logging on separately. When a user logs on SSO gate-
way, he/she automatically logs on other servers which he/she has permission.
SSO is a very convenient tool from the user’s point of view but it has impor-
tant problem. An exposed password may harm entire SSO system since anyone
with the password can use all applications from servers in which the password is
registered. We note that even if a user does not use SSO, the problem happens
very often. In other word, many users set a same password on different servers.
A simple but bad solution is to let users memorize multiple passwords. As we
mentioned, memorizing several passwords is not so easy for user. So, it is de-
sirable to design a method to achieve two goals simultaneously: i)set user free
from memorizing multiple passwords and ii) guarding user’s passwords in other
servers from a revealed password.

Smartcard [5] is one of hardware solutions to protect secret information from
out side attack. Also, it provides portability so that the owner can use the secret
information for authentication at anywhere. It is possible for a user to store a
number of passwords in a smartcard. However, to use a smartcard, every com-
puter has to be equipped with a smartcard reader. Another adoptable device
may be a universal serial bus (USB) [16]. Recently, most computers have USB
and lots of users use the device. Therefore, saving passwords into a USB seems
to be the best way for password based authentication for distributed services
without additional equipments. But, the device should guarantee the confiden-
tiality of the passwords and linkability to match each password with its corre-
sponding server. Confidentiality of passwords is necessary because USB can be
stolen. A very simple method to achieve confidentiality is to encrypt all pass-
words with a symmetric key which is securely managed in USB. The key also
could be encrypted with a password [9] for user authentication. Obviously, it re-
quires memory spaces. Furthermore, although a user does not need to memorize
multiple passwords, he/she has to generate different passwords. Making several
passwords is not easy for human-being.

Our goal is to build a mechanism to randomize a user’s password even though
he/she enters a same password on different web sites. We adopt an one-to-one
one-way random mapping function h(·) in which same input results in same out-
put but it is hard to guess pre-image from function value, e.g. m from h(m). The
word ‘random mapping’ means, even only one bit changes, it is computationally
infeasible to guess the function value. We use a USB device but it just stores

Secure Password Pocket for Distributed Web Services 329

a random number in a secure area. So our idea is also memory efficient. More
detailed description is shown in Sect. 3.

1.1 Related Works

A password is widely used in a client-server setting for user authentication. Basic
idea is to allow permission to a person who exactly knows password registered
in a server by comparing it with the entered password. To enhance security,
i.e. to protect communication between a client and a server, a secure channel
is usually constructed through an encryption scheme. The key used in the en-
cryption scheme is derived from a password. By checking the validity of the
encryption and additional message, the server decides to open connection. The
key is continuously used after authentication until current connection is closed.
This mechanism is very popular especially in internet banking to prevent user’s
information from being disclosed. There have been lots of papers to build pass-
word based authentication with secure channel. Most of the papers focus on
finding security breaches in password based schemes such as guessing password
and remedying them [1,2,3,4]. Unfortunately, all of them do not consider the
situation of password exposure. Although their schemes are secure, whenever a
user stores a same password on different servers and the password is revealed,
anyone with the password can easily log onto the servers as though he/she is the
owner of the password.

Single sign on (SSO) [14] is a cost-effective password management which
concentrates on enhancing user’s convenience. It is very attractive in enterprise
environment with various servers or distributed web services. In a distributed
web services without SSO, a user has to log on as many servers as the number
of services he/she wants to get. For example, if a user tries to transfer money
to an account registered in an auction server, buy a goods from a merchant and
receive a receipt through email, then he/she must log on three servers, on-line
banking server, auction server and email server. SSO removes the tiresome login
phases based on the assumption that all of the servers are registered in the SSO
gateway. I.e. whenever a user logs on the gateway, he/she can automatically logs
on other servers registered in the gateway. However, as we mentioned, instead of
setting a user free from memorizing multiple passwords it has critical security
breach when a password is stolen. In our scheme, we adopt the basic idea of SSO
but use a portable USB in place of SSO gateway.

Our contributions are two folds.

- We pointed out potential risk of a disclosed password in distributed web
services which is more critical in SSO. As we noted, even though a password
based authentication scheme is secure, we can easily logs on servers with a
obtained password if the owner set a same password on different servers

- We propose a new and practical concept, called ‘password pocket’ in which
even a user types a same password, the actual passwords used to authenticate
user to servers are different. The actual password depends on the server’s

330 J.H. Koo and D.H. Lee

internet address (i.e. URL : uniform resource locator). The password pocket
does not store all passwords. It keeps only a random number in its secure
area. Hence, the required size of memory is very small.

2 Preliminaries

We briefly introduce several building blocks which are adopted in our scheme.

One-to-One One-Way Random Mapping Function. The notion of one-
wayness is that if we know input value it is very easy to compute the result but
it is infeasible to compute the value of an inverse function. One-to-one random
mapping guarantees two properties: i) same input always derives same output,
ii) even if only one bit of input changes the output is not predictable. There
exist several practical functions with the above properties such as SHA-1 [13].

Password Authenticated Key Agreement. Password authenticated key
agreement is widely adopted to construct a secure channel only with a password.
Basically, the secure channel consists of encryption algorithms and the key used
in the algorithms is derived from the password and some related information.
Following is a simple method to build a secure channel between a user U and a
server S. pw denotes user’s password and ga, gb are the result of cryptographic
operation with random inputs a, b.

- U → S : Eh(pw)(ga) where E(·) is a symmetric algorithm and h(·) is a hash
function.

- U ← S : Eh(pw)(gb), MACK(ga) where K = h(gab).
- U → S : MACK(gb).

MAC is a cryptographically secure message authentication code [7,15] in which
only a person knows actual key (K) and input message can generate a correct
value.

3 Password Pocket for Distributed Servers

In this section, we introduce a password pocket. As we mentioned in Sect. 1, we
use a USB as a portable device. The structure of a password pocket is simple.
There are one small secure memory (128 bits is sufficient) for a random number
and relatively large general memory for one-to-one one-way random mapping
function and temporal values. General memory does not need to be secure but it
should guarantee read-only property for the area in which the function is stored.
In fact, we only consider randomizing passwords. So we do not deal with the
way to send a password to a server securely. There are many schemes providing
methods to transmit data to a server in a secure manner and we can adopt one
of them to enhance the security.

In the initial phase, a user U registers a randomized password on a server S
as followings:

Secure Password Pocket for Distributed Web Services 331

Secure
Memory Area

128bit

Read-only

)(hr
General Memory

16~32 Kbit 16~32 Kbit

Fig. 1. Structure of Password Pocket

1. U chooses a password pw from password dictionary D. In the real world, pw
could be a meaningless word generated by U .

2. U enters pw into a password pocket with his/her ID and S’s address (it can
be URL or IP address) Svr Addr.

3. The password pocket fetches a random number r stored in the secure area
and computes h(ID||pw||r||Svr Addr).

4. U registers h(ID||pw||r||Svr Addr) on S.

We assume that there is no attack while r is used to generate a randomized
password. h(·) is the function we explained in Sect. 2. We note that even if same
pw is used for multiple servers, each server gets a different password because of
the different addresses (Svr Addr).

Whenever U wants to log onto a server, he/she just needs to type ID and pw
into the password pocket. Then, the password pocket sets ID, pw, r, Svr Addr
as input values and returns h(ID||pw||r||Svr Addr). An essential assumption is
that a secure module guards r and pw from attacks such as memory dump and
data capture.

Remark 1. [Random number escrow and update]: Even though the probability
is low, a password pocket could be broken or stolen. We provide two mecha-
nisms: i) random number escrow for ‘broken’ and ii) random number update for
‘stolen’. For the former one, we can use a key escrow technique [8] in which a
user escrows his/her secret key to prepare the case of losing the key. So, after
reconstructing the random number, the user installs it into a new device and uses
a password pocket as before. For the latter one, a user may want to change the
random number. In fact, updating the random number is very complex because
all passwords registered in servers should be also updated. We note that the user
may not need to update the random number since the probability of guessing
correct password is very low. More detailed explanation for the security against
the stolen password pocket is showed in Sect. 4.

4 Security Analysis of Password Pocket

Basically, we assume that there exists a cheap USB device with secure area
and insecure area. The secure area may be very small but it is tamper-proof. A

332 J.H. Koo and D.H. Lee

random number r is stored in the secure area and it is infeasible to find or get
r. For the security of password pocket, we consider password exposure from a
server and password guessing with a stolen password pocket. Because of the lack
of pages, we omit the security proof but it will be shown in final paper.

5 Efficiency of Password Pocket

Password pocket is cost and memory efficient idea. It requires only a quite small
secure memory for guarding a random number r and a little larger general mem-
ory for storing h(·) and computing values. So it can be installed in a small size
USB device and a user can carry the device by inserting it into a key-holder. In

this paper, we set the length of r as 128 bit and it is sufficient because the
probability of guessing correct r is 1

2128 . Only tens of kilo-bits of general memory
is required to manage and execute a function h(·). Usually, a mapping does not
require much time (1.25 × 1

106 second to execute a hash function SHA-1[13] on
3.21GHz Pentium 4 processor with 1 Gbyte RAM). In fact, we also consider
a method to adopt our password pocket, called virtual password pocket (VPP).
We will provide the description of VPP in the final paper. Table 3 shows the
property comparison among the mechanisms. PP denotes a password pocket.
In general, a smartcard authenticates a user with the owner’s password pre-set
in it. Therefore, if the stolen password from a server is same as or similar to
the owner’s password, all passwords could be revealed. As we mentioned, secure
memory is tamper-proof and an encryption key (smartcard) or a random number

Table 1. Property comparisons

Password-only Smartcard PP

secure for stolen password X � O
secure memory X O (encryption key) O(randomnumber)

additional memory X O (encrypted passwords) O (h(·))
additional device X O(reader) O(USB port)

password guessing attack feasible infeasible infeasible
memorable easy irrelevant easy

cost very low high low

Table 2. Simulation results. The values of random numbers and P Passwords are

hexadecimal.

ID Password Random number (128 bit) Server’s Address P Password

Robert Password 00112233445566778899aabbccddeeff www.security.com f001e795ac95f23a

Robert Password 00112233445566778899aabbccddeeff www.npc05.org 073e160a41738cd2

bobert Password 00112233445566778899aabbccddeeff www.security.com 9ba86eb376b36756

Robert Passpord 00112233445566778899aabbccddeeff www.security.com 128d6116fb2faa8c

Robert Password ff112233445566778899aabbccddeeff www.security.com 1060904b14a42155

Secure Password Pocket for Distributed Web Services 333

(PP) should be managed in this area. In a smartcard, because all encrypted
passwords should be stored, a sufficient size of additional memory is required.
Our password pocket needs a USB as a portable device but almost all of the
computers adopt USB port. Hence, using USB does not require additional cost.
All mechanisms in Table 1. excluding ‘password-only’ guarantee security against
password guessing attack.

We simulated our password pocket with a hash function, SHA-1 [13].
Table 1. shows the results.

5.1 Other Application of Password Pocket

Password pocket is applicable even in home network environment. If a password
pocket is embedded in a mobile equipment such as a cellular phone, a user can
control the devices at home from remote outside with randomized passwords.
In this case, two of the input values should be changed. TimeCurrent denot-
ing current time and Cmd representing user’s command are inserted instead
of ID and Svr Addr. And we set a control server at home which has the same
random number and the password pocket which the user takes. Simply Cmd con-
sists of device name (DN) and type of command (TC). The role of the server
is to interpret user’s command, activate a device connected to home network
and report the result to the user. The messages from a user to the server are
h(TimeCurrent||pw||r||Cmd), TimeCurrent, Cmd. If the value of h(·) is correct,
then the server extracts DN and TC to operate command. Clearly, since only
who knows the password pw and the random number r can compute the function
value, no one without permission can access to the devices at user’s home.

6 Conclusion

We pointed out a potential but critical security breach in password based au-
thentication which frequently occurs in distributed web services where a user
only uses a same password on different servers. To remedy the security breach,
we proposed a practical method, called ‘password pocket’ which randomizes a
password so that a user can register different passwords on multiple servers only
with a memorable password. Furthermore, the only requirement for the pass-
word pocket is very small secure memory to keep a random number in a secure
manner. Hence, password pocket is a practical idea for distributed web services.

Acknowledgements

We really thank the reviewers for their helpful advices. Our scheme is general and
can be used in all password based key agreement schemes without modification.
So it is hard to compare our scheme with password based key agreement schemes.
The entire security of our scheme is similar to that of smartcard. However,
usually the computation power and storage ability of USB are much higher than
those of smartcard.

334 J.H. Koo and D.H. Lee

We also want to give thanks to Bum Han Kim and Sang Pil Yun for their
advice and assistance for the system-design.

References

1. M. Bellare, D. Pointcheval and P. Rogaway. Authenticated Key Exchange Secure
against Dictionary Attacks. Eurocrypt ’2000, 2000.

2. V. Bokyo, P. Mackenzie, and S. Patel. Provably Secure Password-Authenticated
Key Exchange using Diffie-Hellman. Eurocrypt 2000

3. E. Bresson, O. Chevassut and D. Pointcheval. Security Proofs for an Efficient
Password-based Key Exchange. ACM CCS 03, 2003.

4. E. Bresson, O. Chevassu and D. Pointcheval. New Security Results on Encrypted
Key Exchange. PKC 2004, vol. 2947 of LNCS, 2004.

5. The ISO 7816 Smart Card Standard. Available at ‘‘http://www.cardwerk.com/

sma-rtcards/smartcard standard ISO7816.aspx".
6. A. Jain and S. Prabhakar. Biometrics Authentication. INSIGHT: A Publication of

the Institute for the Advancement of Emerging Technologies in Education, Vol. 2,
pp. Vision 29-52, EdPress, Jan 2003.

7. B. Kaliski Jr. and M. Robshaw. Message Authentication with MD5, CryptoBytes
(1) 1, Spring 1995.

8. Key Escrow. Available at “http://www.epic.org/crypto/key escrow/”.
9. RFC 2898PKCS #5: Password-Based Cryptography. Available at “http://ww-w.f-

aqs.org/ rfcs/rfc2898.html”.
10. P1363 Standard Specifications for Public-Key Cryptography. Available at

“http://grouper.ieee.org/groups/1363/”.
11. Public-Key Infrastructure (X.509) (pkix). Available at ‘‘http://www.ietf.org/

html.charters/pkix-charter.html".
12. S. Qidwai, K. Venkataramani and B. Kumar. Face Authentication from Cell Phone

Camera Images with Illumination and Temporal Variations. Proc. First Interna-
tional Conference Biometric Authentication (ICBA), Springer Verlag, LNCS 3072,
2004.

13. Secure Hash Standard (SHA1). Available at ‘‘http://www.itl.nist.gov/

fipspubs/fi-p180-1.htm"

14. Single Sign on. Available at “http://www.opengroup.org/security/sso/”.
15. D. Stinson. Cryptography - Theory and Practice, CRC Press, Boca Raton, 1995.
16. Universal Serial Bus. Available at “http://www.usb.org/”.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 335 – 342, 2005.
© IFIP International Federation for Information Processing 2005

The Modified DTW Method for On-Line Automatic
Signature Verification

Dong Uk Cho, Young Lae J. Bae, and Il Seok Ko

Dept. of Information & Communications Engineering,
Chungbuk Provincial University of Science & Technology, Chungbuk, Korea

{ducho, yljb, isko}@ctech.ac.kr

Abstract. Dynamic Programming Matching (DPM) is a mathematical optimiza-
tion technique for sequentially structured problems, which has, over the years,
played a major role in providing primary algorithms in pattern recognition
fields. Most practical applications of this method in signature verification have
been based on the practical implementational version proposed by Sakoe and
Chiba [1], and is usually applied as a case of slope constraint p = 0. We found,
in this case, a modified version of DPM by applying a forward seeking imple-
mentation is more efficient, offering significantly reduced processing complex-
ity as well as slightly improved verification performance.

1 Introduction

Dynamic Programming Matching (DPM) is a mathematical optimization technique
for sequentially structured problems, which has, over the years, played a major role in
providing primary algorithms for automatic signature verification [1], [2], [3], [4]. In
the pattern recognition field, it has been particularly used to eliminate the timing dif-
ferences between two differently originating pattern signals. Hence it is called as the
Dynamic Time Warping (DTW) method owing to its non-linear time-normalization
function. Most practical applications of this method in signature verification [2], [5],
[6] have been based on the practical implementational version proposed by Sakoe and
Chiba [1], which is an analytical optimization method unlike others' rather heuristic
approaches1. For practical use in signature verification, it is usually applied as a case
of slope constraint p = 0 as, apart from the fact that this provides the simplest and the
fastest implementation owing to the least constraint (see Fig. 1), the slope constraint
on the warping function has been noted to be merely time-consuming. The problem in
the DPM application to signature verification was that many writers have an unstable
pattern of signature writing, which confuses the DTW mechanism. A different ap-
proach from the opposite perspective to investigate the DTW function is performed
by applying a forward seeking implementation of DTW under the assumption that the
applied patterns satisfy the preconditions for the DTW function, i.e., the patterns have
only a monotonic and continuous shift on the time axis. Thus a modified version of

1 Other elastic matching methods include the peak matching technique, a finite state machine

approach and regional correlation.

336 D.U. Cho, Y.L.J. Bae, and I.S. Ko

DPM in this context is developed. To verify the proposed method, experiments are
applied under the same conditions and using the same data base to standardize and
simplify the test for both conventional and proposed DTW methods. The results have
proved the proposed method to be efficient, offering significantly reduced processing
complexity as well as slightly improved verification.

2 DPM for Signature Verification

2.1 DPM Basics [1, 2]

Consider two different signals as sequences of feature vectors:

 ,21

2 ,1

 ..., , ..., , =

 ..., , ..., , =

Ij

Ii

bbbbB

aaaaA

.

(1)

These two patterns, A and B, can be depicted in an i-j plane as shown in Fig. 2,
where two patterns are represented along the i-axis and j-axis, respectively, and their
matching stages are by a sequence of points S(k), where S(k) = (i(k), j(k)).

To normalize these two signals with a N-stage decision process, a sequence of de-
cision functions can be expressed as:

=

N

k
kkkxk xqCD

k

1

),(),(= .

(2)

where Ck is a contribution function at kth stage for the decision vector qk and the state
vector xk(ai,bj).

1) p = 1/2 2) p = 0 3) p = 1 4) p = 2

Fig. 1. DTW slope constraint

Adjustment window

Warping function

a a a

b

b

b

1 I

1

J

S (i,j)

S1

j = i - r

j = i + r

S k

j

i

Fig. 2. DTW mechanism for time alignment

DP matching seeks to find the optimum function D(k,xk) at the kth stage:

[])(+ = ,),1(),(
1 kkkxk

k

xk xqCD
q

Optimum
D

kk −− .

(3)

In the context of the DTW algorithm, this problem of determining the optimal se-
quence corresponds to finding a minimum sequence of warping function F(i(k),j(k)),
which is normally composed of two components:

 The Modified DTW Method for On-Line Automatic Signature Verification 337

F d wk i j i j
k k k k

 = * (,)(,)

.
 (4)

where d(ik,jk) is the kth occupancy cost and w(ik,jk) is the corresponding weight.
Then the optimal objective function at the kth stage, Dfk, is given as:

[]kf
k

f FD
F

Min
D

kk
 + =

1−

.

(5)

The optimal value of this function will be the result of the sequence of recursive
functions:

=

=

=
k

l
k

l
l

k

l
jiji

f

w

wd

F

Min
D

llll

k
1

1

1

*
 =

.

(6)

This is expanded as follows.

1. Initial condition:

() ()111
fwfdDf ∗= .

(7)

2. DP-equation:

[])(*)(+ =
1 kkf

k
f fwfdD

F

Min
D

kk − .

(8)

3. Time-normalized distance:

kkk fNji DD 1= .
(9)

=
=

k

l
lfwN

1

)(where

2.2 DPM Implementation

Sakoe and Chiba [1] provided a practical solution for Equation (6), which originally
was proposed for speech recognition. Since then, this method has been extended for
use in signature verification and has been widely accepted for practical applications.

Restrictions on the warping function
To provide a safeguard against unusual deviations during the warping process and to
keep a desirable warping gradient, two conditions are imposed on the warping
function:

1. Adjustment window (see Fig. 2)

| i(k) - j(k) | ≤ r. (10)

where r is an adequate value for the window size.
This is to prevent unusual deviations from the warping function, which is based on

the assumption that the normal time-axis fluctuation does not cause an excessive
timing difference.

338 D.U. Cho, Y.L.J. Bae, and I.S. Ko

2. Slope constraint
An appropriate slope constraint is imposed to keep the warping gradient from an

undesirable time warping (see Fig. 1).

Let the pattern at kth stage, (ik,jk), be a simplified term, (i, j), then Equation (9) be-

comes:

1) p = 1/2

() () () ()

() () ()

() ()

() () ()

() () () ()+++
++

+
++

+++

=

−−−−

−−−

−−

−−−

−−−−

jijijiji

jijiji

jiji

jijiji

jijijiji

ij

dddD

ddD

dD

ddD

dddD

MinD

,,1,21,3

,,11,2

,1,1

,1,2,1

,1,2,3,1

2

2

2

2

2

.

(11)

2) p = 0

+
+
+

−

−−

−

),(),1(

),()1,1(

),()1,(

2 =

jiji

jiji

jiji

ij

dD

dD

dD

MinD

.

(12)

3) p = 1

() () ()

() ()

() () ()++
+

++
=

−−−

−−

−−−

jijiji

jiji

jijiji

ij

ddD

dD

ddD

MinD

,,11,2

,1,1

,1,2,1

2

2

2

.

(13)

4) p = 2

() () () ()

() ()

() () () ()+++
+

+++
=

−−−−−

−−

−−−−−

jijijiji

jiji

jijijiji

ij

dddD

dD

dddD

MinD

,,11,22,3

,1,1

,1,2,13,2

22

2

22

.

(14)

For practical use in signature verification, it is usually applied as a case of slope
constraint p = 0 as in Equation (12) as, apart from the fact that this provides the sim-
plest and the fastest implementation owing to the least constraint (see Fig. 1), the
slope constraint on the warping function has been noted to be merely time-consuming.

Sakoe and Chiba [1] gave an example of practical implementation of DTW. The flow
of the DTW solution for Equation (6) is diagrammed from the initialization according to
Equation (7) to the time-normalization as in Equation (9). Unlike Equation (6), which
uses variable "k", for indexing from the first stage, 1, to the final stage, "K", this imple-
mentation uses two indices, "i, j", to iterate "J" times the DP-equation (8) (see Fig. 2) for
the sequential solution. The adjustment window size is applied as variable "r".

2.3 Experimentation

An experiment was performed to investigate how the nature of signatures affects the
performance of DTW. It was relevant to the issue about the vulnerability of the DTW
mechanism to relatively variable signature patterns. For this experiment, the data base
consists of two contrasting types of signature sample groups:

 The Modified DTW Method for On-Line Automatic Signature Verification 339

1. Group I has the members who have relatively "stable" signature patterns.
2. Group II members have relatively "unstable" patterns in signature writing.

Group I has a membership of 15 writers and Group II 24. A total of 50 signatures
was collected from each member in five sessions. Each individual donated ten signa-
tures in each session. Random forgeries, i.e., signatures generated by others, were
used for the forgery samples, on the same grounds. To eliminate effects arising from
the variation of magnitude and orientation, a precise normalization process in the
spatial domain was performed. The performance in terms of the equal error rate was
measured as a function of the adjustment window size applying the f(x,y) function.
Fig. 3 is the DPM performance result from Group I and Fig. 4 is from Group II.

0 3 6 9 12 15 18 21 24
0

10

20

30

40

50

E
qu

al
 e

rr
or

 r
at

e
(%

)

Window size (%)

Fig. 3. Group I DPM result

0 3 6 9 12 15 18 21 24
0

10

20

30

40

50

E
qu

al
 e

rr
or

 r
at

e
(%

)

Window size (%)

Fig. 4. Group II DPM result

From these results, it has been observed that the nature of signature samples has a
considerable effect on the DTW performance:

1. For Group I, in which each member has a stable signature pattern, DTW has ide-
ally functioned at zero error rates with smaller window sizes. Increasing the window
size over 14% has caused the degradation of the error rate performance.

2. For Group II, in which most members have variable signature patterns, the DPM
performance has been considerably degraded. The window size of 4% has recorded
the best result at the equal error rate of 9%, which is slightly better than the results of
10% with neighbouring window sizes.

3 Development of Modified DPM

The problem in the DPM application to signature verification in the preceding sec-
tions, which applied the implementational version proposed by Sakoe and Sato [1],
was that many writers have an unstable pattern of signature writing, which confuses
the DTW mechanism. In this section, a different approach from the opposite perspec-
tive to investigate the DTW function is performed by applying a heuristic (forward
seeking) implementation of DTW under the assumption that the applied patterns sat-
isfy the preconditions for the DTW function, i.e., the patterns have only a monotonic
and continuous shift on the time axis. Under such ideal conditions, there is little ne-
cessity of DTW functioning for all cases at the preceding stage (see Equation (8)) as
the function is continuously increasing.

340 D.U. Cho, Y.L.J. Bae, and I.S. Ko

Algorithm
If the optimal objective function at the k-1th stage, Dfk-1, has been correctly selected,
and the function satisfies the necessary conditions of continuity and monotonicity for
DTW [1] and it does not have an abnormal (excessive) fluctuation2 on the time axis,
then Equation (8) can be alternatively expanded as:

() ()−
= + kkkff fwfdF

MinDD
kk

*
1 .

(15)

A slope constraint then can be imposed as in Fig. 5 to maintain a normal time
warping gradient, which corresponds to the slope constraint for Sakoe's version as in
Fig. 1.

1) p = 1/2 2) p = 0 3) p = 1 4) p = 2

Fig. 5. MDTW slope constraint

For the practical application, it is implemented as follows:

1) p = 1/2

++++++++
+++++

++
+++++

++++++++

+=

−−−−−−

−−−−

−−

−−−−

−−−−−−

−−

)1,1()2,1()3,1(

)1,1(2)2,1(

)1,1(3

)1,1(2)1,2(

)1,1()1,2()1,3(

111111

1111

11

1111

111111

11

kkkkkk

kkkk

kk

kkkk

kkkkkk

jiji

jidjidjid

jidjid

jid

jidjid

jidjidjid

MindD
kkkk

.

(16)

2) p = 0

+
++
+

+=

−−

−−

−−

−−

),1(

)1,1(

)1,(

11

11

11

11

kk

kk

kk

jiji

jid

jid

jid

MinDD
kkkk

.

(17)

3) p = 1

++
++
++

+=

−−

−−

−−

−−

)1,2(

)1,1(

)2,1(

11

11

11

11

kk

kk

kk

jiji

jid

jid

jid

MinDD
kkkk

.

(18)

4) p = 2

++
++
++

+=

−−

−−

−−

−−

)2,3(

)1,1(

)3,2(

11

11

11

11

kk

kk

kk

jiji

jid

jid

jid

MinDD
kkkk

.

(19)

2 This was assumed for DTW mechanism in Sakoe and Chiba [1] and became the ground for

implementing the adjustment window condition.

 The Modified DTW Method for On-Line Automatic Signature Verification 341

Equation (15) in the modified DPM (MDPM) version, firstly, has a strong point
compared to Equation (8) in the conventional DPM (CDPM) as it requires only one
DTW process at each decision stage while the conventional one requires this process
as many times as the window size. Hence, this alternative method can reduce the
computational complexity.

4 Experimentation

To compare the performances of both DPM methods, the same error rate performance
tests were applied to the modified DPM (MDPM) for the two groups. Fig. 6 is the
result for Group I and Fig. 7 is for Group II.

0 3 6 9 12 15 18 21 24
0

5

10

15

20

25

30

35

40

45

50

 Conventional DPM
 Modified DPM

E
qu

al
 e

rr
or

 r
at

e
(%

)

Window size (%)

Fig. 6. Group I MDPM result

0 3 6 9 12 15 18 21 24
0

5

10

15

20

25

30

35

40

45

50

 Conventional DPM
 Modified DPM

E
qu

al
 e

rr
or

 r
at

e
(%

)

Window size (%)

Fig. 7. Group II MDPM result

For both of the two groups, the modified DPM (MDPM) method has shown an
equal or better performance compared to the conventional DPM (CDPM) method
with smaller window sizes while it has a considerably degraded performance with
larger window sizes. For Group I, MDPM as well as CDPM has recorded a zero error
rate: for stable signature patterns, MDPM performs well as CDPM does. But its per-
formance becomes degraded as the window size increases. For Group II, the best
performance has been recorded by MDPM with the window size of 4 percent: for
unstable patterns, MDPM has a slightly better performance than CDPM with smaller
window sizes. Through all experiments, MDPM has shown equal or better perform-
ance than CDPM.

5 Conclusion

During the experiments for CDPM, it was observed that applying precise normaliza-
tion such as preprocessing results in both an improvement in error rate performance
and a smaller optimal window size. Accordingly, it was thought that the time domain
fluctuation can also originate from the attitude variation during signature collection as
the normalization process mainly reduces this geometrical variation. The results from
the MDPM, which has been proposed for stable patterns satisfying the preconditions
for DPM, applied under the same conditions as for CDPM, have also confirmed these
implications as all the results have corresponded to the previous results for CDPM.

342 D.U. Cho, Y.L.J. Bae, and I.S. Ko

Some results have even emphasized the assumed trends, e.g., if normalization is more
precisely carried out, the optimal window size is reduced.

The results from the experiments have shown that:

1. The temporal variations are ideally applied to DTW. Patterns which are affected
only by these variations produce a good DTW result. (See the experimental results for
Group I.)

2. The geometrical variations due to attitude change can be removed by using pre-
cise normalization, which correspondingly improves the error rate performance.

3. The random variations cannot be corrected. Patterns which are severely affected
by these variations produce the worst DTW results. (See the experimental results for
Group II.) Their influence can be minimized by reducing the adjustment window size.

References

1. H. Sakoe and S. Chiba: Dynamic Programming Algorithm Optimization for Spoken Word
recognition, IEEE Trans. on ASCP, Vol.26, No.1 (1978)

2. M.C. Fairhust, S. Ng: Management of access through biometric control: A case study based
on automatic signature verification, Universal Access in the Information Society, vol. 1, no.
1 (2001) 31-39

3. C. Lee:, Applications of Dynamic Programming to Speech and Language Processing, AT &
T Technical Journal, May/June (1989) 115-130

4. H. F. Silverman and D. P. Morgan: The Application of Dynamic Programming to Con-
nected Speech Recognition, IEEE ASSP Magazine, Jul (1990) 6-24.43

5. Parizeau and R. Plamondon: A Comparative Analysis of Regional Correlation, Dynamic
Time Warping and Skeletal Tree Matching for Signature Verification, IEEE Trans. on
PAMI, Vol.12, No.7 (1990)

6. Y. Sato and K. Kogure: On-Line Signature Verification based on Shape, Motion and Hand-
writing Pressure, Proc. 6th Int. Conf. on Pattern Recognition, Vol.2, München (1982) 823-
826

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 343 – 350, 2005.
© IFIP International Federation for Information Processing 2005

A Secure On-Demand Routing with Distributed
Authentication for Trust-Based Ad Hoc Networks

Meng-Yen Hsieh1,2 and Yueh-Min Huang1

1 Department of Engineering Science, National Cheng-Kung University, Taiwan
{n9892111, huang}@mail.ncku.edu.tw
http://www.es.ncku.edu.tw/index.htm

2 Department of Information Science,
Hisng-Kuo University of Management, Taiwan

tab.hsieh@mail.hku.edu.tw
http://www.hku.edu.tw/index.htm

Abstract. Due to node mobility, the ad hoc network topology is dynamical so
that on-demand routing protocols are more fit than other routing protocols.
Most secure on-demand routing protocols are designed that the destination or
source is able to detect the attacks on routing paths after accepting routing re-
quests or routing replies. In this paper, we present a secure on-demand source
routing protocol without the assumption of a specific cryptographic system pro-
vides per-hop broadcast authentication in routing discovery phase and security
in communication phase and takes effect on our trust-based ad hoc environ-
ment. Our hop by hop broadcast authentication provides forwarding routing
packets with their trust levels for abstaining from unreliable or malicious nodes.
Through security analysis and discussion, we characterize our mechanism and
show that it is effectively and efficiently.

1 Introduction

According to the most secure routing protocols, control packets are able to be authen-
ticated by Source or Destination. For battlefield applications, mobile nodes communi-
cate each other in hostile environments so that we design a secure routing acting on
unreliable ad hoc environments. A number of contributions are presented in this pa-
per: First, we construct trust controls in the network so that routing messages are
flooding to nodes with certain trust requirements. Second, without any assumption of
cryptographic infrastructure, we applied few system asymmetric and symmetric keys
for the security and privacy of the ad hoc routing. Third, in the trust-based network,
we propose per-hop broadcast authentication during per forwarding.

In our scheme, system asymmetric keys are assigned to different trust levels. How-
ever, system private keys are divided into shares hold by ad hoc nodes. A node be-
longs to a trust level when its certificate signed by the certain private key. With the
same level certificate, these nodes are in a common trust-level community. Then any
two neighbors of them will share commitments of their one-way hash key chains each
other. We also present a secure on-demand routing protocol (SODR) with distributed
authentication including two phases, routing discovery phase and communication
phase. The routing discovery can construct temporal session keys in each routing to

344 M.-Y. Hsieh and Y.-M. Huang

protect data traffic since a key agreement scheme is applied into our routing
discovery. Through session keys, end-to-end communications are encrypted and au-
thenticated multiply. By using one-way hash key chain, routing packets are authenti-
cated hop by hop. And, the SODR adopts one-way hash and message authentication
code (MAC) to achieve the integrity of routing packets.

The remainder of this paper is organized as following. In section 2, related tech-
niques in the SODR are described. And we give an overview of recent secure routing
protocols. Section 3 describes our trust-based system design in ad hoc networks. Sec-
tion 4 details the SODR with distributed authentication. In section 5, we give the
analysis of SODR defending against attacks under various attack models. And we
discuss related problems about one-hop broadcasting authentication and detection of
un-trustable nodes. Finally section 6 offers concluding remarks.

2 Background

Ad hoc routing protocols have two categories. One is table-driven protocol. Another is
on-demand protocol such as AODV[2] or DSR[1]. Due to network topology, on-
demand routing methods are more fit. In AODV, attackers easily damage routing by
compromising participants. Hence, the paper considers the DSR instead of the AODV.

Diffie-Hellman Key Exchange Protocol. By using the Diffie-Hellman (D.H.) key
agreement protocol proposed in [3], two nodes generate their random private values
Xa and Xb to drive their public values with two system parameters, so-called g and q.
The q is a prime number and the g is an integer less than the q, with the property: for
every number n between 1 and p-1 inclusive, there is a power x of g so that Y = gx
mod q. Two nodes derive their public values using parameters g and q and their pri-
vate values x, then exchange their public values. Since k = (gXb)Xa = (gXa)Xb, two nodes
have a common secret key k.

One Way Trapdoor Function. [4]. A one-way function with a “trapdoor” is provided
with a key that makes it easy to invert the function. A feasible approach of ad hoc net-
works in an on-demand routing is applied to an asymmetric cryptosystem or symmetric
cryptosystem with a one-way trapdoor function. In an asymmetric cryptosystem, the
encryption/verification function f -1 uses a public key(pk) such as y = f -1(pk,x), while the
decryption/signing function f uses a private key(sk) such as x = f(sk, y). In a symmetric
cryptosystem, the one way function f is applied to both encryption and decryption with a
common secret key(k) such as y = f(k,x) and x = f(k,y).

Secure Ad Hoc Routing. Most researches on the security design of routing protocol
consider end-to-end authentication. Some papers [5,8] provide authentication for
validating intermediate nodes. Another paper [6] considers privacy in routing discov-
ery by hiding route information with encryption schemes or distributed route informa-
tion over participant nodes. Recent papers use asymmetric cryptographies, for exam-
ple [5,6]. And some papers [7,8,9] adopt symmetric cryptographies. A paper [8] uses
TELSA key to achieve authentication.

Authentication routing for ad hoc networks (ARAN) proposed by [5] is a rigorous
authentication protocol. Through the assumption of public key cryptosystem, it de-
feats malicious attacks with third parties and peers as modification or fabrication of

 A Secure On-Demand Routing with Distributed Authentication 345

routing messages or impersonation of valid nodes. By guaranteeing per-hop authenti-
cation achieving non-repudiation services with cryptographic certificates, the ap-
proach allows a victim selection of routes and denial–of–service attacks.

Features of the secure routing protocol (SRP) [9] are verifiable routing queries and
replies, the binding of secure routing and network layer functionality, the partial ac-
ceptance of route error messages, a dual identifier in query or reply packets, and the
regulation of the query propagation. SRP either rejects or prevents fabricated, com-
promised, or replayed route replies from the achievement of sending back the source
with the only requirement of a priori a shared secret between any two communication
nodes in place of any assumption regarding intermediate nodes or cryptosystem.

3 Trust-Based System Design

In this section, a trust-based infrastructure is designed without any specific crypto-
graphic system. Three types of keys are used, as few system asymmetric keys for
signature with trust levels, a system secret key for requesting a share, and one-way
hash key chains for one-hop broadcasting authentication from a node to its neighbor
nodes.

3.1 Trust Level Design

We generate few system public and private keys, so-called PK/SK, matching to the
amount of trust levels. A trust level represents a certification signed with a system
private key, and a matching system public key can verify the correctness of the cer-
tificate. System keys are divided into different trust levels according to the difficulty
of obtaining system private keys and adopts a (t,n) threshold scheme. Each SK is
divided into n shares and distributed over the network. Collecting t shares can return
the key. System asymmetric keys with different trust levels have different t values.

Let q be a large prime and GF(q) be a finite field. The system chooses a polyno-
mial fi(x) of degree at most t-1, where t < n. Suppose that fi(x) = ai,t-1x

t-1+…+ai,1x +ai,0
mod q, where coefficients ai,j GF(q) are chosen at random for j = 1,…t-1. A system
private key, SKi, is decomposed to the shares SSKi,j = fi(j) communicated to ad hoc
nodes. Since each node enters the network, it holds a share of each system private key
and holds a sequence of P elements (SSK1,k, …, SSKP,k), where P is the number of
trust levels. Asymmetric system keys have threshold values as (t1, …, tP), where ti Z*,
ti < n, and ti-1 < ti. Besides a share of each SK, each node holds all PK for checking the
validity of certificates from other nodes, as (PK1, …, PKP). A node belongs to the ith trust
level since it has the certificate signed with the key, SKi. For gaining the key, the node
collects shares from other nodes up to the threshold value, ti. For the following exam-
ple, node u gets a share with the ith trust level from a neighbor node v.

u *: REQTLi, Nonceu, where REQTLi is a request for a SSKi.
v u: EGK(SSKi,u, Nonceu), where GK is the system secret key.

After enough collecting, it computes the private key (SKi = t
j=1 SSKi,j mod q) to

sign its certificate, so-called CCertTL. An extended filed of a certificate records a trust
level (TL) value. A CCertTL is used restrictedly in a period time such as (the expira-
tion time (RET) – the issue time (ISST)) < Max_Used_Time (MUT). Certificates

346 M.-Y. Hsieh and Y.-M. Huang

signed with different SK have different MUT value. Max_Used_Time of P kinds of
certificates are (MUT1, MUT2, …, MUTP), where MUTi-1 < MUTi.

3.2 One-Hop Broadcast Authentication

For one-hop broadcasting authentication, our one-way hash key chain is different from
TESLA or uTELSA. Each node generates a key hash chain of an appropriate length
according to past change rate of neighbor nodes. By repeatedly computing with a hash
function hash, the key chain values are: <TK0, …, TKN> since TKi-1 = hash(TKi), where
the TK0 is the commitment key. A node needs to announce its current trust level with its
certificate (CCertTL) by periodically broadcasting its HELLO message to neighbor
nodes. The format of HELLO is <HELLO, CCertTL>. If a node enters the network just
now, a pure HELLO represents that the node is in trust level 0 and without any signed
certificate. By listening for HELLO messages from neighbor nodes, a node gains their
certificates and verifies their trust levels by corresponding PK. If they have the same TL
certificate with it, the node encrypts with the PK to forwards a commitment to them. A
encrypted message with PK is <EPK(TK0, Nonce), CCertTL>.

Keys from a one-way key chain are used for one-hop broadcasting authentication
per RREQ forwarding. Whenever a node floods a RREQ, it appends a MAC with the
next key, TKnext, of its key chain since the key is disclosed in a reverse order of its key
chain generation. The TKnext is disclosed immediately and appended to the RREQ
since it is only effective in one-hop distance. The format of a RREQ from a node to
neighbor nodes is <RREQ’, MAC(TKnext, RREQ’), TKnext>. The MAC of a RREQ is
authenticated by the instantaneous disclosed key since (TK0=hash(..hash(TKnext)..)).

4 Secure On-Demand Routing with Distributed Authentication

A routing discovery phase has two steps between source (Sour) and destination (Dest):
the path discovery step and the path reverse step. In the discovery step, a routing request
(RREQ’) packet is addressed: <RREQ, Sour, Qid, Tdoor, NList, PVList, HChain,
MList>. The node list (NList) represents intermediate nodes whose trust levels are same
with Sour and Dest. The public values list (PVList) is a set of D.H. public values of
intermediate nodes. The MList is a set of MAC values of intermediate nodes. The Hash
chain value (HChain) is multiply hashing by per-hop intermediate node, and the field is
equal to: hashi[…,[hash1[a init-hash value]…]], where the intermediate nodes are from 1
to i. In the reverse step, a routing reply (RREP’) is addressed: <RREP, Sour, Td_Proof,
NList, PVList, MList, HAKList>. For adopting the trapdoor scheme, this paper assumes
that each node shares an encryption key with each of its recipients to communicate with.
Only a recipient is able to accept and decrypt a packet through its trapdoor, then gain a
proof and a hiding public value of D.H.

A trapdoor (Tdoor) is constructed by Sour. According the description of trapdoor, a
trapdoor is implemented with asymmetric key or symmetric key. Initially Sour just
knows the certifiable public key PKD of Dest. The Tdoor format in RREQ is: Tdoor =
[Dest, Tstamp, KS,D, PWD]PKD, PWD(Dest). The trapdoor is only opened by Dest and
the random KS,D selected by Sour will be used for next route request as a shared sym-
metric key. The all later Tdoor format is: [Dest, Tstamp, PWD]KS,D, PWD(Dest). In

 A Secure On-Demand Routing with Distributed Authentication 347

In the network, only Dest can see the destination tag Dest and conclude it is the in-
tended destination. The random PWD is a secret during the discovery step. However
it is be exposed during the reverse step. The proof of trapdoor format in RREP is:
Td_proof = PWD, PWD(Dest’). By comparing PWD(Dest) = PWD(Dest’), any for-
warding node can verify the proof of a trapdoor opening.

Fig. 1. An example of a path discovery step

Fig. 2. An example of a path reverse step

The example, as Fig. 1, describes our routing discovery phase, where S discoveries
route to D (S A B D). Node A and B are intermediate nodes, participating the
route. First, S sets an initial RREQ appended with its id, Query ID (Qid), Tdoor, a
public value of S (gS), and an initial-hash value (h0). At the first routing, h0 is con-
structed with public key of D. However, in the later routing, h0 is encrypted with a
pairwise key shared between S and D. Since S creates a RREQ’ for its one-hop broad-
casting authentication in its trust level. A TKS is disclosed in an order reverse to the S
key chain. If A, receiving the message can verify its authenticity based on the
commitment or a recently disclosed TK key of S. Before forwarding a route request,
A adds itself and related information to the NList, PVList, and MList fields of RREQ.

348 M.-Y. Hsieh and Y.-M. Huang

It replaces the hash chain field by hashing with Hash(hprevious, A, gA). A needs to gen-
erates a temporal key gs,a for this session with a D.H. public value gA. The key gs,a
mapping to the public value ga is stored in its memory. After storing PWD(Dest) and
appending a MAC to the MAC list, the A finally rebroadcasts the modified RREQ’ to
one-hop neighbor nodes. Like operations of the A, the B processes and dis-
card/rebroadcast it. Finally, the RREQ’ reaches the Dest D.

After accepting the RREQ, D opens the trapdoor to get a PWD and a symmetric
key (KS,D) and other information. The PWD is a proof of opening the trapdoor and the
KS,D is for next communication session. D checks intermediate nodes by verifying the
hash chain value of the RREQ. Then, D makes a set of temporal session keys, (gd,a,
gd,b, gs,d), which will be shared with intermediate nodes and S. When a reverse step
starts, D makes a RREP consisting of some parts of the RREQ, a Td_proof, a MAC
code MD of the entire RREP. In addition, D insets its public value gd, and hashed
session keys into the HAKList field of RREP, (h(gd,a), h(gd,b), h(gs,d)). In Fig. 2, we
give the detail about a reverse path from D to S. Along a reverse routing path, a
RREP’ is also applied into broadcast key for one-hop authentication. When B receives
the RREP’, then check if the packet is from D with the current trust level. B checks
PWD(Dest) = PWD(Dest’) to know the trapdoor is opened. B gains a session key gd,b
shared with D after checking the validity of h(gd,b) and replaces h(gd,b) with h(gs,b).
Then B rebroadcast the modified RREP’. All intermediate nodes forwarding the
RREP’ in the same trust level will gains session keys shared with S or D. Finally the
RREP’ reaches S. S generates session keys (gs,a, gs,b, gs,d) shared with all intermediate
node and D, then authenticates hashed session keys of the RREP’. And S verifies
these codes of MList (MA, MB, MD) to verify the correctness of each-hop forwarding.

Fig. 3. Communication phase between S and D

After finishing routing discovery phase, S or D shares session keys with all inter-
mediate nodes so that multiply encryption and authentication are used for data trans-
port between them. Fig. 3 is an example of communication of S and D. From S to D,
S transmits messages with multi-layer encryption. A or B receiving the messages will
strip one layer encryption with its session key corresponding to the D.H. public value.

5 Analysis and Discussion

5.1 Security Analysis

The SODR with distributed authentication can prevent external and internal adversary
attacks. We give few scenarios to describe how our protocol is secure and authentic
against active and passive attacks. Scenario1: a malicious node can not modify the
route request RREQ since per-hash method guarantees the integrity of NList informa-
tion and MAC codes of the MList of RREQ provide the integrity of per hop routing

 A Secure On-Demand Routing with Distributed Authentication 349

request during routing discovery phase. Scenario2: Since a trapdoor is designed by
source, only destination can open it. When a proof of trapdoor is back to source,
source knows RREQ has reached the target. The trapdoor is not been reused by adver-
sary since timestamp is inside the trapdoor. Scenario3: When a malicious node with-
out a certain trust level of source, it does not insert any packets to hurt the routing.
The malicious node without certain Cert can not distribute its commitment to
neighbor nodes. This scheme enhances the security, since a malicious node is difficult
to participate in routing protocol. Scenario4: After receiving a RREQ, a node is able
to verify the RREQ authenticity through confirming the disclosed key. It means the
RREQ is passed by neighbor nodes owning certain trust level. Scenario5: Temporal
session keys are to protect transferring messages such that the transport with multiply
encryption proves to be resilient against path hijacking [6].

5.2 Challenge Scheme and a Problem of One-Hop Broadcasting Authentication

We assume four possible examples that a node can be challenged by neighbor nodes
since it has misbehavior. In the first example, a node does not broadcast periodically
HELLO messages with its certificate. In the second example, a node has been in the
network for a long time, but it does not have a certificate in a reasonable trust level. In
the third example, a node announces out-of-date certificates. Or a node steals and uses
certificates of other nodes. In the fourth example, a node challenges the authenticity of
other nodes with a certain probability. For solving four problems, two kinds of chal-
lenges are provided as the following. The first kind challenge is for a malicious node:

X M: C1, NX, MAC(GK, C | NX); M X: NM, MAC(GK, C | NX | NM)

The second kind challenge is for a specific node holding a wrong certificate:

X M: C2, EPKi(NX, CCertX); M X: NX, MAC(GK, NX)

The one-way hash key chain for one-hop broadcast authentication does not demand
loose time synchronization and delay key disclosure. A nod transmits the commitment
to these nodes in a same trust level, encrypted with the matching system key. Due to
the triangle inequality theorem, when a node floods a packet containing a message
and a one-way hash key, its neighbor nodes will accepts the packet before a re-
forwarded copy from a malicious node, as Fig. 4. The malicious node cannot reuse
disclosed keys since these keys are effective in one-hop distance.

Fig. 4. The problem of one-hop broadcasting authentication

6 Conclusions

In this paper, a secure on-demand routing (SODR) is provided in trust-based ad hoc
network. The SODR is with distributed authentication such as routing packets act on

350 M.-Y. Hsieh and Y.-M. Huang

broadcasting authentication per flooding. Our design has these proprieties: (a) each
node stores few system asymmetric keys and a system secret key. Temporal session
keys are used for the confidentiality of end-to-end communication. (b) SODR pro-
vides the trapdoor method for end-to-end authentication since the trapdoor can be
implemented with asymmetric or symmetric keys. (c) Through per-hop broadcasting
authentication, SODR avoids that non-trusted nodes attend the routing communica-
tion. The control packets are forwarded only by these nodes with the same trust level.
(d) SODR adopts per-hop hash and MAC schemes to achieve the routing integrity.

References

1. D. B. Johnson, etc.: The Dynamic Source Routing Protocol for Mobile Ad Hoc Networks
(DSR). http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-09.txt, Apr. 2003.

2. C. E. Perkins and E. M. Royer: Ad hoc on-demand distance vector routing. In Proc.
WMCSA, New Orleans, LA, Feb. 1999, pp. 90–100.

3. W. Diffie and M. Hellmann: New Directions in Cryptography. IEEE Transactions on In-
formation Theory IT, vol. 22, no. 6, pp. 644–654, 1976.

4. A. C.-C. Yao.: Theory and Applications of Trapdoor Functions (Extended Abstract). In
Symposium on Foundations of Computer Science (FOCS), pp. 80–91, 1982.

5. Sanzgiri, K., LaFlamme, D., Dahill, B., Levine, B.N., Shields, C.; Belding-Royer, E.M.:
Authenticated routing for ad hoc networks. Selected Areas in Communications, IEEE Jour-
nal on Vol 23, March 2005 pp:598 – 610.

6. Boukerche, A., El-Khatib, K., Li Xu, Korba, L.: SDAR: a secure distributed anonymous
routing protocol for wireless and mobile ad hoc networks. Local Computer Networks, 2004.
29th Annual IEEE International Conference on Nov. 2004 pp:618 - 624

7. Ting-Yao Jiang; Qing-Hua Li: A secure routing protocol for mobile ad-hoc networks. Ma-
chine Learning and Cybernetics, In Proc. of 2004 International Conference on Vol 5, Aug.
2004 pp:2825 – 2829.

8. YC Hu, A. Perrig and DB Johnson: Ariadne: A Secure On-Demand Routing Protocol for
Ad hoc Networks. in Proc. of MobiCom 2002.

9. P. Papadimitratos and Z. J. Haas: Secure Routing for Mobile Ad hoc Networks. in Proc. of
SCS Communication Networks and Distributed Systems Modeling and Simulation Confer-
ence, Jan. 2002.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779 , pp. 351 – 354, 2005.
© IFIP International Federation for Information Processing 2005

Probabilistic Packet Filtering Model to Protect
Web Server from DDoS Attacks*

Jung-Taek Seo
1
, Cheol-Ho Lee1 , Jungtae Kim

2
,

Taeshik Shon
3
, and Jongsub Moon

3

1 National Security Research Institute,
KT 463-1, Jeonmin-dong, Yuseong-gu, Daejeon,

305-811, Republic of Korea
{seojt, chlee}@etri.re.kr

2 Graduate School of Information and Communication,
Ajou University, Republic of Korea
coolpeace@ajou.ac.kr
3
 CIST, KOREA University,

1-Ga, Anam-dong, Sungbuk-Gu, Seoul, Republic of Korea
{743zh2k, jsmoon}@korea.ac.kr

Abstract. We present a probabilistic packet filtering (PPF) mechanism to
defend the Web server against Distributed Denial-of-Service (DDoS) attacks.
To distinguish abnormal traffics from normal ones, we use Traffic Rate
Analysis (TRA). If the TRA mechanism detects DDoS attacks, the proposed
model probabilistically filters the packets related to the attacks. The simulation
results demonstrate that it is useful to early detect DDoS attacks and effective to
protect the Web servers from DDoS attacks.

1 Introduction

These days, Web environments are very vulnerable Distributed Denial-of-Service
(DDoS) attacks [1], [2]. In order to cope with the threat, there have been many
researches on the defense mechanisms including several approaches based on real-
time traffic analysis technique [3], [4], [5]. However, the previous mechanisms have
some drawbacks such as overhead for managing IP address and lack of commonness.
In this paper, we propose Probabilistic Packet Filtering (PPF) model to deal
successfully with the flaws of the previous works. The proposed model distinguishes
abnormal traffics from normal ones using Traffic Rate Analysis (TRA) method [6],
[7]. When it detects DDoS attack, it probabilistically filters suspicious packets.
Experiment results shows that the proposed model is useful to early detect DDoS
attacks and it is effective to protect Web servers against DDoS.

* This work was supported by the Ministry of Information Communication, Korea, under the

Information Technology Research Center Support Program supervised by the IITA.

352 J.-T. Seo et al.

2 The Proposed Probabilistic Packet Filtering Model

In a normal situation, network traffic rate has specific characteristics. For instance,
SYN and FIN are in the ratio of 1:1 and TCP and UDP traffic are in the ratio of 9:1.
However, in an abnormal situation (e.g., SYN flooding, UDP flooding), these ratios
are broken. Using this fact, the proposed model distinguishes a normal situation and
abnormal situation, and drop attack packet probabilistically.

To analyze web traffic, we use the TRA method that proposed in the earlier study
[6], [7]. It examines the occurrence rate of a specific type of packets within the stream
of monitored network traffic, and computes TCP flag rate and Protocol rate. The TCP
flag rate means the ratio of the number of a specific TCP flag to the total number of
TCP packets. The protocol rate means the ratio of specific protocol (e.g. TCP, UDP,
and ICMP) packets to total amount of IP protocol packets. TCP flag rate and protocol
rate is defined in the equation (1) and (2), respectively. In the equation, ’td’ is the time
interval used to calculate the value. The direction of network traffic is expressed as ’i’
(inbound) and ’o’ (outbound).

=
packetsTCP

headerTCPainFflag
oiFR dt

)(
]|[

(1)

=
packetsIP

packetsICMPUDPTCP
oiICMPUDPTCPR dt

]||[
]|]||[[

(2)

Packet filtering mechanism of the proposed model is similar to the Random Early
Detection (RED) algorithm [8]. The RED algorithm behaves according to the queue
size of entire packets. Thus, it doesn’t discriminate attack packet from normal packet.
Thus, most legitimate packet is dropped with attack packet during DDoS attack. On
the other hand, the proposed model acts according to the occurrence rate of a specific
type of packets (i.e., TCP flag rate and Protocol rate of TRA method).

Rate

Type of PacketR[Xi]

PL[Xi]

PH[Xi]

E[Xi]

AR1[Xi]

AR2[Xi]

AR3[Xi]

AR4[Xi]

Standard Rate
Average Rate

Confidence Interval

Fig. 1. Proposed PPF model; if the average occurrence rate of a type of packet X is E[Xi] in
normal environment, we have confidence interval from PL[Xi] to PH[Xi]

Fig. 1 describes the PPF model proposed in this paper. Let the currently analyzed
network traffic rate by the TRA as Current Rate (CR), average traffic rate from the
initial time to the current time as Average Rate (AR), and network traffic rate of

 Probabilistic Packet Filtering Model to Protect Web Server from DDoS Attacks 353

normal traffic as Standard Rate (SR). Current AR is calculated using an exponentially
weighted average of previous CR values. If the previous CR values are non zero,
current AR is defined by equation (3). Otherwise, current AR is defined by equation
(4). The weight, wq, determines how rapidly AR changes in response to changes in
actual current rate. Flyod et al. recommend a quite small wq to prevent the algorithm
from reacting to short bursts of congestion [8]. However, the proposed algorithm
adopts large wq (e.g., 0.5) since bursts of traffic are very serious threat during DDoS
attack.

() qprevqcur wCRARwAR ×+×−= 1 (3)

where ARcur is Current Average Rate and ARprev is Previous Average Rate

() prev
m

qcur ARwAR ×−= 1 (4)

where m is the amount of time that is TRA value was zero
In the proposed model, if average rate of a specific type of packet AR is less than

lower bound of confidence interval PL (e.g., AR4), the incoming packet is serviced. On
the other hand, if AR is greater than or equal to upper bound of confidence interval PH

(e.g., AR1), the incoming packet is automatically discarded. Between PL and PH is
denoted by the critical region. In this region, PPF assigns a probability of discard to
an incoming packet that defends on the factor; the closer AR to PH, the higher
probability of discarding. The confidence interval (PL to PH) and the probability of
discard (Pd) are defined by equation (5) and (6), respectively. In the equation (5), the
proposed mechanism used 95% confidence level according to our preliminary test
results.

HL PRP

SDERSDE

≤≤
×+≤≤×− 96.196.1 (5)

L

L
d PP

PAR
P

H −
−= .

 (6)

3 Experimental Results

In order to evaluate the effectiveness of the proposed model, we construct synthetic
network and build attack model against the Web server using DDoS attack tools such
as TFN2K. In the experiments, the normal Web service traffic flows during 60
seconds and the attacks using TFN2K are done between 20th second and 40th second.

Table 1 shows the experimental results of the proposed DDoS defense model. In
the experiment, most of DDoS attack packets are dropped by PPF model with
extremely low false positives. The most of attack cases the false positive rate is zero
except for the case of SYN flooding attack. During the DDoS attacks, the AR values
excessively exceed the traffic rate of the normal situation. Moreover, UDP packet rate
and ICMP packet rate are almost zero. It means that the normal web traffic is scarcely
dropped since it rarely contains these packets. There is 0.57% false-positive rate since

354 J.-T. Seo et al.

Table. 1 Performance of the proposed defense mechanism

Received Packets Dropped Packets Drop Rate (%) Packet
Attack normal attack normal attack normal attack

Overall

No attack 9,187 0 0 0 0% 0% 100%
SYN
flooding 9,028 76,698 52 74,740 0.57% 97.45% 96.87%

UDP
flooding 8,302 142,436 0 142,436 0% 100% 100%

ICMP
flooding 8,545 63,674 0 63,674 0% 100% 100%

some legitimated SYN packets are generated while average R[Si] is higher than
standard R[Si] in SYN flooding attacks. Nevertheless, almost all the attacking packets
are dropped by our defending mechanism.

4 Conclusion and the Future Work

In this paper, we propose the Probabilistic Packet Filtering (PPF) model to protect
Web servers from DDoS attacks. Our PPF model has not only an idea of RED
mechanism to Internet traffic control, but also a mechanism to drop suspicious
packets based on 95% confidence level in accordance with an appropriate threshold.
In the experiment, most of attacking packets are blocked by the proposed defending
mechanism. In the future work, we will try to evaluate the proposed model in more
various situations, and we apply the proposed model to other specific targets such as a
variety of application servers and Internet worms.

References

1. Garber, L.: Denial-of-Service Attacks Rip the Internet, IEEE Computer, vol. 33(4), (2000)
12-17.

2. Houle, J.K., and Weaver, M.G.: Trends in Denial of Service Attack Technology, CERT
Coordination Center, (2001).

3. Gil, T.M, and Poletto, M.: MULTOPS: a data-structure for bandwidth attack detection, In
Proceedings of the 10th USENIX Security Symposium, (2001) 23-38.

4. Householder, A., Manion, A., Pesante. L., and Weaver. M.G.: Managing the Threat of
Denial-of-Service Attacks, CERT Coordination Center, (2001).

5. Kargl, F., Maier, J., and Weber, M.: Protecting Web Servers from Distributed Denial of
Service Attacks, In Proceedings of the 10th International Conference on World Wide Web,
(2001) 514-524.

6. Lee, C., Choi, K., Jung, G., and Noh, S.: Characterizing DDoS Attacks with Traffic Rate
Analysis, In Proceedings of IADIS International Conference on e-Society 2003, vol. 1,
(2003) 81-88.

7. Seo, J., Lee, C., and Moon, J.: Defending DDoS Attacks Using Network Traffic Analysis
and Probabilistic Packet Drop, In Proceedings of the Third International Conference on Grid
and Cooperative Computing, (2004) 390-397.

8. Floyd, S., and Jacobson, V.: Random Early Detection (RED) gateway for Congestion
Avoidance, IEEE/ACM Transactions on Networking, vol. 1, no. 4, (1993) 397-413.

An Identity Authentication Protocol

for Acknowledgment in IEEE 802.15.4 Network

Joon Heo and Choong Seon Hong�

School of Electronics and Information, Kyung Hee University,
1 Seocheon, Giheung, Yongin, Gyeonggi, 449-701 Korea

{heojoon, cshong}@khu.ac.kr

Abstract. This paper proposes an identity authentication mechanism
at the link layer for acknowledgment frame in IEEE 802.15.4 network.
With the proposed mechanism there are only three bits for authenti-
cation, which can greatly reduce overhead. The encrypted bit stream
for identity authentication will be transmitted to device by coordinator
within association process. Statistical method indicates that our mecha-
nism is successful in handling MAC layer attack.

1 Introduction

The IEEE 802.15.4 specification defines four frame types: beacon frames, data
frames, acknowledgment frames, and control frames for the media access control
layer. The specification does not support security for acknowledgment frames;
other frame types can optionally support integrity protection and confidentiality
protection for the frame’s data field.The lack of a MAC covering acknowledg-
ments allows an adversary to forge an acknowledgment for any frame. An adver-
sary need only create the forged acknowledgment with the appropriate sequence
number from the original frame; this is not hard, since this sequence number is
sent in the clear[1][2]. In this paper, we propose a lightweight identity authentica-
tion at the link layer for acknowledgment frame in IEEE 802.15.4 network. With
the proposed mechanism there are only three bits for authentication, which can
greatly reduce overhead. Also encrypted n-bits stream for identity authentication
will be transmitted by coordinator within association process.

2 Proposed Mechanism

Unlike traditional authentication mechanism, the proposed mechanism deter-
mines the legitimacy of a sender by continuously checking a series of acknowl-
edgment frames transmitted by the sender. Ideally, since the attacker does not
have the shared key, the probability for the attacker to guess continuously k
times of three bits is as small as 8−k.
� This work was supported by University ITRC Project of MIC. Dr. C.S.Hong is the

corresponding author.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 355–358, 2005.
c© IFIP International Federation for Information Processing 2005

356 J. Heo and C.S. Hong

a1 a2 a3

a4

auth1

S0:

Authbit-sets

a2 a3S1:

ak+1Sk:

auth2 auth3 � �� �

Cn = �*23 + �*22 + � *21 + � *20

Set numbers

ak+2 ak+3

a1 a2 a3

a4

C1:

a2 a3C2:

ak+2ak ak+1Ck:

a4

a5

ak+3

Fig. 1. Authbit sets and Set numbers generation mechanism

0 0 1

SC1

1 1 1

SC2

1 1 0

SC3 SCn…
auth1 auth2 auth3

Fig. 2. The authentication chain of Authbit sets

2.1 Authbit Set and Set Number of Acknowledgments

If the coordinator determines acceptance of device, encrypted n-bits Authbit
stream will be transmitted to device by coordinator within association process.
Key management between coordinator and devices may be provided by higher
layer, but are out of scope of this paper. And then, the coordinator and the device
create Authbit sets and Set numbers as shown in Figure 1. Finally, the Authbit
set and the Set number will be used making the same chain for authentication of
acknowledgment between the coordinator and the device as shown in Figure 2.

2.2 Synchronization and Fault Tolerance Using the Set Pointer

Conceptually, both the coordinator and the device have a pointer pointing to
the Authbit set for the next outgoing acknowledgment frame. Ideally, both the
coordinator and the device will have their pointer pointing at exactly the same
Authbit set and advance synchronously. Initially, the coordinator and the device
pointers are synchronized. The device sends each acknowledgment frame with
three additional bits and bits value is equal to the values of the Set pointer (Pn).

Algorithm : synchronization and fault tolerance

// Coordinator receive acknowledgment frame with Authbit set {Scm}device

if {Scm}device == {Scm}coordinator then

Pm++

else if {Scm}device� {Scm}coordinator then

Pm = Pm-k

Coordinator � Device: Frame{failed, retransmission from Scm-k}

Fig. 3. Pseudo code of synchronization algorithm

An Identity Authentication Protocol for Acknowledgment 357

When the coordinator receives a frame successfully, the coordinator checks the
bits value of the acknowledgment frame. The synchronization and fault tolerance
of Set pointer explained above can partially be described with the following
Figure 3.

3 Statistical Method and Implementation in LR-WPAN

The main objective of this authentication mechanism is to determine whether
the sending device is an attacker or not. We have analyzed the proposed authen-
tication mechanism and have devised a method to find out the authenticity of
a device as a probability value. If the device’s Authbit set doesn’t match the
coordinator’s Authbit set, this means there are two possibilities either (a) there
are no synchronization between the coordinator and the device Set pointer or
(b) the sending device is an illegitimate device. In an error-prone wireless net-
work, acknowledgment frames are ’frequently’ lost due to wireless error. We use
a statistical method to determine the authenticity of a device. We devise a sta-
tistical method to determine the probability of a station being an attacker. Let
the number of acknowledgment frames from P1 to Pn be n, let the number of
synchronization done by device and coordinator be s, and let the acknowledg-
ment frame loss rate be r, where r (0≤r≤1). We have the following theorem[3][4].

[Theorem]
For a sending device D, assume the a priori probability of device D to be an
attacker is 1

8 , i.e., P(D=attacker) = 1
8 and P(D=legitimate) = 7

8 , the probability
of this device D being an attacker one when the number of synchronization is s,
P(D=attacker | n, s), is given by

P (D = attacker|n, s) =
2−n

2−n + 7 ∗ rs(1 − r)n−s
(1)

Also, we describe how to implement the proposed mechanism with the ex-
isting IEEE 802.15.4 protocol. Although an extra bit is needed in our proposed
mechanism, we can use reserved bits in the frame without violating the IEEE

Bits: 0-2

Frame
type

Dest.
Addressing

mode

Frame format of the frame control field

Acknowledgment frame format

3 4 5 6 7-9 10-11 12-13

Octets: 2 1

Security
enabled

Frame
pending

ACK.
request

Intra-
PAN

Authbit-
set

Reserved

Frame
control

Sequence
number

2

FCS

14-15
Source.

Addressing
mode

SCn

Fig. 4. Frame format in the IEEE 802.15.4 Standard

358 J. Heo and C.S. Hong

Coordinator Device

association request

acknowledgment

acknowledgment with (SC1� P1)

frame

acknowledgment with (SCn� Pn) authentication
using the SCn

association response with n-bits stream

authentication
using the SC1

If association
successful Keyshared{n-bits stream}

Fig. 5. Frame sequence chart with Authbit set chain

802.15.4 MAC frame format. This means the proposed mechanism does not
modify the frame structure and is compatible with legacy devices which do not
use the authentication mechanism. Figure 4 shows the common acknowledgment
frame and frame control field of IEEE 802.15.4 protocol. We have used three bits
reserved field of frame control field to authenticate of acknowledgment frame be-
tween coordinator and device. Figure 5 shows a frame sequence chart between
coordinator and device by using the Authbit set chain to authenticate each other.

4 Conclusion

In this paper, a lightweight identity authentication protocol for acknowledgment
frame in IEEE 802.15.4 network has been presented. The proposed mechanism
inserts identity authentication bits from an acknowledgment frame known only
to the two communicating stations. With the proposed mechanism there are
only three bits for identity authentication, which can greatly reduce overhead
and thus preserves the scarce wireless bandwidth resource.

References

1. ”Wireless Medium Access Control and Physical Layer Specification for Low-Rate
Wireless Personal Area Networks”, IEEE Standard, 802.15.4-2003, May 2003.

2. N. Sastry, D. Wagner, ”Security Consideration for IEEE 802.15.4 Networks”,
WiSe’04, Proceeding, pp.32-42, 2004.

3. Henric Johnson, Arne Nilsson, Judy Fu, S.Felix Wu, Albert Chen and He Huang,
”SOLA: A One-bit Identity Authentication Protocol for Access Control in IEEE
802.11”, In Proceedings of IEEE GLOBECOM 2002.

4. Haoli Wang, Aravind Velayuthan, Yong Guan, ”A Lightweight Authentication Pro-
tocol for Access Control in IEEE 802.11”, In Proceedings of IEEE GLOBECOM
2003.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 359 – 362, 2005.
© IFIP International Federation for Information Processing 2005

A Design of the Digital Content Distribution System
Based on the Public Key and the Hierarchical Web

Caching Structure

Yun Ji Na1, Ko Il Seok2, and Gun Heui Han3

1 Department of Internet Software, Honam University, Gwangju, Korea
yjna@honam.ac.kr

2 Dept. of Information & Communications Engineering,
Chungbuk Provincial University of Science & Technology, Chungbuk, Korea

isko@ctech.ac.kr
3 School of Information Communication,

Cheonan University, 115 Anseo-dong, Chonan, 330-704, S. Korea
hankh@cheonan.ac.kr

Abstract. The illegal distribution of duplicated contents on the Web is causing
digital content providers great economic loss. Therefore, Information security is
becoming a more important factor in distribution of digital contents. In this
study, we designed a digital contents distribution system based on the public
key techniques in hierarchical web caching structures. The superior
performance of the proposed system has been proven in the experimental tests.
The results of experiment show that the supposed system improved the security
of DC without decreasing process speed and improved user convenience.

1 Introduction

Security problems occur because the Internet is a transmission medium that does not
consider security problem. Moreover, as the most server systems are exposed to
threats of illegal invasion and data destruction, threats of hacking or cracking become
worse. Therefore, security techniques for the protection of server systems and digital
contents are required for the safe distribution of digital contents. Distribution of
contents duplicated illegally in the Internet is causing great economic loss to the
digital contents providers. Therefore, a study for security and efficient distribution of
digital contents is required [1,2,3].

Generally, for the safe distribution of digital contents, plaintext is transmitted
through an encryption process to convert the data into cipher text. On this process, the
size of encrypted digital contents is grows, it causes a transmission delay as network
traffic increases and increase response delay. Thus, we consider user convenience,
execution speed and security in the design of a digital content distribution system.

In this study, we designed a secure and efficient digital contents distribution
system based on a public key in a hierarchical web caching structure. We use web
caching technology [4] to decreasing of network delay, and use the RSA encryption /
decryption technique to improve security and efficiency. Experimental tests verified

360 Y.J. Na, K.I. Seok, and G.H. Han

performance superiority of the proposed system. The experiment results show that the
proposed system has improved the safety of the DC while not decreasing the process
speed.

2 System Design

Figure1 shows the configuration of the system. SPSM(Secure Proxy Server Manager)
is an administrator managing a proxy server of the DCUG. DC means Digital
Contents and DCP means Digital Contents Provider, DCUG means Digital Contents
User Group.

I
N
T
E
R
N
E
T

Digital Contents User

Manag
SPSM Cache

M

Cach

Encrypte
d

General
Data

Authorized user group Not authorized user group

…

…
Proxy

…

DCP

DCP

DCP

Fig. 1. System structure

Key Generation and
Authentication

Origin Server

Edge Site
Cache
Server

Client

DC
Transmission

Private

Public

Transmission
with

CA Server

DC
Transmission

DC

User
Authenticati

Private Key Encrypted

DC

c: encrypted message
m: plain message (Content
m(0<m<n))
eB,nB: public key
dB nB : private key

DCP DCU Cach

Request for

DC

Store in

Encryption
with

Decryption
with

Partial
encryption

 Fig. 2. DC transmission Fig. 3. Authentication procedure

 A Design of the Digital Content Distribution System Based on the Public Key 361

2.1 DC Transmission and Authentication

Figure 2 is a procedure transmitting the DC from the DCP to the DCUG. The DCP
server encrypts the DC, which includes the public key. By using a private key, the
DCUG decrypts the DC transmitted from the DCP and makes the original public key
and plaintext. 10% of these decrypted contents with a public key is partially encrypted
and saved in the cache of the DCUG. These contents are decrypted with a personal
key in the user browser. The proposed system has system side security and process
side security for the secure execution of contents. System side security can be attained
through the security of the proxy server. It also has process side security by approved
user certification on a system (the DCUG manager) and certification of private key
value on the execution time (user browser). If a permitted user of the DCUG cannot
find the desired contents in the cache list, the DCUG must transmit the contents from
the corresponding DCP server. The DCUG and the DCP server must receive a
certification statement to CA (Certificate Authority) server before exchanging
encryption data. Figure 3 shows Authentication procedure for the system.

2.2 DC Transmission from DCUG

If an approved user of the DCUG requests contents, the DCUG manager transmits the
partially encrypted DC in the encrypted contents cache scope to a user. A user
decrypts the transmitted DC and a player in the personal Browser executes this DC.
Figure 4 is a procedure to transmit contents from the DCUG to the DC.

Fig. 4. DC transmission and replay

When DC transmission is requested, User certification is performed in the system.
Then the DC is searched in a cache list. And when the cache is accessed, pertinent
contents are transmitted. And DC decryption is performed in a personal Browser after
transmission is completed. A user certification procedure is performed with a key
value, and DC is replayed. Finally, DC is deleted from a user area after replay is
completed.

PlayeProxy
Pers

onal

DC

Request for DC

User authentication

DC repay
in

End of DC

DC remove
in personal

DC

User
authenti

Transmission of
a DC

Searc
h of a

cache

Search of a

362 Y.J. Na, K.I. Seok, and G.H. Han

3 Comparison to Other Systems

We compared the proposed system with SecuMAX and Digicap, which are the
existing popular commercial systems to verify the superiority of the proposed system.
Table 1 shows the comparison of the security level between two commercialized
systems and the proposed system.

Table 1. DC security: proposed system vs. Existing Commercialized system

System
Items

SecuMAX Digicap Proposed
system

Authentication
method

Personal
encryption key

Token
Public key
method

Security on contents
illegality currency

× ×

Hierarchical
Approach

× ×

Web Caching × ×
User browser

In most commercialized systems, a user’s personal interface is supported for

security and user convenience. Table 1 shows that a commercialized systems’ DC
security level is decreased for the improvement of processing speed. It is difficult to
improve process speed and DC security level at the same time only through
encryption and personal interface technique. The two commercialized systems work
better than the proposed system when web caching is not applied. But the proposed
system works better for security and performs faster when web caching is applied.

4 Conclusion

The proposed system decreases the delay factor caused by network traffic by using
web caching and uses a hierarchical structure encryption / decryption technique in
order to improve the security level of the DC. The experiment results show that the
proposed system has improved the safety of the DC while not decreasing the process
speed. The proposed system could be used for an ISP (Internet Service Provider) that
distributes mass multimedia digital contents like online education, web movies, and
web music contents

References

1. R. Iannella, "Digital Rights Management Architecture," D-Lib Magazine, Vol. 7, No.6,
June, 2001.

2. Spctral Lines, "Talking About Digital Copyright," IEEE Spectrum, Vol.38 Issue;6, pp.9,
June 2001.

3. Thorwkrth N. J., Horvatic P., Weis R., Jian zhap, "Security methods for MP3 music
delivery," Signals, Systems and Computers, Conference Record of the Thirty-Fourth
Asilomar Conference on, Vol.2, pp.1831-1835, 2000.

4. G. Barish, K. Obraczka, World Wide Web Caching: Trends and Techniques. IEEE
Communications, Internet Technology Series, May 2000.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 363 – 370, 2005.
© IFIP International Federation for Information Processing 2005

Cluster-Aware Cache for Network Attached Storage*

Bin Cai, Changsheng Xie, and Qiang Cao

National Storage System Laboratory, Department of Computer Science,
Huazhong University of Science and Technology, Postfach 430074,

Wuhan, P.R. China
hust_caibin@sohu.com

Abstract. Decentralized, cooperative and large-scale distributed storage sys-
tems that consist of a cluster of storage nodes attached with local disks can de-
liver high resource utilization, high availability and easy scalability. This paper
describes the design and prototype implementation of a novel Cluster-Aware
Cache (CAC) algorithm that shares memories between nodes in cluster to con-
struct an efficient and cooperative cache-to-disk accesses policy. The difference
between our scheme and previous studies is that processes on different node can
access the same page concurrently. Furthermore, CAC algorithm is also well
suited to heterogeneous clusters where one or more nodes may have larger
amounts of memory than the others. The performance measurements with a
Web server on our system show dramatic performance improvements with in-
creasing number of nodes.

1 Introduction

Large-scale distributed storage systems that consist of a cluster of storage nodes with
local disks have become a cost-effective solution for wide range of applications, rang-
ing form enterprise-class storage backend, HPC (High-Performance Computing) to
data mining and Internet services. Such systems can be realized at little or no extra
cost, can offer an inherently scalable aggregate I/O bandwidth, and can take advan-
tage of existing cluster installations through double-use or upgrade of older hardware.
Although the parallelism offered by the numerous disks in a cluster can alleviate the
I/O bandwidth problem, it does not really address the latency issue which is largely
limited by seek and rotational costs. Caching data blocks in memory is a well known
way of reducing I/O latencies, provided we can achieve good hit ratio.

In this paper, we describe the design of a storage cluster using inexpensive PCs
equipped with local disk. In our system, large files are stored in a scalable fashion by
striping the data across multiple nodes to obtain high aggregate bandwidth. In order to
solve the disks latency issue, we present the design and prototype implementation of a
novel Cluster-Aware Cache (CAC) scheme, which changes the cache hierarchy of
traditional distributed system (client cache, server cache, server disk) by letting one
node cache misses to be checked against other node caches before the local storage

* This research is supported by National 973 Great Research Project of P.R. China under the

grant No. 2004CB318200 and National Natural Science Foundation under grant No.
60273037 and No. 60303031.

364 B. Cai, C. Xie, and Q. Cao

devices. Thus, the working set can grow beyond the local memory limit while appli-
cations read latency can be alleviated tremendously because remote caches were ac-
cessed faster over high-speed network than the disk even if it is local.

The remainder of the article is organized as follows: In section2, we describe the
related work about cooperative caching scheme. In section3, we introduce the archi-
tecture of our storage cluster system, and detail the CAC scheme in section 4. The
experimental results are evaluated at section 5. The conclusion comes at section 6.

2 Related Work

Using regular nodes as storage nodes has previously been suggested in the Slice [1,2]
and OPIOM [3] projects, but where they primarily focus on using dedicated storage
nodes, we examine the possibilities for distributing the load across all nodes in a clus-
ter. The Network Block Device (NBD) [4] and GNBD/VIA [5] also provide network
access to a remote block device, but the architectures are neither modular nor extensi-
ble. The xFS [6,7] introduced the notion of cooperative caching. Other I/O buffer
cache management schemes exist on global memory management and cooperative
caching [8] by extending the use of a shared distributed buffering mechanism to the
I/O devices themselves. PACA [9] is another cooperative file system cache. It at-
tempts to avoid replication and the associated consistency mechanisms by allowing
only one cached block copy in the entire cluster-wide cache. That is possible since
PACA uses a memory copy mechanism (a sort of Remote DMA) to send the data from
the cache to the user memory. However, every data access has to go through this
memory copy mechanism which is clearly much slower than accessing a local block
copy. Other low level approaches to remote I/O include Swarm [10] and Network-
Attached Secure Disks (NASDs) [11]. Swarm offers the storage abstraction of a
striped log while NASDs provide an object-oriented interface.

3 System Architecture

In this section, we describe the main components of NAS storage cluster system and
how they work together. We first provide an overview of the architecture, and then
we cover the CAC algorithm in more detail.

The physical layout of such storage cluster is shown in figure 1. To provide an in-
terface of a single virtual cluster server, each cluster is assigned with a multicast IP
address. All participating cluster members joint in this multicast group, whose IP
address is known to each other. The main advantage of NAS approach is that inter-
nally the design can seamlessly integrate major storage components to work closely
together. All members in this system work collaboratively to construct a storage sys-
tem with a unified storage space.

Each of the storage device members in the cluster runs a program, called daemon.
Daemon communicates with each other and provides some functions, including trans-
ferring file data, transferring control message, and performing statistical information.
When a node needs to get file at other node, the daemon finds the file firstly, and then
gets the file from remote node. Daemon checks usage of the CAC at a fixed interval

 Cluster-Aware Cache for Network Attached Storage 365

in order to provide reasonable cache replacement policy. When a node’s residual
cache capacity is less than the threshold value, the daemon will move some blocks
from its local cache to the remote cache in order to balance the load.

Fig. 1. Architecture of NAS Storage Cluster

Fig. 2. Daemon and CAC Kernel Module

Each of the storage device members in the cluster also has a kernel module. It di-
vides the node’s total memory into two parts: one is the node’s local cache; the re-
mainder memory at each node therefore makes of the CAC cache spaces. The typical
setup and possible scenarios are shown in figure 2.

CAC hides the distributed nature of the cluster node’s caches by offering the local
hosts an interface to a global unified buffer cache. Similar to GMS [8], CAC uses a
high-level abstraction (disk blocks) to deal with remote resources and cooperative
cache algorithms to jointly manage the cluster caches. It rely on the low communica-
tion latencies of powerful interconnects to minimize block access times.

4 Implementation of CAC Scheme

Each node has a local cache to cater to the individual process requests at that node;
and upon a miss goes to a shared cooperative cache running on one or more nodes of
the cluster which can possible satisfy requests that come from different nodes.

4.1 Local Cache

We opted to implement the local cache within the Linux kernel that can be shared
across all the processes running on that node. Only when the request misses in this
cache (either all or some of the request cannot be satisfied locally), is an external
request initiated out of that node to the cooperative cache. This cache is implemented
using open hashing with second chance LRU replacement. There is a dirty list, a free
list, and a buffer hash to chain used blocks for faster retrieval and access. The hashing
function takes as parameters the inode number of the file and the block number to

366 B. Cai, C. Xie, and Q. Cao

index the buffer hash table. There are two kernel threads called flusher and harvester
in the implementation. Writes are normally non-blocking (except the sync write ex-
plained later), and the flusher periodically propagates dirty blocks to the cooperative
cache. The harvester is invoked whenever the number of blocks in the free list falls
below a low water mark, upon which it frees up blocks till the free list exceeds a high
water mark. A block size of 4K bytes is used in our implementation. Note that such a
kernel implementation automatically allows multiple applications/processes to share
this local cache, thus making more effective use of physical memory.

4.2 Global Unified Cache

The cooperative cache, as explained earlier, adds one more level to the storage hierar-
chy before the disk at one node to be accessed, and we go over it in the following
discussion, explaining the base algorithm in our implementation.

Currently, we use a separate cooperative cache for each file. If there is little file
sharing across applications, or even across parallel processes of the same application,
then the requests would automatically distribute the load more evenly with this ap-
proach. Since we would also like to be able to perform inter-application optimizations
based on sharing patterns, we have opted to share the cooperative cache across appli-
cations. This can help one application benefit from the data brought in earlier by an-
other from the cache. This feature is one key difference between our system and GMS
[8] where the global cache is intended for optimizations within the processes of a
single application. Similar to the local cache implementation, we implement the coop-
erative cache within the Linux kernel.

The internal data structures and activities of the cooperative cache are more or less
similar with those for the local cache that were described earlier. One could designate
such global caches on different nodes, particularly on those nodes with larger physical
memory (DRAM). Consequently, this architecture is also well suited to heterogene-
ous clusters where one or more nodes may have larger amounts of memory than the
others. The base algorithm of CAC is described in following pseudo-code:

Application issues file request;
if (file is at local cache){
 give the file to application;
 return;
}else{
 if (file is at remote cache){
repeat-remote:
 use Daemons Communication to fetch the file;
 if (the file is hot){
repeat-local:
 if (local cache has space){
 add the file to local cache;
 give the file to application;
 return;
 }else{
 give the file to application;
 return;
 }

 Cluster-Aware Cache for Network Attached Storage 367

 }else{
 give the file to application;
 return;
 }
 }else{
 if (file is at local storage devices){
 goto repeat-local;
 }else{
 if (file is at remote storage devices){
 goto repeat-remote;
 }else{
 can not find the file;
 return error;
 }
 }
 }
}

4.3 Daemon Communication

Each node runs a user-level daemon program for the purpose of transferring file data,
transferring control message, and performing statistical information. TCP/IP sockets
are being explicitly used for sending messages to it from the individual local caches
regardless of which application process is making a call. The convenience and flexi-
bility of a user-level implementation has led us to implement the daemon running on
each node of our cluster serving requests to a specific file running on a cluster node,
to which explicit requests are sent by the local caches, and is shared by different ap-
plications.

When a node needs to get file at other node, the daemon finds the file firstly, and
then gets the file from remote node. Daemon checks usage of the CAC at a fixed
interval in order to provide reasonable cache replacement policy. When a node’s re-
sidual cache capacity is less than the threshold value, the daemon will move some
blocks from its local cache to the remote cache in order to balance the load. The proc-
ess of communication between daemon and CAC is presented as following
pseudo-code:

wakeup (Daemons Communication);
if (available CAC cache size < threshold_ CAC _size){
 discard some blocks; // replacement policy
 sleep;
}else{
 if (available local cache size < thresh-
old_local_size){
 find the node with more available cache space;
 migrate the blocks to that node;
 sleep;
 }else{
 sleep;
 }
}

368 B. Cai, C. Xie, and Q. Cao

5 Experimental Results

In this section, we present an evaluation of the performance of the CAC prototype.
The performance goal of CAC is to have a performance close to that of local cache
and to have a small overhead on the nodes hosting the disks.

For the purpose of our experiments, we constructed a small cluster with five
equivalent Pentium4/2GHz PCs with 256MB DRAM running Linux operating system
with the version of the 2.4 kernel. Each PC was equipped with a single Gigabit net-
work card as well as a single 160G IDE hard disk to provide storage space. No special
kernel optimizations were done to optimize I/O or inter-process communications. One
node was dedicated to servicing HTTP requests and the other four nodes were avail-
able to service data storage. Each node was running a daemon and a CAC kernel
module, and shared 128MB RAM to consist of cooperative cache, therefore, the co-
operative cache cache capacity is 640MB. Each client was a Windows PC running the
WebBench [12] suite of e-commerce tests. WebBench is a benchmark program that
measures the performance of Web servers using PC clients. In our test, the file set was
1.5GB and was placed on the disk of Web server initially, and we used 10 clients
running WebBench to generate 1000 WebBench-client requests to Web server simul-
taneously. The experiments were done according to the request and cache hit ratio,
irrespectively.

A comparison between remote disk, local disk, remote cache, and local cache in
terms of the number of request operations is presented in figure 3. Notice that Web
server’s performance upgrades fast with the increasing number of the node. Large
parts of requests hitting in Web server’s local cache improves the I/O performance of
Web server dramatically. Similar comparison in terms of request bytes is presented in
figure 5.

A comparison between cache hit ratios in terms of the number of request opera-
tions is presented in figure 4. Notice that I/O in Web server’s local disk degrades fast

��������������	
���
�

�

���

���

���

���

���

���

� � � � �

�����������

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

����	���
��� �����
�� ����	�������

��������� 	�	��������	�

Fig. 3. The Comparison of Request Number

���������

�

��

��

��

��

��

��

��

��

� � � � �
���	��
��	

�
��
��
�
��
�
��
	

	
��
�����
 ���������� ����������

Fig. 4 The Comparison of Hit Ratio

 Cluster-Aware Cache for Network Attached Storage 369

��������������	
���
��������

�

����

�����

�����

�����

�����

�����

� � � � �

���	
���	�

�
�
�
�
�
�
�
�
�
�
	

	
�
�
�

�
�

����������	�
���
����	 �����������

���
����� ����
���������

Fig. 5. The Comparison of Request Bytes

������������	�
��

�

��

��

��

��

��

��

��

��

� � � � �
	
��	�����

�
��
��
�
��
�
��
	

���
������� �
������� �
��������

Fig. 6. The Comparison of Hit Ratio

with the increasing number of the node, large parts of requests hitting in Web server’s
local cache or remote cache improves the Web server’s I/O performance. Similar
comparison in terms of request bytes is presented in figure 6.

6 Conclusion

By leveraging the high-speed communication afforded by the cluster interconnect
such as Fast/Gigabit Ethernet, large files can be stored in a scalable fashion by strip-
ing the data across multiple nodes; by distributing the disks across a sufficient number
of cluster nodes, high aggregate bandwidth can be easily obtained with current hard-
ware. In order to solve the disks latency issue, we present the design and prototype
implementation of a novel cluster caching scheme, which changes the cache hierarchy
of traditional distributed system (client cache, server cache, server disk) by letting one
node cache misses to be checked against other node caches before the local storage
devices. Thus, the working set can grow beyond the local memory limit while appli-
cations read latency can be alleviated tremendously because remote caches were ac-
cessed faster over high-speed network than the disk even if it is local. Performance
measurements of such a system are encouraging, showing that the I/O performance of
Web server improves fast with the increasing number of node.

References

1. D.C.Anderson, J.Chase, and A.Vadat, “Interposed request routing for scalable network
storage”, Proceedings of the 4th Symposium on Operating Systems Design and Implemen-
tation, October 2000.

2. J.Chase, D.Anderson, A.Gallatin, A.Lebeck, and K.Yocum, “Network I/O with trapeze”
Proceedings of 1999 Hot Interconnects Symposium, August 1999.

3. P.Geoffray, “OPIOM: Off-processor I/O with myrinet”, Proceedings of the first
ACM/IEEE International Symposium on Cluster Computing and Grid, May 2001.

370 B. Cai, C. Xie, and Q. Cao

4. P.T.Breuer, A.M.Lopez, and A.G.Ares, “The network block device”, Linux Journal, (73),
May 2000.

5. K.Kim, J.Kim. and S.Jung, “BNBD/VIA: A network block device over virtual interface
architecture on Linux”, Proceedings of the 16th International Parallel and Distributed
Processing Symposium, April 2002.

6. M.Dahlin, R.Yang, T.Anderson, and D.Patterson, “Cooperative Caching: Using remote
client m emory to improve file system performance”, Proceedings of first Symposium on
Operating Systems Design and Implementation, November 1994.

7. T.Anderson, M.Dahlin, J.M.Neefe, D.Patterson, D.Rosseli, and R.Y.Wang, “Serverless
network file systems”, Proceedings of the 15th Symposium on Operating System Princi-
ples, December 1995.

8. M.I.Feeley, W.E.Morgan, F.H.Pighin, A.R.Karlin, and H.M.Levy, “Implementing global
memory management in a workstation cluster”, Proceedings of the 15th ACM Symposium
on Operating Systems Principles, pp. 201-212, December 1995.

9. T.Cortes, S.Girona, and L.Labatra, “PACA: A distributed file system cache for parallel
machines. Performance under Unix-like workload”, Technical Report UPC-DAC-RR-
95/20 or UPC-CEPBA-RR-95/13, Department d’Arquitectura de Computadors, Universit-
tat Politecnica de Catalunya, 1995.

10. J.H.Hartman, I.Murdock, and T.Spalink, “The Swarm scalable storage system”, Proceed-
ings of the 19th IEEE International Conference on Distributed Computing Systems (ICDCS
99), June 1999.

11. G.A.Gibson, D.F.Nagle, K.Amiri, F.W.Chang, H.Gobioff, E.Riedel, D.Rochberg, and
J.Zelenka, “File systems for network-attached secure disks”, Technical Report CMU-CS-
97-118, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213-
3890, July 1997.

12. http://www.veritest.com/benchmarks/webbench/

Design and Implementation of a SAN Agent
for Windows NT Architecture�

Ran Meng, Jiwu Shu, and Wei Xue

Department of Computer Science and Technology,
Tsinghua University, 100084 Beijing, China

mengran@tsinghua.org.cn

http://www.cs.tsinghua.edu.cn

Abstract. In an out-of-band SAN virtualization system, the virtualiza-
tion appliance maintains metadata, and the agents inside the kernel of
servers use that data to supply virtual storage devices and to perform
the mapping of I/O address. A design of an out-of-band SAN virtual-
ization system based on Windows NT volume manager driver, and its
underlining technologies were presented in this paper. It shows that, in
general our system is able to supply large volume and high bandwidth
virtual storage devices for applications, and it can be used as a basic
environment to manage the SAN centrally. The system performance was
investigated in comparison with a plain SAN under FAT32 and NTFS,
using different data block sizes and access patterns. The results reveal
that the overhead induced by our approach is much low. Under FAT32,
the performance characteristics of the 3-striped virtual volume follow a
typical strip distribution strategy and the bandwidth is 1.20 3.71 times
greater than general volume. Furthermore, under NTFS, the bandwidth
of the 3-striped virtual volume is an average of 4.10 (max 4.82) times
greater than general volume with the random read access test. Hence it
can be concluded that our virtualization approach could make use of the
storage resources in SAN more effectively.

1 Introduction

According to the definition given by the Storage Network Industry Association
(SNIA) [11], storage virtualization is ”an abstraction of storage that separates
the host view from the storage system implementation.” Another more detailed
definition of virtualization from Robert Frances Group is ”Those architectures
and products designed to emulate a physical device where the characteristics of
the emulated device are mapped over another physical device” [1]. Virtualization
provides many benefits to the SAN system, including:
� The work described in this paper was supported by the National Natural Science

Foundation of China under Grant No.60473101, the National Key Basic Research
and Development 973 Program of China under Grant No. 2004AA111120 and the
National High-Tech Research and Development 863 Plan of China under Grant No.
2004AA111120.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 371–378, 2005.
c© IFIP International Federation for Information Processing 2005

372 R. Meng, J. Shu, and W. Xue

– The manpower needed to administer the SAN system is significantly reduced
[1],

– The capacity of the virtual storage device is not limited by a single disk or
a single RAID system [2],

– The virtualization can dramatically improve the utilization of storage re-
sources [2].

The virtualization techniques inside a SAN system can be classified as two
types in terms of their control path: in-band and out-of-band [3] [11]. In an in-
band system the virtualization appliance is in the data path and virtualization
functions such as address mapping are accomplished by the same component that
performs reading and writing. In an out-of-band system the implementation re-
lated to the virtualization is not in the data path. Nowadays, there are already
some SAN virtualization solutions, such as HP OpenView Storage Operations
Manager [8]. In these solutions the storage management tasks ship with an inte-
grated HBA (Host Bus Adapter). Therefore they are low-level implementations
and some special HBAs and corresponding drivers and/or firmware are required.

This paper presents a design of an out-of-band SAN virtualization system
based on the Windows NT volume manager. In this design we implement an
agent to perform virtualization tasks at the Windows NT volume manager level;
thus only standard HBAs are required. Additionally in our system there is a
virtualization server centrally managing the storage resources. In section 3 the
design of the virtualization agent based on the Windows NT volume manager
are presented, and the key techniques we used are described. Furthermore we
investigate the performance of our system compared with a plain SAN under
FAT32 and NTFS with different data block sizes and access patterns and focus
on the analysis of the virtual volume using stripe distribution strategy.

2 The Virtualization Server

In our design the virtualization server consists of five cooperative components:
management module, interface module, communication module, device-monitor
module and device-agent module. Here it is incumbent on the management mod-
ule to maintain the virtualization metadata, to prompt and harmonize other
components and the virtualization agents running on the application servers,
and then to achieve the virtualization of the storage resources of the entire SAN
system. The virtualization metadata is stored in a specific location in multiple
devices in the storage pool. Each device has a complete copy and backs up the
metadata for others.

3 Design and Implementation of the Virtualization Agent
on Windows Platform

The virtualization agent running on Windows application servers is comprised
of the kernel module and the communication module. The former performs vir-
tualization functions, for example, creating virtual volumes, translating the I/O

Design and Implementation of a SAN Agent 373

Fig. 1. Windows NT I/O driver stack model. The (I/O Manager) of the Windows NT

operating system handles the flow of data to and from peripheral devices. It exports an

(I/O system services) whose user-mode protected subsystem supplies a programming.

(Applications) use that interface to manipulate the devices such as send I/O requests

to them, so that the (I/O Manager) can intercept all those requests.

address from virtual volumes to physical devices, etc. The latter communicates
with the virtualization server and assists the kernel module to accomplish the
virtualization tasks. In this section, we first introduce the driver model of storage
devices in the Windows NT architecture. Then the design and implementation
of the Windows virtualization agent will be discussed.

3.1 The Windows NT Disk Driver Model

As shown is Figure 1, The I/O Manager provides a consistent interface for all
kernel-mode drivers (including the lowest drivers, intermediate drivers and file
system drivers (FSD)). All I/O requests sent to these drivers are represented
as I/O request packets (IRPs). These drivers are called as driver stack in terms
of the processing of IRPs. The driver (usually the FSD) that is situated on the
top of the driver stack will process IRPs first, and then passes them to the next
driver via the I/O Manager. [10] [12]

3.2 The Virtualization Agent

The communication module of our agent is a user-mode network program that
uses TCP/IP over the Ethernet to talk with the virtualization server. It receives
the metadata and instructions from the virtualization server, orders the kernel
module to perform virtualization tasks and sends the results or other information
back. The kernel module is represented as a volume manager driver inside the
Windows kernel. Its functions include:

374 R. Meng, J. Shu, and W. Xue

Fig. 2. The relation between the virtual volumes and the Windows system volumes and

the relation between the (kernel module) and the (Volume Manager) are illustrated.

The (Disk Filter) is an upper filter driver that hides the physical storage devices from

accesses other than from the kernel module.

– Providing the virtual volumes for the applications in user mode, and main-
taining and managing them,

– Distributing the data of virtual volumes between physical devices and map-
ping the I/O requests to them,

– Recording some statistics of virtual volumes and sending them to the virtu-
alization server for further analysis.

Now we discuss the design of the communication module and the kernel
module.

IRP Processing in Kernel Module. As viewed from the perspective of ap-
plications and file systems, the virtual volumes are the same as other volumes
that are created by the Windows Disk Manager, so that they can access these
volumes in the same way. As an example, the IRP representing a read request
from an application to the virtual volume is viewed as a request to read a specific
range of data on the virtual volume when it has been processed by the FSD.
So the kernel module suspends the original IRP first, and then creates one or
more IRPs to read the corresponding data from physical devices according to
the distribution strategy. When those IRPs are completed by the disk driver and
popped to the kernel module, the original IRP will be filled with the data they
read and will be completed by the kernel module.

Distribution Strategy and Metadata Management. At the present time
the kernel mode supports linear and strip distribution strategy. In linear strat-
egy, data is continuously distributed on one or more physical devices. The strip
strategy repeatedly places data among multiple devices according to a specific
chunk size. In this way the reads and writes are done in parallel on the devices
and the performance will improve.

Design and Implementation of a SAN Agent 375

In our design the metadata is centrally managed and distributively applied.
While creating the virtual volumes the metadata containing distribution infor-
mation is sent to the kernel module by the management module on the virtual-
ization server. The kernel module stores this metadata in a kernel memory area
that is associated with the volume device object. This metadata is a shared por-
tion of all virtualization information and assists the kernel module in performing
address mapping. If some settings are changed, updated metadata will be sent
to the kernel module, which may perform some tasks such as data migration.

4 Results and Analysis

In this section we will give the experimental performance results of the virtual
volumes on Windows servers in our out-of-band SAN system. The test system
consisted of an application server for which the OS was Windows 2003 Server
Enterprise Edition, a specialized virtualization server and a Fiber Channel (FC)
disk array. These components were connected through an FC network. The con-
figuration of the application server and the FC disks are listed in Table 1 and 2.
We investigated the performance under FAT32 and NTFS separately. The test
tool we used was the IOMeter [14].

4.1 Results Under FAT32

We compared the performance of our virtualization implementation to a plain
SAN system. For this our test cases include:

– LV0: A virtual volume with 3 stripes and a chunk size of 64KB,
– LV1: A virtual volume using the continuous distribution strategy,
– PV0: A Windows system volume.

Table 1. The configuration of the application server

Processor Intel R©Xeon 2.4GHz × 2

Memory 1G

OS Windows 2003 Server

FC HBA Emulex LP982(2Gb/s)

Table 2. The parameter of the FC disks

Series Seagate Cheetah 10K

Capacity 147G

Speed 10000 RPM

Cache Size 8M

Max Bandwidth 105MB/S

376 R. Meng, J. Shu, and W. Xue

Fig. 3. Comparisons of the random read under FAT32

The file system was FAT32 and the capacity was 10G for all the volumes. We
tested their I/O bandwidth with 4 access patterns: sequential read, sequential
write, random read and random write. The results showed that the contrastive
characteristics of the three volumes were familiar for these four patterns. We can
safely draw some conclusions from the results.

– The bandwidth of LV1 was almost the same as that of PV0. This indicates
that the overhead induced by the kernel module is quite low in the linear
strategy,

– LV0 showed performance characteristics typical of strip data distribution. It
gained an average 3.09 (max 3.71) times bandwidth greater than PV0 when
the data block size was considerably less or greater than the product of the
chunk size and the number of stripes (64KB * 3 in this case). When the data
block size was comparable to 64KB * 3, LV0 showed a bandwidth similar to
PV0,

– The ratio of LV0 and PV0 decreased in the endmost part of the curve. This
may have resulted from the excessive amount of concurrent IRPs.

4.2 Results Under NTFS

The NTFS performance has been optimized in many aspects [10] [13], with the
result that most Windows application servers format their volumes with NTFS.
We repeated those tests described above for NTFS. Other parameters of LV0,
LV1 and PV0 were the same but their file systems were changed to NTFS. The
results showed that:

– The performance of LV1 and PV0 was quite similar; it showed that the
overhead involved by the kernel module was fairly low,

– LV0 showed an analogical strip performance characteristics in the sequential
and random write patterns,

Design and Implementation of a SAN Agent 377

Fig. 4. Comparisons of the sequential read (left one) and random read (right one)

under NTFS

– LV0 showed a much better performance in the sequential and random read
patterns. LV0 gained an average 2.73 (max 2.99) times bandwidth compared
to PV0 in the sequential read pattern, and an average 4.10 (max 4.82) times
in the random read pattern.

Under the NTFS the virtual volume gained much higher bandwidth than
the general volumes in read accesses irrespective of the data block size. This
shows that our virtualization approach utilizes the SAN storage resource more
effectively, especially with the NTFS.

5 Conclusions

A design of an out-of-band SAN virtualization system based on Windows NT
volume manager driver, and its underlining technologies were presented in this
paper. Virtual volumes can be provided to the applications and end users by the
virtualization agent implemented as a Windows volume manager driver with a
virtualization server. The agent maps the I/O accesses to the virtual volumes to
physical devices and separates the physical devices from the application servers.
Because the virtualizations are done at the volume manager level, only standard
HBAs and corresponding drivers are required.

Generally our system is able to supply large volume and high bandwidth
virtual storage devices for applications, and it can be used as a basic environment
to manage SAN.

The system performance was investigated in comparison with a plain SAN
under NTFS with different data block sizes and access patterns. The results
showed that the utilization of the SAN storage resource could be increased signif-
icantly with our virtualization approach, particularly with the strip distribution
strategy and the NTFS.

378 R. Meng, J. Shu, and W. Xue

References

1. Charles Milligan, Sid Selkirk. Online Storage Virtualization: The key to managing
the data explosion, Proceedings of the 35th Hawaii International Conference on
System Sciences 2002.

2. Andre Brinkmann, Michael Heidebuer. V:Drive-Costs and Benefits of an Out-of-
Band Storage Virtualization System, In Proceedings of the 12th NASA Goddard,
21st IEEE Conference on Mass Storage Systems and Technologies (MSST), College
Park, Maryland, USA, 13 - 16 April 2004.

3. J.S.Glider, C.F.Fuente, W.J.Scales.The Software Architecture of a SAN Storage
Control System. IBM SYSTEMS Journal VOL 42, NO 2, 2003.

4. Andre Brinkmann, Kay Salzwedel, Christian Scheideler. Compact, Adaptive Place-
ment Schemes for NonUniform Distribution Requirements, Proceedings of the four-
teenth annual ACM symposium on Parallel algorithms and architectures, Win-
nipeg, Manitoba, Canada, 2002.

5. Ismail Ari, Melanie Gottwals, Dick Henze, SANBoost: Automated SAN-Level
Caching in Storage Area Networks, 13th IEEE International Conference on Auto-
nomic Computing (ICAC’04).

6. Han Deok Lee, Young Jin Nam. Regulating I/O Performance of Shared Storage
with a Control Theoretical Approach. Proceedings of the 21st IEEE Mass Storage
Systems Symposium/12th NASA Goddard Conference on Mass Storage Systems
and Technologies (MSST2004), April 2004.

7. Robert Gramacy, Manfred Warmuth, Scott Brandt and Ismail Ari, Adaptive
Caching By Refetching, 2002 Neural Information Processing Systems (NIPS’02).

8. http://h18006.www1.hp.com/products/storage/software/som/index.html, HP
Open View Storage Operations Manager.

9. M. Farley. Building storage area networks McGraw-Hill, 2000
10. Microsoft Development Network, http://msdn.microsoft.com/.
11. Storage Networking Industry Association, http://www.snia.org/.
12. William J. Bolosky, Scott Corbin, David Goebel, and John R. Douceur, Microsoft

Research Abstract, Single Instance Storage in Windows 2000, August 2000.
13. L. Chung, Windows 2000 Disk IO Performance, MS-TR-2000-55, June
14. IoMeter Project, http://sourceforge.net/projects/iometer/

MagicStore: A New Out-of-Band
Virtualization System in SAN Environments�

Guangyan Zhang, Jiwu Shu, Wei Xue, and Weimin Zheng

Department of Computer Science and Technology,
Tsinghua University, 100084 Beijing, China

zhang-gy04@mails.tsinghua.edu.cn

http://www.cs.tsinghua.edu.cn

Abstract. In this paper, MagicStore, a new out-of-band virtualization
system designed for SAN environments is proposed. Online multiplica-
tion of the components in a striped volume can help enhance both the
I/O performance and storage capacity of a system, but it requires on-
line redistribution of the data on the volume. MagicStore employs a new
mapping management solution based on a sliding window to support the
online data redistribution without loss of scalability. Furthermore, some
virtualization transactions, such as online resizing, require modification
of the virtualization metadata, which results in the challenge of keeping
the persistent consistency of metadata. MagicStore, by using a combi-
nation of ordered writes, REDO logging and log integrity checking, can
survive across panics and power failures robustly. In order to support log
integrity checking effectively, MagicStore also uses a new log format.

1 Introduction

Storage virtualization [1] can enhance the overall quality of service in storage
area networks because it enables the competence of a logical volume to go beyond
the limit of single physical storage devices. For example, the online resizing and
reconfiguration of logical volumes ensure business continuity. The disk utilization
rate can also be increased from only 50% up to 80% through the centralized and
more flexible administration of virtualization software [2].

However, an issue facing storage virtualization is the likelihood that it will put
an inordinate strain on existing hosts. This concern has led to two schemes for
offloading some of the work associated with virtualization: in-band and out-of-
band virtualization. The in-band device, which is placed inside the data stream,
could itself become a performance bottleneck. Conversely, out-of-band virtual-
ization may provide better scalability because its main function device resides
outside the data stream and does not touch the actual data.

In this paper, we propose a new out-of-band virtualization system working in
SAN environments called MagicStore. It employs a new mapping management
� This research was supported by the National High-Tech Research and Development

Plan of China under Grant No. 2004AA111120 and the National Grand Fundamental
Research 973 Program of China under Grant No. 2004CB318205.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 379–386, 2005.
c© IFIP International Federation for Information Processing 2005

380 G. Zhang et al.

solution based on a sliding window. When the data redistribution is not needed,
our solution is equal to the mapping function. A sliding window is introduced
when the data needs to be redistributed. The solution not only supports online
data redistribution but also occupies a small amount of memory space.

Moreover, MagicStore uses a combination of ordered writes, REDO logging
and log integrity checking to obtain high persistency. Ordered writes keep the
sliding window and physical Extents consistent. REDO logging ensures that
the multiple writes to metadata blocks in single virtualization transactions are
atomic. And a new log format enables MagicStore to detect whether writing to
the log is complete.

The remainder of this paper is organized as follows. Section 2 gives an
overview of the MagicStore system. In Section 3, we propose a new mapping
management solution based on a sliding window. The strategies for persistent
consistency are presented in Section 4. In Section 5, we evaluate the I/O perfor-
mance of MagicStore through the representative experiments. We conclude with
related works and a summary.

2 Overview of the MagicStore System

MagicStore is made up of the manager and the agent software on each host
(Figure 1). The manager knows the states of physical devices and manages logical
volumes. Instructed by the manager, the agent virtualizes logical volume devices
and does the address mapping from the logical address space to the physical
address space. Each agent is connected to the manager via TCP/IP.

The manager consists of two cooperative modules: the metadata manager
and the SAN monitor. The metadata manager organizes virtualization meta-
data using a simple 3-layered model separating physical volumes, volume groups
and logical volumes [3]. Logical volumes may be allocated to hosts with access
permissions. Information about the state of the SAN is collected by the SAN

SANData
Stream

Control Stream

Linux Agent

SAN
Monitor

Manager

Metadata
Manager

Solaris Agent

loadconf

Mapper

Windows Agent

Batman

Storage Subsystem

.conf loadconf .conf loadconf .conf

Storage Subsystem

Mapper Batman Mapper Batman

 Mapper Batman

Fig. 1. Architecture of the MagicStore system

MagicStore: A New Out-of-Band Virtualization System 381

Monitor. In addition, the manager enables the applications on itself to access
any logical volume by loading the agent on the corresponding platform.

The agent consists of the mapper in the kernel space and the loadconf utility
and a configuration file in the user space. The mapper is a light-weight driver
residing between the file system driver and the disk driver. When the mapper
is loaded, it creates the batman, a kernel thread which receives virtualization
instructions from the manager and executes them. The mapper maps the I/O
requests sent to logical volumes to the corresponding physical volumes. The
loadconf utility is used to ask the mapper to reload the configuration information
from the configuration file.

The mapping mode for each logical volume can be alternated between the
buffer mode and the non-buffer mode. The former can eliminate the overhead of
the network communications for sending frequent mapping requests to the man-
ager. The latter is convenient for online updating of the mapping information.

3 Mapping Management Based on a Sliding Window

To enhance the I/O performance and storage capacity of a system, users often
have a reasonable need for increasing the number of components in a striped vol-
ume online. It is necessary for the data on the striped volume to be redistributed
across the old and new volume components.

The address mapping can be expressed through the mapping function [3,4,5]
and the mapping table [1,6] traditionally. The mapping table makes it possible
to handle the data redistribution and normal I/O operations at the same time
because it can keep track of the movement of data. However, the mapping ta-
ble occupies a very large space. The transfer and storage of a large amount of
mapping information puts tremendous pressure on both the network and the
memory, and further impairs the scalability of the whole system.

In contrast to the mapping table, the mapping function which only stores its
own function eliminates the transfer and storage of a large amount of mapping
information. In this technique, unfortunately, the I/O operation occurring during
the data redistribution can not find the correct location of relevant data because
the data can exist on the original or new location.

We propose a new solution for managing mapping information. The key idea
behind the solution is to introduce the concept of a sliding window into the
mapping function. When the data redistribution is not needed, our solution is
equal to the mapping function. A sliding window is introduced when the data
needs to be redistributed.

Figure 2 illustrates how the metadata is updated when the components in a
striped volume are multiplied from 2 to 3. The sliding window is a quite small
mapping table which describes the mapping information of a continuous segment
of the striped volume. At any time, only data within the range of the sliding
window is redistributed. The normal I/O requests to the logical address before
the sliding window are mapped through the original function; those sent to the
address after the sliding window are mapped through the new function, and

382 G. Zhang et al.

original function

new function

sliding window

Fig. 2. The components in a striped volume are multiplied from 2 to 3

those to the address in the range of the sliding window are mapped through
the sliding window. After all the data in the sliding window are moved, the
window slides ahead by one window width. The data redistribution of the whole
volume is completed when the sliding window reaches the end of the original
striped volume. From then on, the address mapping of the whole volume is done
through the new mapping function.

Introducing the concept of a sliding window enables online redistribution of
the data on logical volumes. Additionally, the fact that the size of the sliding
window is small and independent of the size of the logical volume contributes to
the high performance and scalability of the whole system.

4 Strategies for Persistent Consistency

To enable the out-of-band virtualization system to survive across panics and
power failures, virtualization metadata has to be both available and consistent
when the system reboots. When the mapping information of a logical volume
is modified, the manager asks the mapper to switch the mapping mode of the
logical volume to the non-buffer mode. Thus, only the metadata consistency on
the manager side has to be ensured.

Whenever online multiplication of the components in a striped volume oc-
curs, we have to keep the sliding window and physical Extents consistent. This
consistency can be achieved by the method of ordered writes. The physical Ex-
tent is first copied to the new location and then the map block is written to the
disk. Even if the power fails in between, just an extent copy is wasted and the
consistency is not destroyed. The opposite order is problematic.

Another issue of persistent consistency is that some virtualization transac-
tions write multiple metadata blocks. MagicStore, by using REDO logging, en-
sures that the multiple writes to metadata blocks in single virtualization trans-
actions are atomic. In this case, intentions are logged first and the metadata
updates can be done. In case of a crash, when the manager comes up, it scans
through and replays the log. Thus the metadata remains consistent.

A new issue that REDO logging brings is that, in case of a power crash
while writing to the log, we must be able to detect that writing to the log is
not complete. We propose a new log format, with which MagicStore can detect
whether writing to the log is complete by checking the log integrity.

MagicStore: A New Out-of-Band Virtualization System 383

Transaction log

seq

size

-1

data

seq-1

data

...

...

Log data

...

...

...

...

Start signature End signature

Fig. 3. The new design of the log format

Our new design of the log format is shown in Figure 3. It uses two special
signatures to label the beginning and end of the log respectively. The sequence
number fields of the start and end signatures store the sequence number of the
transaction log, while that of the log data is set to the invalid sequence number
value -1. The size of the whole log is recorded at the end of the start signature.
This design eliminates the need for scanning through the whole transaction log
to find the end signature because the size of the log has been introduced. In
addition, there is no possibility of mistaking the old metadata or end signature
for the current end signature since the values in their sequence number fields
are different.

5 Experiments

The manager was implemented in the user space on the Linux platform. The
agent software were implemented on the Windows, Solaris and Linux platforms.
In this section, we compare the performance of the linear, striped and mirrored
volumes managed by MagicStore with that of the plain volumes managed by the
original operating systems.

5.1 Experimental Setup

The Solaris agent was installed on a two-way 300 MHz UltraSPARC-IIi machine
with 256 MB of memory and an Emulex LP9802 HBA card running SunOS
Release 5.10 Version. Each other subsystem of MagicStore was installed on a
two-way 2.4 GHz Intel Xeon machine with 1 GB of memory and an Emulex
LP982 HBA card running Linux kernel v.2.4.16 of RedHat 9 distribution or
Windows Server 2003. The file systems used were NTFS, UFS and EXT2 re-
spectively. Via a Brocade Silk Worm 3800 fibre channel switch, these machines
were connected with an FC disk array controlling five 146 GB Seagate Cheetah
10K disks.

We configured IOmeter[7] to generate the representative workloads, and all
of them consisted of 20% writes and 80% reads since Vogels found that 79% of
accesses to files were read only [8]. All workloads used random addresses with
transfer request size doubled from 8 KB to 4096 KB.

384 G. Zhang et al.

8 16 32 64 128 256 512 1024 2048 4096
-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Transfer Request Size (KB)

 Windows

 Solaris

 Linux

(a) Linear Volumes

8 16 32 64 128 256 512 1024 2048 4096
0

20

40

60

80

100

120

140

160

180

200

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Transfer Request Size (KB)

 Windows

 Linux
(b) Striped Volumes

8 16 32 64 128 256 512 1024 2048 4096
-10

0

10

20

30

40

50

60

70

80

90
N

or
m

al
iz

ed
 P

er
fo

rm
an

ce

Transfer Request Size (KB)

 Windows

 Linux
(c) Mirrored Volumes

Fig. 4. The Performance of the MagicStore system

5.2 Results

We first measured the I/O throughput (MB/s) of each logical volume x managed
by MagicStore with different transfer request sizes. According to the following
equation, we got its corresponding normalized performance, where Thrput(plain)
denotes the I/O throughput of the plain volume, which resides on the same
platform with x, with the same transfer request size.

Norm Perfx =
Thrputx − Thrputplain

Thrputplain
∗ 100. (1)

Figure 4 shows a plot of the normalized performance of logical volumes ver-
sus the transfer request size. The minimum, maximum and average normalized
performances of linear volumes were respectively, -2.70, 1.10 and -0.29 on the
Windows platform, -1.27, 0.39 and -0.43 on the Solaris platform, -3.46, 0.64 and
-2.10 on the Linux platform.

All the striped volumes in the experiments were constructed of four FC disks
with a stripe width of 64 KB. The minimum, maximum and average normalized

MagicStore: A New Out-of-Band Virtualization System 385

performances of striped volumes were respectively 39.16, 194.81 and 103.89 on
the Windows platform, 21.94, 36.21 and 30.03 on the Linux platform.

In the experiments, all the mirrored volumes were constructed of two com-
ponents. Writes to mirrored volumes were initiated concurrently and reads were
alternated between the copies. The minimum, maximum and average normalized
performances of mirrored volumes were respectively, 14.47, 75.25 and 40.11 on
the Windows platform, -4.16, 2.46 and -0.98 on the Linux platform.

6 Related Works

In recent years, considerable attention has been paid to the storage virtualiza-
tion systems for SAN environments. Some of them, such as the Pool Driver [4],
CLVM[5] and the SANtopia volume manager[1], employ symmetric architecture.
This means that they only apply to clusters running a single operating system.

There are also some systems which use asymmetric architecture. However,
they all have some limitations. For example, OpenView[9] only applies to the
specified HBA card and driver because its agent is implemented on the HBA
driver. When the SANfs-VM[6] or V:drive[2] is used, only Linux can be run on
the hosts.

Among all the above systems, only the SANtopia volume manager supports
online multiplication of the components in a striped volume. Unfortunately, the
mapping management using a mapping table restricts its scalability and makes
it inadequate for SAN environments with a large amount of storage. Jose and
Toni proposed an algorithm for increasing the capacity of RAID5 [10], which
has an easily controlled overhead. A similarity between the algorithm and our
solution is that the new disks are gradually available to serve requests during
the multiplication process.

Reference [11] presents a log format for detecting whether writing to the log
is complete. However, it has no capability to tell log data blocks from the trans-
action epilogue block belonging to the same transaction log by their transaction
ids and offsets. Furthermore, without introducing the size of the log, this solu-
tion makes it necessary to scan through the whole transaction log to find the
transaction epilogue. If some data block of the transaction log exactly matches
the current transaction epilogue, a checking mistake will appear.

7 Conclusions

MagicStore employs a new mapping management solution based on a sliding
window. This solution enables it to support online multiplication of the com-
ponents in a striped volume. Furthermore, it contributes to MagicStore’s high
scalability since it occupies a very small space. By employing a combination of
ordered writes, REDO logging and log integrity checking, MagicStore can survive
across panics and power failures robustly. Moreover, a new log format effectively
supports log integrity checking. In the representative experiments, MagicStore
demonstrated its ability to provide high performance.

386 G. Zhang et al.

References

1. Chang-Soo Kim, Gyoung-Bae Kim, Bum-Joo Shin. Volume Management in SAN
Environ-ment. In: Proceedings of the 8th International Conference on Parallel and
Distributed Sys-tems, ICPADS 2001. 2001. pages 500-505.

2. A. Brinkmann, M. Heidebuer, F. Meyer auf der Heide, et al. V:Drive - Costs
and Benefits of an Out-of-Band Storage Virtualization System. In: Proceedings
of the 12th NASA God-dard, 21st IEEE Conference on Mass Storage Systems
and Technologies (MSST), pages 153-157, College Park, Maryland, USA, 13-16
Apr. 2004.

3. David Teigland, Heinz Mauelshagen. Volume Managers in Linux. In: Proceedings
of the 2001 USENIX Annual Technical Conference, pages 185-198, June 2001.

4. David Teignald. The Pool Driver: A Volume Driver for SANs, In Partial of Fulfill-
ment of the Requirements for the Degree of Master of Science, Oct 1999.

5. Heinz Mauelshagen. Linux Cluster Logical Volume Manager, In: Proceedings of
the 11th International Linux System Technology Conference. Erlangen, Germany.
Sept. 2004.

6. Seung-Ho Lim, Joo Young Hwang, Kyung Ho Kim, et al. Resource Volume Man-
agement for Shared File System in SAN Environment. In: Proceedings of the
16th International Con-ference on Parallel and Distributed Computing Systems
(PDCS), 2003.

7. Intel Corporation, Iometer, July, 2004. http://www.iometer.org.
8. W. Vogels. File system usage in Windows NT 4.0. In Proceedings of the 17th ACM

Sympo-sium on Operating Systems Principles, pages. 93-109, Dec. 1999.
9. Hewlett-Packard Development Company. HP OpenView Storage

Operations Manager v1.2. Sept. 2004. http://h18006.www1.hp.
com/products/quickspecs/11778 div/11778 div.html.

10. Jose Luis Gonzalez and Toni Cortes. Increasing the capacity of RAID5 by online
gradual assimilation. International Workshop on Storage Network Architecture and
Parallel I/Os. Antibes Juan-les-pins, France, September 30, 2004

11. Suresh B Siddha, K Gopinath. A Persistent Snapshot Device Driver for Linux. In:
Proceed-ings of 5th Annual Linux Showcase & Conference, 2001.

A Content Delivery Accelerator
in Data-Intensive Servers

Joon-Woo Cho, Hyun-Jin Choi, Seung-Ho Lim, and Kyu-Ho Park

Computer Engineering Research Laboratory, EECS,
Korea Advanced Institute of Science and Technology

{jwc, hjchoi, shlim}@core.kaist.ac.kr, kpark@ee.kaist.ac.kr

Abstract. The standard OS and server platform hardware have not
been optimized for applications that transfer large multimedia files, re-
sulting in poor server I/O performance. One source of the problem is
that several redundant copies are introduces when the data is transferred
from disks to a Network Interface Card. To solve the problem of redun-
dant copies, we propose a Contents Delivery Accelerator that accelerates
large file transfers by eliminating the redundant copies from disks to the
NIC. To eliminate the redundant copies, the CDA introduces a new func-
tion, called a logical direct link, which provides the shortest path from
the disks to the NIC. By using the shortest path, we can completely
eliminate the redundant copies, thereby improving the I/O performance
of server. The CDA architecture is a combined hardware-software ap-
proach. Thus, it comprises CDA hardware and a modified Linux kernel.
We implemented the current version of the CDA on a Linux 2.4.18 ker-
nel and an IXP1200 evaluation board. In the experiment, we compared
the logical-direct path with a redundant path. For the transfer of data
from disks to the NIC, our experimental results show that the average
transfer latency of a direct path is as much as 30 percent less than a
redundant path.

1 Introduction

Internet web servers deal with an enormous amount of multimedia data. This
work is highly time-consuming and can increase the response time of the server.
Consequently, clients that connect to the server might not get multimedia data
in time. When a multimedia server operates a general-purpose operating system
(OS) such as Unix and Linux, the multimedia data is often too large to be han-
dled effectively because those systems have not been optimized for multimedia
data.

There are two critical problems in conventional Web-servers that handle
streaming multimedia data. The first problem is that there are many redun-
dant data copies between the disks and the network interface card (NIC). These
redundant copies are due to the long data path and the modern OS architecture
that splits the OS space and the application space. Figure 1 shows the data flow
of this programming model. First, the CPU initiates the disk controller to get

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 387–395, 2005.
c© IFIP International Federation for Information Processing 2005

388 J.-W. Cho et al.

Local bus

PCI bus

Disk

Kernel layer

Application layer

�

�

�

Optimal data path

CPU

Main
memory

NIC

PCI
Bridge

External
network

Fig. 1. Data-transfer path in general-purpose system

the data fragment that we wish to send. The data fragment is delivered to the
main memory from the disks. The data in the main memory is then delivered to
the NIC. During this path, redundant copying occurs between the disks and the
NIC. Moreover, there is another redundant copy of the data, though it is not
shown in figure 1. The data delivered from the disk is located in the kernel-space
memory. The server application program then copies the data into the user-space
memory region. A similar operation is required at the downside data path from
the memory to the NIC. All these wasteful data flows are repeated until all the
data is delivered [1]. If a server working set is small, the problem we just de-
scribed is not critical because the operating system manages the buffer cache
so that data can be located in the cache area in advance and these data can
be directly delivered from the memory to the NIC rather than from the disks.
However, if the server working set is large, especially a multimedia streaming
server, these problems are critical.

Another problem is the TCP processing time. The processing of the TCP/IP
protocol is difficult. Consequently, if the CPU of a Web server processes the TCP
by itself, the CPU wastes many CPU clocks, and the response of the server there-
fore becomes slow. In a gigabit network, the problem is exacerbated [6]. Many
researchers and companies therefore suggest various TCP offloading techniques
to reduce the CPU overhead for processing the TCP packet. A well-known tech-
nique is to import TCP accelerating hardware such as a TCP offloading card
[2][3]. However, to support these mechanisms, a new interface is required between
the server application and the TCP offloading engine. This is critical problem
for the system compatibility.

To solve these problems which are described above, we now propose a new
architecture, which uses additional assisitant hardware Contents Delivery Ac-
celerator. When the CDA is inserted into a PCI slot, it functions and interacts
with the CPU to resolve the problems mentioned above. First, the CDA can
make a direct path between the disks and the NIC, and between the memory
and the NIC. By using this direct path, the CDA can eliminate the redundant
copy and transfer large amounts of multimedia data without interfacing with
the host CPU. Second, the CDA can manage the data cache for the hot data
or frequently accessed data. As a result, Servers can improve their throughput
and reduce the response time. Third, the CDA can offload the TCP job from
the host. The CDA relieves the host from that heavy work so that the host can

A Content Delivery Accelerator in Data-Intensive Servers 389

reduce the CPU overhead for the TCP packet processing and use the CPU for
other purposes. In our approach, the more important thing is that the CDA does
not harm Linux compatibility, obviating the need to modify current applications.
The CDA has this ability because we kept the Linux system call interface when
we modified the source codes of the host Linux kernel.

The organization of this paper is as follows. The next section covers related
works. In Section 3, we describe the architecture of the CDA, while in Section 4
we discuss how we implemented the CDA. In Section 5, we show how the CDA
performs. Finally, in Section 6, we make a comparison and offer our conclusions.

2 Related Works

There have been several works on eliminating the copy overhead and processing
overhead of data intensive servers. The general approach to solving the redundant
copy overhead involves optimizing the OS. To solve this problem, which is caused
by a layered approach, general OSs introduce an ’mmap’ and ’sendfile’ system
call. These system calls prevent one redundant copy between the OS and the
application program so that the server can use its resources more effectively [7][8].
The sendfile system call is used in the Apache Web server to deliver requested
data. Because this interface is only operated in the kernel-space region and sends
data directly using the kernel copy operation according to the Apache document,
the sendfile call enables Apache to deliver static content faster and with lower
CPU utilization [5]. Alternatively, to enhance the data transfer and to increase
the memory and cache efficiency, some OSs such as I/O Lite [11] unify the
buffer of many subsystems in the OS to reduce the redundant copies between
the subsystems. Moreover, someone has made an I/O-specific OS such as Hi-
Tactix [12].

By using the approach of existing software, we can eliminate the problem of
redundant copy in the main memory. However, the problem of producing redun-
dant copies outside the main memory still exists. With the help of improvements
to existing hardware techniques, many I/O-specific types of hardware have been
introduced to solve the problem of redundant copy. The Xiran [3] offers I/O-
specific hardware with a disk interface and a network interface. The two in-
terfaces are connected to each other by a direct path that sends data without
producing a redundant copy. However, to use this direct path, a new application
was made by SDK provided by the Xiran company. As a result, this method has
no software compatibility.

3 CDA Architecture

We suggest CDA architecture that uses the auxiliary hardware shown in
figure 2. This architecture is similar to existing system architecture so that it can
maintain its interface and compatibility. The purpose of the CDA is to improve
the I/O performance of the server by eliminating the redundant copy problem
and achieving zero copies between the disk and the NIC. To do this, the CDA

390 J.-W. Cho et al.

Local bus

PCI bus

Logical
direct-link

Disk

CPU
Main

memory
PCI

Bridge

CDA HW

External
network

(a) Logical Direct Link

PCI bus

CDA HW

Disk

Memory

Packet-processing
unit

NIC unit

Raw data

Header
External
network

(b) Network Packet Processing

Fig. 2. Proposed CDA Architecture

provides two functions: the logical direct link and network packet processing. To
provide these functions, the CDA is composed of CDA hardware and a modified
Linux kernel. The prototype of the CDA hardware is a kind of intelligent NIC.
It has many units. To use the CDA hardware in the Linux system, we modified
the Linux kernel, version 2.4.18. Specifically, we implemented a device driver for
the CDA hardware and modified the system call, the memory management and
the file system.

The logical direct link provides a zero-copy path between a disk and the CDA
hardware. This link can be made up through the address that redirects them
from the main memory of the host to the CDA memory region. Through this
link, we can directly copy the data from a disk, as shown in figure 2(a). By using
this, we can eliminate the redundant copy that occurs outside the main memory.

The copied data from a disk to the CDA hardware through the logical direct
link is raw data. This means that the data packets have no processing header
for the TCP or IP. As a result, data cannot be sent to an outside network. To
send that data, the raw data stored in the CDA memory must be processed to
get the network header shown in figure 2(b). The header is then packetized with
the raw data. After these operations, the network packet made at this packet is
sent to an outside network through the NIC unit similarly to an Ethernet card.

4 Implementation

We made the prototype of the CDA using Intel’s IXP1200 evaluation board [14].
The evaluation board has architecture that is similar to our proposed hardware.
By using this board, we checked the validity of the CDA architecture and, ac-
cordingly, the OS that we modified to fit with the CDA prototype. Because the
IXP evaluation board has no packet processing unit, it cannot convert raw data
into a network packet at the sending time. To solve this problem, we used a vir-
tual packet-processing method, as shown in figure 3(a). Before storing new raw
data, the CDA preprocesses the data to get the network header for the raw data
and it stores them together on the disk. At the transfer time, the CDA gets the
network header and the raw data from a disk. By using this method, the CDA
can send data without packet processing at the transfer time [13]. However, this
method only supports the UDP because the TCP does dynamic processing; for

A Content Delivery Accelerator in Data-Intensive Servers 391

Disk

IXP EB

Store

Send without
packet-processing

Header
pre-process

Raw data

Header External
network

(a) Virtual Packet Processing

Memory & file system

Interface

Application

Another OS components

User

OS

HWAnother HW
IXP EB

Firmware

CDA cache,
DMA

System call

Device
driver

(b) CDA module Design

Fig. 3. Virtual Packet Processing and CDA module Design

example, controlling the fragments and flow during the transfer. In implement-
ing the CDA mechanism, we considered conserving at the design stage Linux’s
I/O mechanisms such as page caching, reading ahead, and DMA, especially for
fast file I/O operations [1]. If the CDA could not maintain these mechanisms,
the I/O performance would be impaired. As a result, the CDA maintains these
mechanisms to achieve a good I/O performance for general cases and for large
cases. Figure 3(b) shows the CDA modules in the Linux OS. The inserted mod-
ules are the device driver of the IXP evaluation board, the CDA cache, the
DMA, the firmware of the IXP evaluation board and the modified system call.
We elaborate the implementation of the CDA module in detail.

Device Driver. To copy data from a disk to the memory of CDA hardware,
a kernel is required to directly access the memory of CDA hardware. The role
of the device driver, therefore, is to make a logical direct path that maps the
hardware components such as the memory and registers into the kernel space.
To do this function, Linux offers the following functions: pci read config dword
and ioremap no cache. A pseudo-code for using these functions is as follows:

pci_read_config_dword(&val);
bus address=val&MASK;
virtual address=ioremap_nocache(bus address);

After this operation has been completed, the kernel can transparently access
and use components of the IXP evaluation board through the virtual address
variable.

System Call. To send data to an outside network, we modified the sendfile
system call provided by Linux. This system call is suitable for the CDA because
it can explicitly send a file on a disk outside the network. In some cases, however,
applications use this system call to quickly copy data from a disk to the memory
of the host computer. We therefore modified this call to ensure it could be applied
to both cases without destroying the interface of the system call. First, we chose
one disk from among the many disks in the system to be the CDA’s own disk.
In that disk, we stored a file to be sent to an outside network. We also modified
the sendfile system call itself. When a file is called by the modified sendfile call,
the OS first checks where the requested file is located. If the file is not in the
CDA’s own disk, the OS calls the original function do generic file read to copy
the requested file to the memory of the host computer. Otherwise, the OS calls

392 J.-W. Cho et al.

the modified function cda do generic file read to directly copy the requested
file from the CDA’s own disk to the memory of the CDA hardware.

CDA Cache. With the help of the CDA cache, the data stored in the CDA
hardware memory can be reused without having to access the disk. The CDA
cache can therefore increase the overall I/O performance of the CDA. In this
section, we describe in detail how we implemented the CDA cache. The CDA
cache is based on the Linux page cache mechanism. Because the page cache uses
a hash algorithm for a fast search, the CDA cache uses the same algorithm. When
a file is requested by the sendfile call, the CDA first searches for the requested
data at the cache table in the CDA hardware. If there is no descriptor at the
cache table, the CDA calls the descriptor alloc function. This function allocates
a new descriptor for that file and inserts it into the cache table by calling the
add to cache table function. After this operation, the OS reads the requested file
from the disk and copies it into the memory of the CDA hardware. Finally, the
OS accesses the requested file at the memory of the CDA hardware. How the
CDA cache operates when data is cached in the memory of the IXP evaluation
board is described below. When the sendfile call requests data, the CDA also
searches for the requested data in the cache table of the CDA. In this case, the
CDA uses a page descriptor to confirm the existence of data in the memory of
the evaluation board. The CDA can therefore use data in the memory of the
evaluation board without having to access the disk.

DMA Operation. To transfer data quickly, Linux uses a DMA mechanism to
copy data between the memory and the I/O device. With DMA, the host CPU
can do other tasks and significantly reduce the bus transactions when transfer-
ring large amounts of data. The DMA controller does the DMA operation with
the aid of the bus address. The kernel, however, orders data to be copied from
the I/O device to the memory through a virtual address. A translation function
is therefore required to convert the virtual address to the bus address. When
the OS orders a file to be copied from the disk to the memory, it sends a vir-
tual address of the IXP memory to the DMA controller. The address translation
function in the DMA module intercepts a virtual address and converts it into a
bus address. It then sends the converted address to the DMA controller. Finally,
the DMA controller uses the bus address for the copy operation.

5 Experimental Results

The logical direct link offers a zero-copy mechanism between a disk and a network
interface. Using this mechanism, the amount of data on a PCI and a local bus
can be reduced to half. If we can measure how much the bus is used, we can easily
estimate the performance. However, there is no software tool or equipment for
measuring how much the bus is used. We used the CDA system to compare how
long it takes to transfer data between the logical direct path and the redundant
path in a conventional system. For the experiment, we connected two computers
via an Ethernet LAN.

A Content Delivery Accelerator in Data-Intensive Servers 393

0

200

400

600

800

1000

1 2 4 8 16

File size(MB)

T
im

e(
m

s)

Direct

Redundant

(a) Result for Exp 1

0

500

1000

1500

2000

2500

3000

1 2 4 8 16

File size(M B)

T
Im

e(
m

s)

Direct

Redundant

(b) Result for Exp 2

Fig. 4. Experimental Results for the data transfer using CDA

First, to determine the benefit of a direct path, we measured the data transfer-
time in the two types of system architecture, which compares the direct path
from a disk to the memory of the CDA hardware and the redundant path that
uses the system memory. We generated synthetic workloads that performed sev-
eral file transfer iterations. The workload applications generated file transfer
requests from the disk to the NIC, which models the file send mechanism in
multimedia servers. The variation in the size of the requested files ranged from
1 MB to 16 MB. Figure 4(a) shows the result of this experiment. For all file
sizes, the processing time was, on average, 30 percent less for the direct path
than for the redundant path. Moreover, the files were transferred more efficiently
for the direct path than for the conventional system. As the file size increases,
the transfer time is more significantly reduced than in the conventional method.
This result means that the direct path is more suitable for transferring the large
files of multimedia streaming servers. Next, we measured the total data transfer-
time from a disk to another computer by comparing direct path and redundant
path. In this experiment, we used the client-server model and we measured the
overall performance of the system with respect to data-intensive servers such as
multimedia systems. The workload of the experiment was the same as in the
first experiment. The files we used ranged in size from 1 MB to 16 MB. Figure
4(b) shows the result of this experiment. For all file sizes, the copy time at the
direct path was, on average, 10 percent less than at the redundant path. The
performance of this experiment was worse than the previous experiment because
of the IXP evaluation board, which makes a prototype of the CDA hardware.
Because the network system in the IXP evaluation board formed a bottleneck,
this experiment showed less improvement than the previous experiment. In the
next experiment, we therefore present an analytical model that performs better
without the effect of a network system.

Because existing CDA hardware (which includes the IXP evaluation board)
has many limitations, the results of previous experiment are disappointing. Con-
sequently, in this section, we use an analytical model to predict the overall perfor-
mance of the CDA. We used the following variables to predict the performance:

1. Tdm, the duration of copying data from a disk to the memory of an IXP eval-
uation board
2. Tmn, the duration of sending data from the memory of an IXP evaluation
board to an outside network
3. Ttotal, the total transfer time from a disk to an outside network. For analysis

394 J.-W. Cho et al.

�

���

���

���

���

�

���

���

��� ��� ��� ��� ��� ��� 	�� ���
�� ����

������������������

�
��
�
�
�
�

���

���

Fig. 5. Result of Experimental Model

of the model, we used the results of a 16 MB file. At this size, the bandwidth of
the disk shows that 29 MB of data per second can be stably transferred from a
disk to the memory of an IXP evaluation board. Unlike existing hardware, our
hardware can support concurrent I/O activity. Only the larger absolute value
between Tdm and Tmn affects Ttotal. In this case, one operation can proceed
without waiting for another task to be completed, thereby ensuring that one
task’s operation time masks another task’s operation time. Figure 5 shows the
results of this prediction. When the speed of network hardware is greater than
300 Mbps, Tdm is larger than Tmn, indicating that only Tdm has any effect. Ac-
cordingly, when we use a disk that shows a speed of 29 MB/s when the speed of
the network hardware is greater than 300 Mbps, Ttotal is 0.54 s.

6 Conclusion

We propose the design and implementation of fast I/O architecture called the
CDA to solve the problem of redundant copies between the disk and the NIC. The
CDA comprises CDA hardware, which is a substitute for the NIC, and a modified
Linux kernel, which provides the CDA functions for the CDA hardware. Because
existing versions do not have their own CDA hardware, we made a prototype
of the CDA architecture using the Intel IXP1200 evaluation board, which has
similar functions. With these two components, the CDA provides a logical direct
link that can do zero copies between the disk and the NIC. Using this function,
data can be copied directly from a disk to the CDA hardware so that the server
can improve I/O efficiency when sending a large file. Furthermore, to achieve
I/O efficiency in general, as well as for large files, we considered using the fast
I/O mechanisms of Linux such as page caching, reading ahead, and DMA. In our
experiments, we verified that the CDA can transfer data faster than a general
OS and regular hardware.

To take full advantage of the CDA, we need to use a fast network device such
as a gigabit Ethernet process or a simple network process. On the other hand,
because existing CDA hardware has no packet-processing unit, the existing CDA
uses virtual packet processing to store packets rather than raw data in the disk.
However, this method does not support the TCP. At present, only the UDP can
be used. Many Internet applications use the TCP to guarantee the reliability of
data transfers. For quick processing of the TCP, the packet processing unit must
be added [9][10].

A Content Delivery Accelerator in Data-Intensive Servers 395

References

1. Daniel P. Bovet, and Marco Cesati, Understating the Linux Kernel, OReilly, 2001.
2. Alacritech, Inc. Delivering High-Performance Stroage Networking, white paper,

2001.
3. Xiran, A Division of SimpleTech Inc, http://www.xiran.com
4. Soam Acharya and Brian Smith, “MiddleMan: A Video Caching Proxy Server”,

10th International workshop on Network and Operating Systems support for digital
audio and video, 2000.

5. Apache web document, http://httpd.apache.org/docs-2.0/misc/perf-tuning.html.
6. Evangelos P. Markatos, “Speeding up TCP/IP: Faster Processors are not Enough”,

21st IEEE International Performance, Computing, and Communication Confer-
ence, 2001.

7. Dragan Stancevic, “Zero Copy I: User-Mode Perspective”, Linux Journal, 2003.
8. W. Richard Stevens, Advanced Programming in the UNIX Environment, Addison-

Wesley, 1992
9. Evangelos P. Markatos, “Speeding up TCP/IP: Faster Processors are not Enough”,

21st IEEE International Performance, Computing, and Communication Confer-
ence, 2001.

10. Eric Yeh, Herman Chao, Venu Mannem, Joe Gervais and Bradley Booth, Introduc-
tion to TCP/IP Offload Engine (TOE) Version 1.0, 10 gigabit ethernet alliance.

11. V.S. Pai, P. Druschel, and W. Zwaenepoel, “it IO-Lite : A unified I/O buffering
and caching system”, The 3rd USENIX Symposium on Operating Systems Design
and Implementation, New Orleans, USA, 1999

12. Damien Le Moal, Tadashi Takeuchi, Tadaki Bandoh. “Cost-Effective Streaming
Server Implementation Using Hi-Tactix””, ACM Multimedia 2002, pp. 382-391.

13. Halvorsen, P., Plagemann, T., Goebel, V. “Network Level Framing in INSTANCE”,
Proceedings of the 6th International Workshop on Multimedia Information Systems
2000 (MIS 2000), Chicago, IL, USA, October 2000, pp. 82-91.

14. Intel IXP1200 Network processor Hardware Reference Manual, Intel document
278303-008, Aug. 2001.

A Systematic Scheme to Resolve QoS
Dissatisfaction for Storage Cluster

Young Jin Nam1 and Chanik Park2

1 School of Computer and Information Technology,
Daegu University,

Kyungbuk, Republic of Korea
yjnam@daegu.ac.kr

2 Department of Computer Science and Engineering/PIRL,
Pohang University of Science and Technology,

Kyungbuk, Republic of Korea
cipark@postech.ac.kr

Abstract. This paper addresses the types of QoS dissatisfaction caused
by imbalance of the initial I/O workload pattern and storage performance
across multiple storage servers in a storage cluster. It next proposes a
systematic scheme to resolve the QoS problem that periodically monitors
the QoS satisfaction level, analyzes the causes of the QoS problem, and
performs data migration based on the analysis result. Finally, it verifies
the effectiveness of the proposed scheme under a simulation environment
under the different types of QoS dissatisfaction.

1 Introduction

A storage cluster typically consists of storage clients, virtual disks, and storage
servers attached to a high-speed SAN. Each storage client distributes and ac-
cesses its data across multiple storage servers through a storage virtualization
layer called a virtual disk. Storage clients represent various types of I/O applica-
tions that demand an underlying storage service, such as traditional file systems,
cluster/SAN file systems, database applications, etc. Virtual disks, each of which
is assigned to at least one storage client, represent logical volumes that map user
data onto physically dispersed storage servers. Storage servers represent SAN-
attached disk arrays or JBODs (Just Bunch of Disks). It mainly processes I/O
requests arrived from virtual disks in a certain manner.

Large-scale storage systems like a storage cluster increase the chances that
storage clients (or virtual disks) share the same storage server. Each storage
client may require a different storage service, called storage Quality of Service
(QoS); that is, each storage client requires receiving a guaranteed storage ser-
vice, independently of the status of the I/O services in other storage clients.
Unfortunately, the storage itself does not contain any feature of providing the
storage QoS. Embedding QoS feature into a storage system needs to define stor-
age QoS specifications [1], design a storage server to meet a given storage QoS
specifications (requirements) [2,3], and enforce the storage QoS requirements for

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 396–404, 2005.
c© IFIP International Federation for Information Processing 2005

A Systematic Scheme to Resolve QoS Dissatisfaction for Storage Cluster 397

each I/O request from different virtual disks (storage clients) [4]. Huang in [2]
has proposed a QoS architecture called StoneHenge for a storage cluster that
assures given QoS requirements of I/O performance.

The initial I/O workload patterns and storage performance that have been
used for designing virtual disks are subject to change due to numerous rea-
sons [7]. This implies that a virtual disk may not meet its QoS requirement due
to the changes in the initial storage design information. In the case of a single
storage server, the types of the changes include the increased I/O traffic and the
degraded storage performance. The changes are typically resolved by redesigning
the virtual disk with the changed information. The previous automatic storage
design tools of Minerva [1] and Hippodrome [3] employed an iterative design loop
to resolve QoS dissatisfaction on a single storage server. In the case of the stor-
age cluster, the design tools need to be combined with the virtual disk mapping
schemes proposed in StoneHenge [2].

Under a storage cluster, extra types of changes exist that are related to imbal-
ance of the initial I/O workload and storage performance across storage servers
that comprise a virtual disk. The imbalance of the initial I/O workloads is closely
related to the variations of I/O traffic intensity across the storage servers within
a virtual disk. Investigating an actual I/O workload gathered from cello [5]
during 04/18–04/21 revealed that the storage system might experience QoS de-
terioration during 04/19–04/20 with the striped mapping and during the entire
days with the linear mapping, assuming that the I/O requests are initially dis-
tributed over the storage servers in a uniform manner. Next, the imbalance of
the storage performance can occur due to many reasons, such as loss of internal
disks within a storage server, application re-installation or copy/remove oper-
ations, changes in I/O traffic of competing virtual disks that share the same
storage server, etc.

2 The Proposed Scheme

The proposed scheme consists of a (storage) cluster-wide QoS monitor, a data
migration planner, and data migration agents. Let us start by defining a QoS
requirement.

QoS Requirement. The QoS requirement from a virtual disk i (briefly V Di),
denoted by Qi can be represented as Qi = (SZi, IOPStarg

i , RT targ
i), where SZi

represents an average I/O request size, IOPStarg
i represents a target IOPS, and

RT targ
i represents a target response time. Under a storage cluster environment,

multiple storage servers should assure a given QoS requirement of Qi from a
virtual disk in a cooperative manner. If each storage server of a virtual disk is
designed to guarantee the given QoS requirement, the virtual disk can meet the
given QoS requirement with an extremely high probability. However, this design
approach suffers from an excessive use of storage resources. A better design ap-
proach demands to have greater knowledge of I/O workload patterns and storage
performance over the virtual disk.As a result, it divides the servicing of the tar-

398 Y.J. Nam and C. Park

Cold Warm Hot

Yellow

Green

Red z11 z12 z13

z21 z22 z23

z31 z32 z33

RT

IOPS

QoS requirement (iops, rt)

(a) GPAM-stat chart

VD(1,1) VD(1,2)

{100IOPS, 10msec}{100IOPS, 10msec}

{30IOPS, 3msec} {150IOPS, 15msec}

move 50 IOPS

VD1

(b) MIB

VD(2,1) VD(2,2)

{100IOPS, 10msec} {100IOPS, 10msec}

{100IOPS, 5msec} {100IOPS, 15msec}

move 34 IOPS

VD2

(c) ACI

Fig. 1. The GPAM-state chart, and the examples of the minimal IOPS balancing(MIB)

and the actual current IOPS normalized to the actual storage performance(ACI)

get IOPS into each storage server, thereby reducing the storage resources in use.
Note, however, that the given target response time should remain unchanged
at each storage server. Assuming that V Di with Qi distributes its data across
N homogeneous storage servers, the given QoS requirement at each storage N
storage servers, the given QoS requirement at each storage server j denoted by
Q(i,j) is written as Q(i,j) = (SZ(i,j), IOPStarg

(i,j) , RT targ
(i,j)), where 1 ≤ j ≤ N . In

addition, SZ(i,j), IOPStarg
(i,j) , and RT targ

(i,j)) should meet the following relation-

ships: SZ(i,j) = SZi, IOPStarg
(i,j) ≤ IOPStarg

i , IOPStarg
i ≤ ∑N

j=1 IOPStarg
(i,j) ,

and RT targ
(i,j) = RT targ

i . In case that perfectly balanced I/O workloads are issued
to the storage servers within a virtual disk, we can minimize the usage of the
storage resources for V Di [2], where IOPStarg

i =
∑N

j=1 IOPStarg
(i,j) .

The Cluster-Wide QoS Monitor. The cluster-wide QoS monitor (briefly QoS
monitor) inspects the level of QoS satisfaction for each virtual disk and deter-
mines its state via a hierarchical QoS monitoring tree. The monitoring process is
performed on a chunk of contiguous blocks at each storage server called BPAM.
The BPAM stands for a base unit for performance monitoring and migration.
The number of blocks under the control of each BPAM (shortly BPAM size)
should not be too small to cause maintenance overhead and should not be too
large to make it difficult to identify the cause of QoS dissatisfaction problem.
Each BPAM includes the information of a virtual disk ID, a storage server ID,
a start block address, a BPAM size, I/O requests per second (IOPS), response
times (RT), and the target RT miss ratio (QoS requirement). The QoS monitor
summarizes all the BPAMs of the same sub-virtual disk into the GPAM(Group
of BPAMs) structure. Recall that a virtual disk consists of a set of sub-virtual
disks.

A GPAM state can be classified into one of the nine combinations of the RT
state and the IOPS state called GPAM-state chart, as shown in Figure 1(a).
The RT states and IOPS states can be defined as follows. To begin, denote
with GPAM(i,j) the j-th GPAM of V Di. The QoS requirement of GPAM(i,j) is
represented by Q(i,j) = (SZtarg

(i,j) , IOPStarg
(i,j) , RT targ

(i,j)). Three RT states exist in the

A Systematic Scheme to Resolve QoS Dissatisfaction for Storage Cluster 399

GPAM that include red, green, and yellow. The state of red represents that the
current target RT miss ratio > MRH , green represents that MRL < the current
target RT miss ratio ≤ MRH , and yellow represents that the current target
RT miss ratio ≤ MRL. The parameters of MRH and MRL can be configured,
such that 0 ≤ MRL ≤ MRH ≤ 1.0. In addition, three IOPS states exist in
the GPAM that include cold, warm, and hot. The state of cold means that
0 ≤ IOPScur

(i,j) ≤ αcIOPStarg
(i,j) , warm means that αcIOPStarg

(i,j) < IOPScur
(i,j) ≤

IOPStarg
(i,j) , and hot means that IOPScur

(i,j) > IOPStarg
(i,j) . The parameter of αc can

be configured in the range of (0, 1.0) depending on the current administration
policy. Denote each cell (or combination) by an indexed zone zij , where i and
j respectively represent a RT state and a IOPS state. In addition, we define
ZNE

i and ZE
i as a set of non-empty zones and a set of empty zones for V Di,

respectively.
A virtual disk state can be determined based on the distribution of the

GPAM states upon the GPAM-state chart. A virtual disk has more than one
GPAM states, as it distributes data over multiple storage servers. Let us define
three virtual disk states depending on whether a virtual disk satisfies a given
QoS requirement and whether its storage resources are under-provisioned. The
well designed VD state represents that the virtual disk meets the given QoS
requirement well with sufficient storage resources. The imp designed VD state
represents that the virtual disk does not guarantee the given QoS requirement
even though it has sufficient storage resources. This undesirable VD state is
attributed mainly by imbalance of the I/O workload pattern and storage per-
formance with respect to their initial configurations. Finally, the und designed
VD state represents that the virtual disk does not guarantee the given QoS
requirement because storage resources are provisioned insufficiently to the vir-
tual disk. To resolve this QoS dissatisfaction, the virtual disk needs to allocate
more storage resources if allowed. Next, the relationships between the virtual
disk states and the distribution of the GPAM states can be given as follows:
the well designed VD includes {z11, z12, z13} ⊂ ZE

i , or {z11, z12, z31} ⊂ ZE
i

AND {z13} ⊂ ZNE
i , the imp designed VD includes {z11, z12} ⊂ ZE

i AND
{z13, z31} ⊂ ZNE

i , {z11, z32(33)} ⊂ ZNE
i , or {z12, z32(33)} ⊂ ZNE

i , and the
und designed VD includes {z11} ⊂ ZNE

i AND {z32, z33} ⊂ ZE
i , or {z12} ⊂ ZNE

i

AND {z32, z33} ⊂ ZE
i . The well designed state of V Di represents the condi-

tion that the current target RT miss ratio is not greater than its higher bound
of MRH for each G(i, j) with IOPScur

(i,j) ≤ IOPS(i, j)targ. The imp designed
state represents one of the following three conditions. The first condition is that
a GPAM has a higher target RT miss ratio than MRH with a higher average
IOPS than its target IOPS, while another GPAM has a lower target RT miss
ratio than MRL with a lower average IOPS. It occurs if the initial I/O work-
load pattern becomes unbalanced, where I/O requests from the virtual disk are
no longer distributed over its storage servers according to its target IOPS. The
second and third conditions correspond to the situation where a GPAM has a
higher target RT miss ratio than MRH even with a lower IOPS, while another
GPAM has a lower target RT miss ratio than MRL with a target or even higher

400 Y.J. Nam and C. Park

IOPS. These cases occur when the initial performance of the storage servers be-
comes unbalanced. The und designed state corresponds to the condition where
no GPAM exists with a lower target RT miss ratio with a target or higher IOPS,
whereas a GPAM has a higher target RT miss ratio with a lower IOPS. Thus,
the data migration for this state occurs only when the virtual disk is allowed to
use extra storage resources for future extension.

The Data Migration Planner. Previous research mainly stressed the problem of
scheduling each migration from its original location to its new one to minimize
the total migration time [7]. Little research exist to create an efficient data mi-
gration plan, for example, to maximize the number of clients that can be served
by the parallel disks or to automatically improve storage I/O performance [8].
However, no such previous research has directly addressed and handled the QoS
dissatisfaction problem under a storage cluster.

Let us start by defining a few notations. Denote with GPAM(i,j) the j-th
GPAM for V Di, where 1 ≤ j ≤ N . Denote with BPAM(i,j,k) the k-th BPAM
for GPAMi,j . Denote with IOPScur

(i,j,k) the current IOPS for BPAM(i,j,k). De-
note with IOPStarg

(i,j) and IOPScur
(i,j) respectively the target IOPS for GPAM(i,j)

and the current IOPS for GPAM(i,j), i.e., the weighted-average IOPS of all
IOPScur

(i,j,k). Assume that V Di distributes its data across N storage servers.
Denote with V D(i,j) the j-th sub-virtual disk of V Di. Planning an optimal
data migration is infeasible in practice, because future I/O access patterns are
not foreseeable. Thus, it leads us to devise a heuristic algorithm based on past
cluster-wide QoS monitoring information. Our proposed data migration planner
operates based on the two key ideas, the “minimal IOPS balancing(MIB)” and
the “actual current IOPS normalized to the actual storage performance(ACI).”
Figure 1(b) shows an example for the MIB, where V D1 with Q1 = (200IOPS,
10msec) is initially mapped onto the two homogeneous storage servers, V D(1,1)

with Q(1,1) = (100IOPS, 10msec) and V D(1,2) with Q(1,2) = (100IOPS, 10msec).
The QoS monitor detects GPAM(1,1) = (30IOPS, 3msec) with no target RT

miss ratio and GPAM(1,2) = (150IOPS, 15msec) with 0.5 target RT miss ratio,
where MRH = 0.3. Next, it determines that the GPAM(1,1) state is in z31 and
the GPAM(1,2) state is in z13 and concludes that V D1 is in the imp designed
state. Finally, according to the MIB, data blocks (BPAMs) equivalent to 50
IOPS of V D(1,2) migrates to V D(1,1), instead of 70 IOPS. Notice that the MIB
minimally balances the IOPS across the storage servers to resolve the current
QoS dissatisfaction. Figure 1(c) shows an example of the ACI, where V D2 is
configured exactly the same as V D1. The QoS monitor detects that GPAM(2,1)

= (100IOPS, 5msec) with zero target RT miss ratio and GPAM(2,2) = (100IOPS,
15msec) with 0.3 target RT miss ratio. The QoS monitor determines that the
V D2 is in the imp designed state due to changes in the underlying storage
performance. The actual target IOPS denoted by ˆIOPS

targ

(i,j) for V D(i,j) can be
computed from its target IOPS as follows:

ˆIOPS
targ

(i,j) = IOPStarg
(i,j)(RT targ

(i,j)/RT cur
(i,j)). (1)

A Systematic Scheme to Resolve QoS Dissatisfaction for Storage Cluster 401

Then, the actual target IOPS and RT for the storage servers become (200IOPS,
10msec) and (66IOPS, 10msec), respectively. Based on these, V D(2,2) migrates
34 IOPS to V D(2,1). For a given P IOPS to migrate from V D(i,j) to V D(i,k),
we choose the first M BPAMs with the highest average IOPS, such that the
sum of their average IOPS is equal to P IOPS. This design approach works
well when the I/O workload pattern has a high spatial locality. Otherwise, more
than one data migration is likely to occur by detecting an unbalanced condition
repeatedly.

The imp designed state can be caused by the changes in either the initial
I/O workload pattern or the initial storage performance. The imp designed
state with the changed initial I/O workload pattern corresponds to one of two
cases for the improperly-designed virtual disk V Di, where {z11, z12} ⊂ ZE

i and
{z13, z31(32)} ⊂ ZNE

i . For this, the minimal amount of IOPS migrates from
z13 to z31(32), resultingly the actual current IOPS of GPAM in z13 does not
exceed its target IOPS. The imp designed state with the changed initial storage
performance corresponds to the following distribution of the GPAM states, where
{z11, z32(33)} ⊂ ZNE

i or {z12, z32(33)} ⊂ ZNE
i . We can compute an actual target

IOPS based on the the observed RT and IOPS from Equation (1) that can meet
the given target RT for V Di. Next, we transform the observed IOPS into its
actual current IOPS denoted by ˆIOPS

cur

(i,j) on the basis of the actual target
IOPS as follows:

ˆIOPS
cur

(i,j) = IOPStarg
(i,j) + (IOPScur

(i,j) − ˆIOPS
targ

(i,j)). (2)

The migration planner first computes an actual target IOPS for each storage
server, according to Equation (1). The migration planner calculates the actual
current IOPS at each GPAM, according to Equation (2). To sum, a minimal
amount of IOPS needs to be moved from z11 (or z12) to z32 and z33, so that
the actual current IOPS of the GPAM in z11 (or z12) does not exceed its target
IOPS.

The under-designed virtual disk is mainly attributed to the lack of storage
resources to meet the given QoS requirement for the virtual disk. This virtual
disk state has a distribution of GPAM states that is similar to that of the second
case of improperly-designed virtual disks; that is, {z11} ⊂ ZNE

i and {z32, z33} ⊂
ZE

i , or {z12} ⊂ ZNE
i and {z32, z33} ⊂ ZE

i . While z11 or z12 has a GPAM,
no GPAMs exist that will process a part of I/O requests for GPAMs in z11 or
z12. As a result, we need to migrate the IOPS in z11 or z12 to a new storage
server that can be additionally used by the virtual disk. Unless the extra storage
server is available, no migration plan will be made. Instead, static virtual disk
reconfiguration will deal with this problem. Hereafter, we assume that at least a
single new storage server is available to each virtual disk. Given multiple extra
storage servers, we need to decide which storage server will be used for the virtual
disk. The proposed scheme selects a storage server, where the ratio of the current
IOPS to the target IOPS is the lowest among others. More detailed descriptions
for each algorithm can be found in [4].

402 Y.J. Nam and C. Park

Data Migration Agents and Operational Parameters. A data migration plan is
sent to the associated QoS servers to initiate actual data migration among the
storage servers. Then, a data migration agent at each storage sever is in charge
of executing the data migration plan. The proposed scheme can be configured
by a set of policy-based operational parameters that include a QoS monitoring
interval (TI), QoS satisfaction level for each sub-virtual disk, V D(i,j) (MRH),
sensitivity for determining a virtual disk state (Tm, Um), BPAM size (|BPAM |),
and marginal storage capacity ratio(MSR). Given (Tm, Um), for example, a
virtual disk can be determined as an improperly-designed VD state only if the
QoS monitor detects the improperly-designed VD state Um times over past Im

monitoring intervals, i.e., an observation time window of Tm = ImTI seconds.
Configuring MSR = 100% implies that each sub-virtual disk reserves 100% of
its storage capacity for data migration.

3 Performance Evaluations

Performance evaluations have been conducted on a storage simulator that con-
sists of an I/O workload generator, a set of virtual disks (storage clients), a
set of storage servers. The operational parameters are configured as TI = 5sec,
MRH = 0.3, MRL = 0.1, αc = 0.3, Um = 1, Tm = 5, |BPAM | = 2048blocks,
and MSR = 100%. The two performance metrics include the average response
time and the target RT miss ratio for the I/O workload from each virtual disk.
In our simulation, two virtual disks of V D1 and V D2 are mapped onto the stor-
age cluster of SS1 and SS2, implying that each storage server is shared by the
two virtual disks. The QoS the requirements of the virtual disks are Q1=(4KB,
90IOPS, 70msec) and Q2=(4KB, 90IOPS, 100msec). Thus, the QoS require-
ments of V D(i,j) for V D1 and V D2 are are defined as follows: Q(1,1)= (4KB,
45 IOPS, 70msec), Q(1,2)= (4KB, 45 IOPS, 70msec), Q(2,1)= (4KB, 45 IOPS,
100msec), and Q(2,2)= (4KB, 45 IOPS, 100msec). Our simulation employs four
different types of QoS dissatisfaction that include WSimp1

1 , WSimp1
2 , WSimp2

1 ,
and WSund

1 . The types of WSimp1
1 and WSimp1

2 represent that the most of
I/O requests from V D2 are issued to the SS2; that is, WSimp1

1 and WSimp1
2

respectively send 100% and 90% of all the I/O requests of the V D2 to SS2.
In the case of WSimp2

1 , the performance of SS2 decreases, because seek times
and rotational delays for processing I/O requests from V D1 and V D2 become
higher. Our simulator emulates storage performance degradation by adjusting
the equations and parameters to compute a seek time and a rotational delay
as follows: the long and short seek times of V D2 are respectively changed to
9.0 + 0.008d and 4.24 + 0.4sqrt(d) from the initial equations [6] of 8.0 + 0.008d
and 3.24 + 0.4sqrt(d), and the average rotational delay is from 2.99msec to
4.28msec. In the case of WSund

1 , it is assumed that the V D1 is initially mapped
onto SS1 and SS2, and the V D2 is initially mapped onto SS2 and SS3. Then,
the response times of I/O requests at SS3 will obviously become higher than its
target response time with a high target RT miss ratio. By contrast, the target
RT miss ratio at SS2 remains slightly high, because the heavier I/O workload

A Systematic Scheme to Resolve QoS Dissatisfaction for Storage Cluster 403

Table 1. Result of RT variations of V D1 and V D2 with the four different types of

QoS dissatisfaction: WSimp1
1 , WSimp1

2 , WSimp2
1 , and WSund

1

Avg. IOPS Avg. resp. time Target resp. time # of Tsettle

(IOPS) (msec) miss ratio mig. (sec)
no-mig prop no-mig prop no-mig prop BPAMs

WSimp1
1 V D1 85.9 88.7 53.7 23.8 0.25 0.01 14 74.2

V D2 74.3 87.6 227 31.3 0.94 0.03 28 311.8

WSimp1
2 V D1 87.0 88.2 43.5 23.1 0.16 0.00 6 126.4

V D2 80.4 87.5 128 37.7 0.59 0.02 14 72.4

WSimp2
1 V D1 85.9 87.6 56.5 38.0 0.25 0.06 12 636.5

V D2 85.7 86.9 57.0 37.5 0.11 0.00 13 26.3

WSund
1 V D1 122.8 121.9 25.6 31.2 0.01 0.03 n/a n/a

V D2 81.6 86.9 104.7 40.4 0.43 0.02 37 631.7

is given to SS2 from V D1. As a result, it needs to migrate an amount of data
blocks to a new storage server that is allowed for extra use. In our experiment,
the data migration planner will send data blocks from SS3 to SS1. Assuming
that the extra storage resource for V D2 is equivalent to the storage resource
allocated to V D(2,1), the newly allocated storage server is configured with the
same QoS requirement as in the other storage servers for the virtual disk. Table 1
summarizes the results of the experiments for the four types of QoS dissatisfac-
tion. We add extra performance metrics of the number of migrated BPAMs and
Tsettle, where Tsettle represents the elapsed time to complete data migration. In
WSimp1

1 , the proposed scheme(prop) can guarantee the given QoS requirements
with almost 100% for V D1 and V D2 even in the presence of the unbalanced
I/O workload pattern by migrating 14 BPAMs of V D1 and 28 BPAMs of V D2

from SS2 to SS1. While the settling time (Tsettle) of V D2 is observed to be
311.8 seconds, the QoS dissatisfaction problem is actually resolved in about 34.2
seconds. By contrast, V D2 violates its target response time mostly without data
migration(no-mig), and V D1 has also a high target RT miss ratio. We have
a similar result in WSimp1

2 . However, notice that the number of the migrated
BPAMs is slightly smaller, compared with WSimp1

1 . In WSimp2
1 , 12 BPAMs of

V D1 and 13 BPAMs of V D2 migrate from SS2 to SS1 by the migration planner
and agents. In WSund

1 , the target RT miss ratio of V D2 decreases to 0.02 from
0.43 by migrating 37 BPAMs for V D2 among different storage servers.

4 Concluding Remarks

This paper addressed the types of QoS dissatisfaction caused by the imbalance of
the initial I/O workload pattern and storage performance under a storage clus-
ter environment and the proposed a systematic scheme to resolve the problem.
The proposed scheme introduced a base unit of storage called BPAM for efficient
performance monitoring and data migration processes. The proposed scheme de-
tects any problem of QoS dissatisfaction for each virtual disk and then identifies

404 Y.J. Nam and C. Park

the cause of the problem in a systematic manner. Subsequently, it resolves the
problem by minimally balancing actual current IOPS normalized to the actual
storage performance across multiple storage servers within a virtual disk. For
this, the proposed scheme provides a cluster-wide QoS monitoring scheme for
each virtual disk, a data migration planner to change improperly-designed and
under-designed virtual disks into well-designed ones, and data migration agents
at storage servers to perform actual data migration between storage servers. The
simulation results conducted in our storage cluster simulator revealed that the
proposed data migration scheme can effectively handle any QoS dissatisfaction
in the presence of various changes in the initial I/O workload pattern and stor-
age performance. In future, we need to devise a more intelligent data migration
planner that concurrently takes into account the status of data migration in the
other virtual disks.

Acknowledgments

This research was supported by the Daegu University Research Grant,
No 20050346. The authors would like to thank the Ministry of Education of Ko-
rea for its support towards the Elec. and Computer Eng. Division at POSTECH
through the BK21 program. This research has also been supported in part by
HY-SDR IT Research Center, in part by the grant number R01-2003-000-10739-0
from the basic research program of the Korea Science and Engineering Founda-
tion, in part by the regional technology innovation program of the Korea Insti-
tute of Industrial Technology Evaluation and Planning, and in part by the next
generation PC program of the Korea ETRI.

References

1. G. Alvarez, et al., “Minerva: An automated resource provisioning tool for large-scale
storage systems,” ACM Transactions on Computer Systems, vol. 19, pp. 483–518,
November 2001.

2. L. Huang, “Stonehenge: A high performance virtualized network storage cluster with
QoS guarantees,” Tech. Rep., SUNY at Stony Brook, January 2002.

3. E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal, and A. Veitch, “Hippo-
drome: Running rings around storage administration,” in Proceedings of Conference
on File and Storage Technologies, January 2002.

4. Y. Nam, Dynamic Storage QoS Control for Storage Cluster and RAID Performance
Enhancement Techniques. Ph.D Dissertation, POSTECH, February 2004.

5. C. Ruemmler and J. Wilkes, “Unix disk access patters,” in Proceedings of Winter
USENIX, pp. 405–420, January 1993.

6. C. Ruemmler and J. Wilkes, “An introduction to disk drive modeling,” IEEE Com-
puter, vol. 27, pp. 17–29, March 1994.

7. Y. Kim, “Data migration to minimize the average completion time,” in Proceedings
of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, 2003.

8. F. Hidrobo and T. Cortes, “Automatic storage system based on automatic learning,”
in Proceedings of the International Conference on High-Performance Computing,
2004.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 405 – 408, 2005.
© IFIP International Federation for Information Processing 2005

Secure Anonymous Communication with Conditional
Traceability

Zhaofeng Ma 1,2, Xibin Zhao1,2, Guo Zhi1,2, Gu Ming2, and Jiaguang Sun 2

1 Department of Computer Science and Technology, Tsinghua University
2 School of Software, Tsinghua University

100084 Beijing, China
{mzf, zxb, guozhi, guming, sunjiaguang}@tsinghua.edu.cn

Abstract. A new anonymous secure communication protocol with conditional
traceability is proposed to provide personal anonymity and privacy protection,
in which a secure mapping function is introduced to provide anonymity and
personal information protection, when necessary, only authority principal part
can act as arbitrator for communication validation. The proposed protocol has 3
advantages: 1) mutual communication; 2) anonymity of communication.
3) conditional traceability.

1 Introduction

Information exchange and sharing are the basic target for communication network
including traditional connection-oriented computer network and modern wireless, in
which with the commercial development security became an important and permanent
issue were concerned much more, especially in E-business, electronic cash, electronic
election applications in real life. For the history reason that current IP-address-based
computer network communication and wireless communication are designed initially
for their communication and data exchange, which involved communication content,
communication address(such as destination and source IP address in computer com-
munication, SIM, ME,TMSI et al.), message header, control information, which are
close related to user identity or the location and topology of user's network, content-
based behavior analysis, usage pattern mining can be employed to deduce user’s
habit, preference easily. For the reason of fairness, privacy and legislation, user ano-
nymity becomes another important issues in security-related subjects.

In this paper, a generic and secure anonymous communication protocol was pro-
posed both for user privacy of computer-oriented communication and for wireless
phone communication, the protocol is conditional traceable under the control of inde-
pendent authoritative institute(IAI). Comparing with current approaches, the advan-
tage of our protocol is it is full privacy protection during the anonymous communica-
tion, even the administrator can not recover user’s privacy information, while when
necessary to recover the user’s identity its must work under the legislation authority,
while the system are efficient and effective for normal communication.

406 Z. Ma et al.

2 Related Work

Concern over user privacy is constantly mounting as the role of the communication
network.In 1983, Chaum D. proposed untraceable electronic mail[1], then in 1988, he
proposed unconditional sender and recipient untraceability approach for privacy pro-
tection[2]. Kesdogan D, proposed Location management strategies in mobile commu-
nication systems for privacy protection[3]. Reed M proosed onion routing as anony-
mous access method[4]. In fact, blind signature, fair blind signature, group signature,
group blind signature, zero-knowledge proof, undiable protocol, fairly good exchange
protocol, secret sharing, verifiable secret sharing are the most popular technologies
that can be employed to enhance privacy and anonymity[5-8]. Current methods for
privacy protection are mainly concerned on special applications, the approaches are
limited in practice.

The entire behavior of a user may be considered private. In mobile environments
we can identify four types of sensitive user information: (1)identity;(2)message con-
tents; (3)location (especially in million communication); (4)actions (content of navi-
gation). The level of protection of this information may also vary depending on the
trust the user has in various parts of the system, which can be classified as: (1)level-0:
no privacy; (1) level-1: hiding information from external attackers;(3) level-2: hiding
identity from foreign networks; (4)level-3: hiding the relationship between the user
and the home network; (5)level-4: hiding identities of home and foreign networks;(6)
level-5: hiding user behaviour from home authority. Personal identification includes:
(1) Legal name; (2) Locatability;(3)Traceable pseudonymity or pseudo-anonymity;(4)
Untraceable pseudonymity;(5) Pattern knowledge; (6)Social categorization;(7) Sym-
bols of eligibility/non-eligibility. There are 4 types anonymous communications on
the Internet: (1) Traceable anonymous communication;(2)Untraceable anonymous
communication; (3) Traceable pseudonymous communication;(4) Untraceable pseu-
donymity.

3 Secure Anonymity with Conditional Traceability

The infrastructure of current communication network is de factor traceable network,
which can be easily trace with the aid of special tools, such as IP-tracer tool, Hard-
ware-based location discovery in GPRS system. Thus in this paper we contribute to
conditional traceable anonymity in general communication system.

(I) System Preliminary

Param Expression
IAI Independent Authoritative Institute
U End User
CSC Commercial Service Center
Ek Encryption with Symetric Key k
Dk Decryption with Symetric Key k
EApk Encryption with Public Key pk ownered by A
DAsk Decryption with Secret Key sk ownered by A

 Secure Anonymous Communication with Conditional Traceability 407

Sig Signature of Message given
Ver Verification of Sig given
H Secure Hash function

 (II) Privacy-Enable Initialization

Step1. Independent Authoritative Institute IAI authorizes to Commercial Service
Center CSC the privacy-related but anonymous ID AID:

AID=ECSCPK(RID)

where || || , ;

|| || , .
addr addr mchn

No

IP MAC HID if Cmpt net
RID

UID Ph ISMI if Mobl net
=

Together, IAI creates secret key
IAIskK for transactional communication ses-

sion content signature, where Hash function H (.) may be employed fro ano-
nymity.

Step2. IAI releases AID to CSC in communication in secure channel:

IAI->CSC: AID’=
,

()
IAI CSCkE AID

(III) Privacy-Enable Communication

Step3 CSC secretly gets AID’ from IAI, then decrypt the AID’ to recover the AID:

CSC -> IAI: AID’=
,

(')
IAI CSCkD AID

Step4. Each end user Ui, Uj communication in a common secret way:

 Ui>Uj: C=
,
()

i jkE M , and Uj->Ui: M=
,

()
i jkD C

Step5. Under control of CSC, creates transactional session signature between Ui and
Uj under the signature key:

|| || || || , , ()
IAIContent i j start end Type Content SK ContentS AID AID T T S S Sig S=< > < >

where Scontent stands for session content, Sig. is the signature of the session
content Scontent.

 (IV) Conditional Trace for Illegitimate Communication Intervention

Step6. When necessary to intervene to validate the historical transaction session con-
tent, IAI acts as arbiter to resolve the dispute CSC sends the signature of ses-
sion between Ui and Uj to IAI:

 CSC -> IAI:
,' (, ())

IAI CSC IAIk Content SK ContentE S Sig S

Step7. IAI decrypts the message from CSC:

IAI ->CSC :
, ,' '((, ()))

IAI CSC IAI CSC IAIk k Content SK ContentD E S Sig S

.

408 Z. Ma et al.

Step8. IAI verifies the historical session transaction that recorded in Scontent:

bverRslt= (())
IAI IAIPK SK ContentVer Sig S

If bVerRslt=TRUE, it manifests the session trace is unassailable, then IAI
open the session content and decide what ever happened during the session.
Otherwise IAI disregards the request from CSC.

In fact, in step8, IAI has some optional ways to solve the dispute by pre-record
mechanism to record the session message of what happened. By the way, conditional
traceability can use escrowed encryption system (ESS) and threshold cryptography
system to enhance privacy protection.

4 Conclusion

With fast development of Internet and mobile and wireless computing technologies
such as GSM, CDMA, privacy-enhancement became an important issue in personal
communication system (PCs). The approach proposed in this paper is a raw and roase
discuss for controllable anonymous communication with privacy-enable application,
efficient and effective approaches are to be studied in future, the art of how to ensure
fairly good privacy-enable communication but can trace latent attacks legislatively is
a trade off between privacy and security issues.

References

1. David Chaum: Untraceable Electronic Mail, Retum Addresses, and Digital Pseudonyms.
Communications of the ACM, (1981)84-88

2. David Chaum: The Dining Cryptographers Problem: Unconditional sender and recipient
untraceability. Journal of Cryptology, (1988) 65–75

3. Kesdogan D, Federrath H, Jerichow A, Ffitzmann A.: Location management strategies in-
creasing privacy in mobile communication systems. IFIP 12th International Information Se-
curity Conference. (1996):39-48

4. Reed M G, Syverson P F , Goldschlag D M: Anonymous connections and onion routing.
IEEE Journal on Selected Areas in Communication Special Issue on Copyright and Privacy
Protection, (1998)482-494

5. Sholmi Dolev and Rafail Ostrovsky. Xor-Trees for Efficient Anonymous Multicast Receip-
tion. Advances in Cryptography – CRYPTO’97, 1997

6. Michael K. Reiter and Aviel D. Rubin. Crowds :Anonymity for Web Transactions. ACM
Transactions on Information and System Security, (1998)66–92

7. Clay Shields and Brian Neil Levine. A protocol for anonymous communication over the
Internet. In Proceedings of the 7th ACM Conference on Computer and Communications Se-
curity, (2000) 33–42

8. Wang C J, Leung H F:Anonymity and security in continuous double auctions for Internet
retails market[A]. Proceedings of the 37th Annual International Conference on Hawaii Sys-
tem Sciences (CD/ROM)(2004) 5-8

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 409 – 416, 2005.
© IFIP International Federation for Information Processing 2005

Real-Time Video over Programmable Networked Devices

Tien Pham Van

International Graduate School of Dynamic Intelligent Systems,
University of Paderborn, 33102 Paderborn, Germany

vantien@uni-paderborn.de

Abstract. In this paper, we introduce a novel architecture for programmable
network nodes that work with a large number of real-time video streams. We
first discuss challenges in transmission of video streams over bandwidth-limited
networks, followed by the active approach as an advance for streaming real-
time video. In our model, each programmable node makes admission decision
for video frames based on evaluating their potential value. Frames “bid” their
expected distortion price and the node chooses the best ones first until resource
is fully utilized. Analysis of complexity and overhead shows clear benefit of
our framework. Simulation experiments demonstrate its consistent outperfor-
mance in comparison to lagrangian-based Rate-Distortion Optimized schemes.

1 Introduction

Though various compression techniques have been introduced, networks can still not
fully accommodate traffic generated by distributed streaming applications. During
congestion, discarding packets is unavoidable, playback process at receiver will con-
sequently suffer additional distortion. Video compression techniques exploit temporal
redundancy, thus frames are not equally important with respect to reconstruction
process. For example in MPEG4 standard, B frame cannot be decoded without adja-
cent P frames, likewise P frame must refer to the previous one, all subsequent frames
of a GoP (Group of Picture) are considered useless if its I frame is lost.

On enhancing signal quality, several approaches have been proposed. First, modi-
fications of retransmission [1][2] have been made, in which packets are selectively
retransmitted in case of loss. This strategy is suitable for non real-time video only due
to significant delay and load caused. A proxy selectively caching important video
frames may shorten retransmission path [3]. Note however that once congestion oc-
curs at multiple hops, packets may be discarded before reaching the proxy itself. On
the track of active network architecture [11], [7] proposes a frame semantics based
policy where B frames are dropped first, followed by Ps. This approach improves
distortion in a low complexity, but it does not consider difference in size and associ-
ated distortion among frames of the same type, thus it is far suboptimal.

Another promising approach is Rate-Distortion Optimized scheme [4][5][6], or
RaDiO for short, where transmission policy is formed by minimizing a rate-distortion
lagrangian function. [6] attempted to bring the model to ordinary active nodes by
simplifying frame patterns. Despite variety of proposals have been made, complexity

410 T.P. Van

still remains challenging. Heavy complexity obviously hinders the network from
accommodating large number of streams. Too much computation forced for optimiza-
tion may cause excessive processing delay.

Our strategy aims at optimality under IP-based infrastructure with low complexity
and overhead. It targets at ordinary active routers and any other type of existing pro-
grammable nodes that work concurrently with large number of streams, e.g. prox-
ies/firewalls, WLAN routers, and wireless base stations. In the rest of this paper, we
first formulate the problem of optimization in the next section, and then frame-
bidding strategy is presented. Next, buffer management is described in section 3.
Section 4 discusses implementation aspects and evaluates complexity. Simulation
experiments are presented in section 5, showing outperformance with respect to aver-
age PSNR and complexity.

2 Frame-Bidding Approach

We consider a generic programmable node that needs to forward a set of frames from
multiple streams. Decisions on which frame to send, which to drop, and when, will
form a transmission policy. Each frame is associated with a distortion, which the total
distortion at the receiver is reduced if it correctly arrives (hereafter called distortion
reduction). When overflow occurs, a processor controlling the output interface recon-
siders all the frames buffered to find an interim optimal policy. After that, if conges-
tion occurs, the policy is updated with more packets rejected. This tactic lightens
effects of prolonged congestion on optimality in a smooth way, and regulates compu-
tation load over time. Section 5 shows that a stable playback quality is observed.

2.1 Formulation of the Problem

Let’s consider a programmable node that works with M video streams that are allo-
cated a buffer capacity B. Within a period T, accumulated size of accepted frames
must always satisfy the following constraint:

)(TWBS
A

mni +≤ (1)

where A is the set of accepted frames, forming a transmission policy π; mniS denotes

the total size of frame ith of GoP n of stream m (hereafter referred to as frame mni, or
i); and W represents the maximum amount of data that can be dequeued from the
buffer within period T:

 =
T

dttCTW
0

)()((2)

where C(t) is the bandwidth reserved for all the streams at time t. An optimal policy
should maximize total distortion reduction that frames of A account for:

)(maxarg* =
A

mniD
π

π (3)

 Real-Time Video over Programmable Networked Devices 411

where
mnD stands for total reduction pertaining to frame mni. Due to inter-frame de-

pendency and irregularness of frame arrivals, any online algorithm can give approxi-
mate solutions only.

When a frame k arrives and buffer lacks space, some frame(s) must be dropped.
Let’s denote maxΑ as the set of frames if all remaining frames of the current GoPs are
accepted, aΑ as the set of currently buffered frames, and J as that of frames to drop.
The problem for period T ending when all frames of the current GoPs arrive can be
formulated as follows:

min

)(

)()(max

−
+

∈Α∈ Jmnj
mnj

mni
mni DD

TWB (4)

∈∪Α∈

≤−
a

a Jmnj
mnj

kmni
mni tBSS

)()(

)((5)

where JJ a ⊂ , containing currently available frames only. Imagine, in exchange

for a reduction pertaining to frame mni, the node must spend a space equal to its
frame size. So price per distortion unit can be estimated as (6):

mni

mni
mni D

S
p = (6)

At best, the buffer and idle bandwidth are fully utilized so that (1) becomes an
equality, and the left-side of (4) expresses the average price for all accepted frames.
Approximately, the node gains highest total distortion reduction if it rejects the most
“expensive” frames, and keeps the buffer full. Because of frame dependency, each
frame should be associated with expected distortion price:

∈

∈=

i

i

Gj
j

Gj
j

mni
e

D

S

p
 (7)

where set iG contains i and its dependent frames, excluding those already discarded.

2.2 Bidding Mechanism

Algorithm to locate dropping pattern is illustrated by pseudo code in fig. 1. Whenever
the buffer lacks space to accept a new packet of frame k, the interface processor looks
back to content of the buffer, calculates expected prices. A list of tag indicating each

frame expected price mni
ep together with total size

∈ iGj
jS is created. The processor

picks out tags with highest price first, records accumulated size, until total size of
remaining frames is less than the buffer size, i.e., constraint (5) is satisfied. During the
process, if k is hit the loop ends immediately, frame k is rejected, and content of
buffer is kept intact. Once a frame is subjected to drop, its dependent frames must
be too.

412 T.P. Van

F r a m e (k) a r r i v e s ;

f r e e _ b u f f e r _ s p a c e = B -
Α a

m n iS ;

I F (f r e e _ b u f f e r _ s p a c e > = m n kS) a d m i t (k)

E L S E
{

 C a lc u la t e
ep f o r a v a i l a b le f r a m e s a n d k ;

 C r e a t e a l i s t o f t a g f o r k
a

∪Α , c a l l e d t a g _ l i s t ;

 d r o p _ s e t = Φ / * e m p t y * / ;
 f r e e _ b u f f e r _ s p a c e = 0 ;

 b u f f e r _ o c c u p a n c e =
Α

+
a

m n im n k SS ;

 w h i l e (b u f f e r _ o c c u p a n c e > B)
 {
 d r o p _ s e t = d r o p _ s e t ∪ p ic k (t a g _ l i s t ,

h ig h e s t _
ep) ;

 I F (p i c k (t a g _ l i s t , h ig h e s t _
ep) = = f r a m e k)

 B R E A K ;

 t a g _ l is t = t a g _ l is t \ h ig h e s t _
ep ;

 b u f f e r _ o c c u p a n c e =
t o t a l_ s i z e (r e m a in _ f r a m e s) ;

 }
 I F (k ∈ d r o p _ s e t)
 {
 d r o p _ s e t = Φ ;
 D r o p f r a m e k ;
 }
 D r o p a l l f r a m e s in d r o p _ s e t ;
}

Fig. 1. Pseudo code for frame-bidding

3 Buffer Management

In real-time video communication, frames with end-to-end delay exceeding a prede-
fined threshold (typically 500ms) are considered unacceptable [9]. Thus, buffer
should be properly maintained for higher efficiency. Given that a stream m is encoded

at frame rate mR , with GoP length of GoP
mL , the number of frames in buffer at any

time should be limited at
2

mR and the number of GoP must satisfy:

≤
GoP
m

m
m L

R
N

2
 (8)

Specifically, at each frame arrival time, if not both of the above conditions are sat-
isfied, then earliest arriving frames should be deleted to reserve space for the new
one. If (8) does not hold, the head GoP in buffer should be completely destroyed.

 Real-Time Video over Programmable Networked Devices 413

4 Implementation and Complexity

To ease computation, a logical list is maintained for each stream. Optimization proc-
ess accesses the list rather than physical packets in buffer. As indicated in fig. 2,
packets are first validated at a GoP Checkpoint, and then their video header is read
and stored in the respective list. When a packet is sent out, the respective list is sig-
naled to update. While queuing, packets may be displaced by new lower price one.

H
Payload

H
Payload

H Pay loadH Pay loadI B B P … B PI B B P … B P

P B B I … B BP B B I … B B

I B B P … B PI B B P … B P

S tr 1

S tr 2

S tr M

Log ica l lis ts

...

U
p

d
a
ti

n
g

 l
is

ts

H Payload

1

2

3

4

In tf. P rocessor

G oP checker

H
Payload

H
Payload

H
Payload

H
Payload

1 : G oP , F ra m e in fo is ex trac ted and s tored in lis t

2 : P acket is en queue d

3 : P acket is sent out

4 : the lis t sh ould be u pdated

Pa ck et flow

Con tro l s ig nal

Fig. 2. Logical lists are maintained for streams

What the processor does when overflow occurs is calculating expected price for
available frames to form a list of tag. Thus, overall complexity is O(N), where N is the
number of frames currently available. Practically, delay exceeding 500ms is unac-
ceptable, average frame rate is less than 30 frames/s, so the maximum number of
buffered frames pertaining to each stream is less than 15. Thus, the worst-case com-
plexity can be expressed as)15(MO × , which is much lighter than that of lagrangian

approach [6], where the complexity is exponentially proportional to M. Like lagran-
gian RaDiOs, correlation with previous GoP can be made to predict the statistics of
frames that have not arrived [8]. Video header added to each frame is just to indicate
its semantics, total size and distortion. Total number of added bytes is less than 3 per
packet.

5 Simulation Experiments

We implement OPNET-based simulation experiments with real-life video streams
provided from [10]. Network layout is shown in fig. 3, composed of 10 programmable
routers. The four simulated MPEG4 CIF streams are Akiyo, Container, Hall, and
Tempete, connecting Server1, Sever2, Sever3, and Server4 to fix_rx_1, fix_rx_2,
mobile_node_0, and fix_rx_3, respectively. Encoded PSNRs are 38.93dB, 33.96dB,
35.35dB, and 26.04dB, respectively. Nominal bit rate of each streams is approxi-
mately 200Kbps. Additionally, a real-life trace-based FTP data flow is used to cause
further congestion. Each original MPEG4 episode has 300 frames, but is repeated to
have 6000 frames in total. Simulation experiments were conducted in both our pro-
posed strategy and lagrangian RaDiO.

414 T.P. Van

Fig. 3. Network layout

 a) fr-bidding b) lagrangian RaDiO

0

10

20

30

40

50

1

37
6

75
1

11
26

15
01

18
76

22
51

26
26

30
01

33
76

37
51

41
26

45
01

48
76

52
51

56
26

framep
sn

r
(d

B
)

fr_bid

lagr.RaDiO

Fig. 4. A sample frame in two strategies Fig. 5. A stable PSNR is observed in our case

4 0 0 5 0 0 6 0 0 7 0 0
1 0

2 0

3 0

fr -b id .
la g r.R a D iO
p a s s iv e IP

P S N R (d B)

A v e ra g e lin k c a p a c ity (K b p s)

25 fr_bidding
lagr.R aD iO

20 30 40 50 60
20

30

35

P S N R (dB)

Buffer size (KB ytes)

Fig. 6. PSNR vs. average link capacity Fig. 7. PSNR vs. buffer size

5.1 Distortion

A sample of reconstructed video is shown in fig. 4. One can easily notice better per-
ception quality in our strategy. PSNR of Akiyo is illustrated in fig. 5 as a sample,
showing stable quality in our strategy.

First, we fixed buffer size at 40Kbytes and changed capacity of links so that the
network experiences from severe to mild congestion. As indicated in fig. 6, PSNR in
our strategy is consistently improved, up to 3.89dB. If all routers are passive, quality
of reconstruction video is almost unacceptable. When congestion is not too severe, as
buffer size increases, the improvement is clearly noticed (fig. 7). The reason is that

 Real-Time Video over Programmable Networked Devices 415

our strategy admits more important packets whereas the buffer lagrangian RaDiO
may unnecessarily reject

5.2 Delay

We tuned both buffer size B and average link capacity C, and collected delay statis-
tics. Though queues tend to be longer in our strategy, no major difference between
the two cases is observed (only several ms), as indicated in fig. 8. Packets in lagran-

gian RaDiO are dropped as soon as buffer fullness is greater than a threshold (minB).

Two different thresholds are separately simulated, as minB is reduced from 75% of

total reserved capacity B to 66%, delay slightly decreases.

0 0 . 0 4 0 .0 8 0 . 1 2 0 .1 6
1 0 0

2 0 0

3 0 0
f r a m e _ b id .
la g r . B m in = 0 . 7 5 B
la g r . B m in = 0 . 6 6 B

D e la y (m s)

B / C

Fig. 8. Delay vs. ratio of buffer size and link capacity

5.3 Run-Time and Complexity

OPNET is discrete event-driven simulator, so run-time duration does reflect algo-
rithmic complexity. In our approach, run-time length is approximately 20% shorter
than lagrangian-based RaDiO. In a large network scenario with 8 video streams,
simulations of lagrangian RaDiO hang halfway with 8 nested loops at each router to
scan all possible dropping patterns [6]. In contrast, the simulations in our framework
ran smoothly.

6 Conclusion

Toward enhancing transmission of real-time video, we have proposed a frame-bidding
approach, taking complexity and overhead into account. Simulation experiments
clearly demonstrate outperformance of our framework, regarding signal quality and
computation complexity. The approach is especially suitable for real-time and interac-
tive multimedia communication since neither retransmission nor acknowledgement is
needed. Remarkably, complexity in our model is linearly proportional to number of
streams, which is feasible for nodes that work with large number of streams.

In the next effort, we will consider whether cooperation between active routers fur-
ther enhances end-to-end transmission performance. We also foresee the ability of

416 T.P. Van

integrating our model into path-diversity scenarios to extend aggregated bandwidth.
At present, we implement the framework on a testbed composed of several Linux PC-
based routers, with WLAN connections to end-users.

References

1. G. B. Akar, N. Akar, E. Gurses, “Selective Frame Discarding for Video Streaming in
TCP/IP Networks,” Packet Video, 2003.

2. Argyriou, A. Madisetti, V., “Streaming H.264/AVC video over the Internet,” IEEE
Consumer Communications and Networking Conference, 2004.

3. I. Bouazizi, "Size-Distortion Optimized Proxy Caching for Robust Transmission of
MPEG-4 Video," In LNCS 2899, Proceedings International Workshop on Multimedia
Interactive Protocols and Systems, November 18-21, 2003.

4. E. Masala, H. Yang, K. Rose and J. C. De Martin, “Rate-Distortion Optimized Slicing,
Packetization and Coding for Error Resilient Video Transmission,” Proceedings of IEEE
Data Compression Conference, 2004.

5. P. A. Chou and Z. Miao, "Rate-distortion optimized streaming of packetized media", IEEE
Trans. Multimedia, 2001, submitted.

6. W. Tu, W. Kellerer, and E. Steinbach, "Rate-Distortion Optimized Video Frame Dropping
on Active Network Nodes," Packet Video Workshop, 2004.

7. G. Ravindra, N. Balakrishnan, K. R. Ramakrishnan, “Active Router Approach for
Selective Packet Discard of Streamed MPEG Video under Low Bandwidth Conditions,”
Proc. ICME 2000, 2000.

8. Z. He and S. K. Mitra, "A Unified Rate-Distortion Analysis Framework for Transform
Coding," IEEE Transactions on Circuits and Systems for Video Technology, VOL. 11,
NO. 12, December 2001.

9. X. Meng, H. Yang and S. Lu, "Application-oriented Multimedia Scheduling over Lossy
Wireless Networks," IEEE ICCCN 2002, October 2002.

10. J. Klaue, “YUV CIF video sequences”, http://www.tkn.tu-berlin.de/research/evalvid/
11. Y. Bai and M. Robert Ito, “QoS Control for Video and Audio Communication in

Conventional and Active Networks: Approaches and Comparison,” IEEE Communications
Surveys & Tutorials, Vol.6, No.1, 2004.

A New Raid-Disk Placement Method
for Interactive Media Server

with an Accurate Bit Count Control

Yo-Won Jeong, Seung-Ho Lim, and Kyu-Ho Park

Computer Engineering Research Laboratory,
Korea Advanced Institute of Science and Technology,

Daejon 373-1, Republic of Korea
{ywjeong, shlim, kpark}@core.kaist.ac.kr

Abstract. In this paper, we propose a RAID-disk placement algorithm of coded
video data and an efficient disk prefetching method to increase the number of
clients who can be serviced interactive operations in the media server. Our place-
ment policy is incorporated with a special bit count control method that is based
on repeated tuning of quantization parameters to adjust the actual bit count to
the target bit count. The encoder using this method can generate coded frames
whose sizes are synchronized with the RAID stripe size, so that when various
fast-forward levels are accessed we can reduce the seek and rotational latency and
enhance the disk throughput.

1 Introduction

On-demand interactivity means that users can freely interact with the media server be-
cause video streams have extremely large data size, the high data retrieval bandwidth is
required to support the interactivity to many users.

Generally, disk array technology is employed in multimedia server to provide the
high disk bandwidth and satisfy real-time IO requirements [3][4][6]. In the disk array,
disk striping is done by dividing the video data into blocks and storing these blocks into
different disks. While storing these blocks into different disks, the proper placement
algorithm should be considered in disk array to efficiently support the retrieval of such
streams at different interactivity. X. Huang [3] studied the rate staggering method for
scalable video in a disk array based video server. This method can reduce the buffer
space and achieve better load balancing, but their allocation method did not consider
the precise disk stirpe management and scalable encoding technique so that rate stag-
gering method hardly apply to the real disk array. Shenoy [6] used the disk array to
support the interactive operations in multi-resolution video. They present an encoding
technique combined with placement algorithm to efficiently support interactive scan
operation. Their variable-size block placement can reduce additional disk requests, but
its management is very difficult in disk array.

In this paper, we propose an efficient placement algorithm to support the interac-
tivity in media server, and develope the adaptive prefetching algorithm considering the
interactive operation. We have set up real interactive media server using SCSI disk ar-
ray and linux operating system. Our placement policy is incorporated with an special

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 417–424, 2005.
c© IFIP International Federation for Information Processing 2005

418 Y.-W. Jeong, S.-H. Lim, and K.-H. Park

bitcount control method, called Fine Tuning of Tail Amount, that repeatedly tunes
quantization parameters to adjust the actual bit counts of video frames to the given tar-
get bit counts. The encoder using this method can generate coded frames whose sizes
are synchronized with the RAID stripe size, so that when various fast-forward lev-
els are accessed we can reduce the seek and rotational latency and enhance the disk
throughput of each disk in the RAID system.

The rest of the paper is organized as follows. In Section 2, we present the efficient
placement algorithm and the adaptive prefetching algorithm. The proposed encoding
technique is presented in Section 3. In Section 4, we present performance results of our
placement algorithm and encoding technique.

2 Efficient Placement for Interactive Operation

2.1 Placement Policy on Disk Array

In general, MPEG video stream consists of GOP (Group of Picture)s, and each GOP
is represented as a sequence of I-, P- and B-frames. For example, if a GOP structure
is {IBBPBBPBB}, the next-level fast-forward scan could be {IPPIPP..} which is not
include any B-frames, and the next one is {II..} without any P-frames, and so on. Each
sub-sequence for each fast-forward level accessed during a round is required to retrieve
together from disks so that more client’s real-time playbacks are guaranteed.

When server employs disk array to store the video streams, the server interleaves the
storage of each video stream among disks in the array. The amount of data interleaved
on a single disk, denoted as stripe size, is fixed when the disk array is configured. In
that environment, to minimize the seek and rotational latency incurred by the requests,
the same types of frame accessed during a round are in the same disks, and the dif-
ferent types of frame are stored in adjacent disks. However, the video streams made
from conventional encoder do not have fixed frame size which is opposite to the fixed
stripe size. It causes the additional disk requests at different fast-forward levels be-
cause frames are spread over more disks. Therefore, the special encoding technique is
required to apply our placement policy. We will describe it in next section. Using this
special encoder, we can make the size of coded each I-, P- and B-frame is twice, same

1 2 3 4 5 6 7

P
P
P
P

BB
BB
BB
BB

BB
BB
BB
BB

I
I
I

I
I
I
I

IP
P
P
P

BB
BB
BB
BB

P
P
P
P

P
P
P
P

BB
BB
BB
BB

BB
BB
BB
BB

BB
BB
BB
BB

I
I
I

I
I
I
I

I

Disk No.

Video i

Video j

Fig. 1. Proposed Placement Algorithm for Interactive Media Server on Disk Array. Let the GOP
structure be {IBBPBBPBB}.

A New Raid-Disk Placement Method for Interactive Media Server 419

and half as the stripe size. Then, the GOP is stored as each I-, P- and B-frame con-
sumes two, one, half stripes on disk array, and the next GOP is stored in next stripe level
on disk array, and so on, as shown in Figure 1. At normal playback, the server should
be retrieved from all disk array with evenly distributed number of frames. For K-level
fast-forward, the server can skip every K-th disk to play out the video streams because
the required frames to play fast-forward are separated beyond the disk boundaries. No-
tice that we can change the starting disk of the next video content for the load balancing
of disk requests as shown in Figure 1.

2.2 Stream Classification

If streams stored by the above placement policy like Figure 1 have same frame rate,
they have same bitrate because all stripe sizes of the RAID system are fixed. However,
because many tpyes of streams, having big picture size, small picture size, high quality
or low quality, can be stored in one RAID system, the limitation of same bitrate of all
steams is a serious weak point in our placement policy. To relieve this limitation, we
purpose the stream classification as follows;

– Class A, the class of streams having high bitrate: Each I-, P- and B-frame con-
sumes four, two and one consecutive stripes respectively. We set the ratio of bit
count of I-, P- and B-frame is 4:2:1 because this ratio generally obtains best video
quality [2].

– Class B, the class of streams having middle bitrate: Each I-, P- and B-frame con-
sumes two, one and half consecutive stripes respectively. The ratio of bit count of
I-, P- and B-frame is also 4:2:1. Therefore, the bitrate of this stream is half of the
stream of Class A.

– Class C, the class of streams having low bitrate: One I-frame consumes one stripe,
but P-frames and B-frames cannot be synchronized with the stripe size. The ratio
of bit count of I-, P- and B-frame cannot be same as other class. In this case, we
cannot have gain for the fast-forward operation that I- and P-frames are scaned, but
we still have gain for the fast-forward that only I-frames are accessed.

The placement of each frame in the RAID system is shown in Figure 2. In the stream
of Class C, all I-frames consumes one stripe. For this, the sum total of sizes of P- and
B-frames in one GOP is a multiple of the stripe size as shown in Figure 2-(c). the ratio
of bit count of P- and B-frame has to be closest to 2:1. Therefore, To get the target bit
counts of P- and B-frame, first, solve Equation (1) and (2), and select integer values
closet to above solution satisfying Equation (2).

NP CP + NBCB = nS , n is apositive integer (1)

CP /CB = 2 (2)

Where NP and NB are the numbers of P- and B-frames in one GOP, and CP and CB

are the target bit counts of P- and B-frames. S is the stripe size.
In Figure 2-(c), The GOP structure alternates {IBBPBBPBBPBB} and

{IBBPBBPBB}. In the {IBBPBBPBBPBB} case, Equation (1) can be expressed as

3CP + 8CB = 4S . (3)

420 Y.-W. Jeong, S.-H. Lim, and K.-H. Park

Disk
No.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

...

...

...

One
Stripe

I
I
I
I
B
B
P
P
B
B
P
P
B
B
P
P
B
B

I
I
I
I
B
B
P
P
B
B
P
P
B
B
P
P
B
B

(a)

Disk
No.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

...

...

...

One
Stripe

I
I

BB
P

BB
P

BB
P

BB
I
I

BB
P

BB
P

BB
P

BB

I
I

BB
P

BB
P

BB
P

BB
I
I

BB
P

BB
P

BB
P

BB

(b)

I

Disk
No.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

...

...

...

One
Stripe

I

BBP

PBBP

PBBP

PBB

BBP

PBBP

PBB

I

I

BBP

PBBP

PBBP

PBB

BBP

PBBP

PBB

I

I

BBP

PBBP

PBBP

PBB

BBP

PBBP

PBB

I

I

BBP

PBBP

PBBP

PBB

BBP

PBBP

PBB

(c)

Fig. 2. The position of each frame of a stream: (a) Class A; the GOP structure is
{IBBPBBPBBPBB}. (b) Class B; the GOP structure is {IBBPBBPBBPBB}. (c) Class C; the
GOP structure is {IBBPBBPBBPBB} or {IBBPBBPBB}.

If we set stripe size S to be 32KBytes, the solution of Equation (3) and Equation (2) is

C ′
P = 128/7 KBytes , C ′

B = 64/7 KBytes . (4)

Therefore, The target bit counts of P- and B-frame, which are the integer values closest
to Equation (4) and satisfying Equation (3) are

CP = 18728 Bytes , CB = 9361 Bytes . (5)

Note that the ratio of bit count of I-, P- and B-frame is 4:2.29:1.14. By the same way,
in the {IBBPBBPBB} case, The target bit counts of P- and B-frame are

CP = 19662 Bytes , CB = 9830 Bytes . (6)

The ratio of bit count of I-, P- and B-frame is 4:2.4:1.2. In both cases, The bit count
ratios of frames do not large deviate from the ratio of Class A or B.

2.3 Per-Disk Prefetching Method

In general system, when the server retrieves data from disks, consecutive frames are re-
trieved ahead with the currently requested frames to increase disk throughput. We call
these frames are prefetch frames or requests. Because the prefetching requests incur
more data transfer and buffer space, it is important that proper amount of frames are re-
trieved. The conventional prefetching requests are generated across disk array, as shown
in Figure 3-(a) because file system only know about the logically continuous allocation
of video files. It causes prefetching requests make unnecessary data (B-frames) retrieval
for fast-forward plays and would be overhead.

A New Raid-Disk Placement Method for Interactive Media Server 421

I I P BB PBB I I . . .

File System

Conventional Buffers

RAID Device Driver

mis−prefetched data

I I PBB BB P BB

(a)

File System

RAID Device Driver

Per−Disk Buffers

I I
P

I
PP P

I I I I
. . .

. . .

I I PBB BB P BB

(b)

Fig. 3. Per-Disk Prefetching and Buffer Management; An example of Class B stream and X2 fast-
forward operation. The light gray and dark gray represents well-prefetched data mis-prefetched
data, respectively.: (a) Conventional prefetching requests, (b) Proposed per-disk prefetching re-
quests.

Adjust QPs

Motion estimation
/ compensation DCT VLCQuantization

IDCT Inverse
Quantization

Stored for
next frame

CompareUpdated
QPs

Input
Frame

Encoded
Frame

R-QVLC

Fig. 4. The conceptual procedure of the R-QVLC scheme

We propose the generation of prefetching requests for per disk, as shown in Figure
3-(b). When current request are retreived from one disk, our file system generates the
prefetching requests to retrieve more data from the same disk not other disks. We call
this method per-disk prefetching method. Because our placement policy separates
the other frame types to other disks, the per-disk prefetching requests do not generate
any unnecessary requests. Note that the per-disk prefetching method can be appliable
to other class streams.

3 Accurate Bit Count Control

In order to establish our placement policy, bit counts of all frames can be accurately
controlled. However, conventional bit count control schemes cannot satisfy this require-
ment because of rate-distortion modeling errors and buffer controls for enhancing the
subjective video quality [5]. We propose a method that exactly fixes each bit count of
coded frames into given target bit count.

3.1 Fine Tuning of Tail Amount

Our bit count control method does not modify the process of the conventional encoding
but work as a post-processing process after every one frame is encoded. If the actual
bit count of the coded frame is not equal to the target bit count, we pause the encoding
process and start to adjust quantization parameter (QP)s of macroblock (MB)s. Figure 4
shows the conceptual procedure of proposed bit count control scheme. We will call this
scheme repeated-quantization and variable length coding (R-QVLC). If the actual bit

422 Y.-W. Jeong, S.-H. Lim, and K.-H. Park

count is lower (or higher) than the target bit count, we increase (or decrease) QPs of
appropriate MBs, and carry out QVLC in these MBs, and repeat this process. Detailed
algorithm is called fine tuning of tail amount (FTTA). There are three stages, rate-
decreasing stage, rate-increasing stage and fine-tuning stage. If actual bit count or AB
is bigger than the target bit count or TB, we start the rate-decreasing stage, otherwise,
the rate-increasing stage.

In the rate-decreasing stage, we increase some QPs by 1 and perform the QVLC.
After that, if AB is still bigger, we increase the number of adjusted MBs or BN by twice
for making AB approach to TB more fast. We repeat this process until AB becomes
equal to or small than TB.

In the rate-increasing stage, the process is similar to the rate-decreasing stage except
that QPs decrease by 1 instead of increase. In this stage, if AB becomes bigger than TB,
we translate the fine-tuning stage.

In the fine-tuning stage, we restore QPs to previous values and, at this time, decrease
BN by half for fixing AB into TB. After that, we goto the rate-increasing stage.

Note that the direction of adjusting MB is the reverse of encoding direction.

4 Performance Evaluation

To evaluate our proposed methods we have developed the prototype interactive media
server with real disk array storage system and prototype MPEG-2 encoder in Linux
operating system. We implement a system for only Class B streams, but these results
can be applied to other class.

First, we describe about the FTTA method. We use the MPEG-2 codec provided by
the MPEG Simulation Group [2]. Encoding system consists of Pentium 4 3GHz CPU
and 1GB main memory. We use ’Mobile’ and ’Susie’ sequences with 100 frames. The
frame size and rate are 720x480 pixels and 30 frames/s respectively. When we encode a
source stream, we set the GOP structure to {IBBPBBPBB} and bitrate to 6Mbps. The
default rate control method provided by the MPEG-2 codec is used as the conventional
rate control. When we apply the FTTA, we set the target bitcounts of I-, P-, and B-frame
to 512, 256 and 128Kbits for making constant bitrate of 6Mbps.

Figure 5 shows the encoding results for the two test sequences. All the generated
bit counts by the proposed method are equal to the target bit counts. Average PSNRs
and encoding time are summarized in Table 1. We can see that average PSNR is de-
graded by the FTTA (0.37 dB for ’Mobile’ and 0.03 dB for ’Susie’) because the FTTA

Table 1. The Average PSNR and Encoding Time

Test Rate Con- Avg. Encoding
sequence trol Method PSNR(dB) Time(s)
Mobile Conventional 27.50 116.6

FTTA 27.13 140.1
Susie Conventional 42.41 127.6

FTTA 42.38 158.9

A New Raid-Disk Placement Method for Interactive Media Server 423

0

100

200

300

400

500

7 16 25 34

0

100

200

300

400

500

7 16 25 34

Frame number

B
it

co
un

t (
kb

its
)

0

100

200

300

400

500

7 16 25 34
Frame number

0

100

200

300

400

500

7 16 25 34

Frame number

B
it

co
un

t (
kb

its
)

Frame number

(a) Conventional rate control for "Mobile" (b) FTTA for "Mobile"

(c) Conventional rate control for "Susie" (d) FTTA for "Susie"

Fig. 5. The generated bit count of each frame

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80

A
ve

ra
ge

 S
er

vi
ce

 T
im

e(
m

se
c)

Number of Clients

Conventional
MSR

MSR with Per-Disk Prefetch

(a)

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80

A
ve

ra
ge

 S
er

vi
ce

 T
im

e(
m

se
c)

Number of Clients

Conventional
MSR

MSR with Per-Disk Prefetch

(b)

Fig. 6. Average Service Time for mixed fast-forward level: (a) X1 : X2 : X4 = 50 : 30 : 20, (b) X1
: X2 : X4 = 70 : 20 : 10

tries to fix bit count into target bit count without considering the rate-distortion charac-
teristics. However, this PSNR degradation shown in Table 1 is acceptable. In Table 1,
encoding time increases by the FTTA because the FTTA is post-processing process
after a conventional encoding process. These additional processing times are cost for
accurate bit count control. Next, we have evaluated the placement policy and per-disk
prefetching method. The evaluation environment is as follows. The server system con-
sists of 2.4GHz intel Pentium 4 CPU, 512MB main memory and disk array with seven
SCSI disks, model ST318304FC. The stripe size is set to be 32KB. Each client ac-
cessing the randomly selected video stream retrieves the frame-sequence with at a nor-
mal playback of 30 frames/s. The performance metric is average service time for one

424 Subject Index

round playback duration as the number of clients increases. We have experimented with
mixed fast-forward levels by varying the ratio between fast-forward levels. As shown in
Figure 6-(a) and 6-(b), as the number of users increases, our placement policy, denoted
as MSR (Media Synchronized RAID), gives better performance because of reducing
the disk requests. Moreover, the average service time retrieved from disk in our place-
ment policy with the per-disk prefetching method is much smaller than others which use
conventional prefetching method. This is because per-disk prefetching method retrieves
the current frame-sequence together with the near future frame-sequence in same disk
request.

5 Conclusion

In this paper, we have presented an interactive media sever with media synchronized
RAID storage system. We have proposed a placement algorithm and per-disk prefetch-
ing method to effectively support the interactive operation in media server. By doing
this, when various fast-forward levels are accessed, we can reduce the seek and rota-
tional latency and enhance the disk throughput of disks. We also propose a stream clas-
sification scheme for applying our placement algorithm into various types of streams.
Our placement policy can be implemented with the proposed FTTA encoder. Though
this encoder spends more time on encoding and yields small quality degradation, it can
generate the coded video stream which is synchronized with the RAID stripe size, so
that we can significantly enhance the disk throughput and the average service time for
each client connection as shown in our experimental results.

References

1. S. Lim, Y. Jeong, K. Park. Interactive Media Server with Media Synchronized RAID Storage
System. In Proceedings of ACM NOSSDAV 2005, June 2005

2. Mpeg software simulation group: encoder/decoder. Version 1.1a, 1996.
3. X. Huang, C. Lin, and M. Chen. Design and performance study of rate staggering storage

for scalable video in a disk-array-based video server. In IEEE Transaction on Consumer
Electronics, 50(4):1119–1129, Nov 2004.

4. R. Katz, G. Gibson, and D. Patterson. Disk system architectures for high performance com-
puting. In Proceedings of the IEEE, 77:1842–1858, Feb 1989.

5. J. Kwon and J. Kim. Adaptive video coding rate control for better perceived picture quality.
Proc. of APCC2003, Sep 2003.

6. P. Shenoy and H. M. Vin. Efficient support for interactive operations in multi-resolution video
servers. ACM Multimedia Systems, 7(3), 1999.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 425 – 432, 2005.
© IFIP International Federation for Information Processing 2005

A New Region of Interest Image Coding for
Narrowband Network: Partial Bitplane Alternating Shift

Li-Bao Zhang

College of Information Science and Technology of Beijing Normal University,
 Beijing 100875, China

Libaozhang@163.com

Abstract. Regions Of Interest (ROI) image coding is one of the most signifi-
cant features in JPEG2000. It allows ROIs of the image are of higher impor-
tance than background (BG). In this paper, a new and efficient scaling-based
method so-called Partial Bitplane Alternating Shift (PBAShift) is described.
The new algorithm firstly shifts up partial most significant bitplanes of ROI.
Then, the most significant bitplanes of BG coefficients and general significant
bitplanes of ROI coefficients are shifted up by bitplanes alternating scaling
method. The least significant bitplanes of ROI and BG coefficients are obtained
in the original position. The PBAShift method, in addition to supporting effi-
cient single ROI coding, can flexibly code multiple ROIs with degrees of inter-
est in an image. The experiments on remote sensing images show the presented
method supports ROI coding of both arbitrary shape and arbitrary scaling with-
out shape coding. Additionally, it can handle complexity multiple ROIs of arbi-
trary shapes efficiently.

1 Introduction

The functionality of ROI is important in applications where certain parts of the image
are of higher importance than others. In such a case, these ROIs need to be encoded at
higher quality than the background. During the transmission of the image, these re-
gions need to be transmitted first or at a higher priority, as for example in the case of
progressive transmission. JPEG 2000 standard in [1] and [2] not only supports ROI
coding firstly, but defines two coding algorithms that are called Maxshift (maximum
shift) method in part 1 and the general scaling-based method in part 2 along with the
syntax of a compressed codestream. In these methods, a region of interest of the im-
age can have a better quality than the rest at any decoding bit-rate. In other words, this
implies a non-uniform distribution of the quality inside the image.

Although the Maxshift method is simple and efficient, two disadvantages are inevi-
table. First, this method requires decoding of all ROI coefficients before accessing
bit-planes of the background and uses large shifting values that significantly increase
the number of total bit-planes to encode. Second, it is difficult that this method han-
dles multiple ROIs of any shapes.

In this paper, we present a new ROI coding scheme called PBAShift that not only
retains advantages, but also alleviates the drawbacks of both ROI coding methods in

426 L.-B. Zhang

JPEG2000. Three main strategies are used to improving the ROI coding efficiency.
Firstly, the presented method shifts up partial most significant bitplanes of ROI,
which can ensure that the most important bitplanes of ROI coefficients are coded and
transmitted. Secondly, the most significant bitplanes of BG coefficients and general
significant bitplanes of ROI coefficients are shifted up by bitplanes alternating scaling
method, which enables the flexible adjustment of compression quality in ROI and
BG. Finally, the least significant bitplanes of ROI and BG coefficients are obtained in
the original position.

The new method is based on the embedded block coding with optimized truncation
(EBCOT) scheme. It reduces the priority of the less important region or background
of an image, allowing the user to quickly view the ROI with higher quality without
receiving the entire image. Thus, it substantially saves the transmission time, storage
space, and computational cost of image compression. Simulation results show that the
new method can combine the advantages of the two standard methods of JPEG2000
and efficiently compress multiple ROIs according to different degrees of interest
without any shape information.

2 The ROI Coding in JPEG2000

In the part one and part two of JPEG2000, two kinds of ROI coding methods are in-
cluded in the standard: the Maxshift method and the general scaling based method. As
illustrated in Fig. 1(b) and Fig. 1(c), these two methods place ROI associated bits in
the higher bitplanes by downshifting the bits of BG coefficients from Most Signifi-
cant Bitplane (MSB) to Least Significant Bitplane (LSB) [3], [4], so that ROI coeffi-
cients can be coded firstly in the embedded bitplane coding [4], [5]. In figure 1(a), no
ROI code and no scales. In figure 1(b), the general scaling-based method is shows and
the scaling value is 5. In figure 1(c), the Maxshift method is shows and the scaling
value is 10.

The general scaling-based method has two major drawbacks. First, it needs to en-
code and transmit the shape information of the ROIs. This rapidly increases the com-
plexity of encoder and decoder implementations. Second, if arbitrary ROI sharps are
desired, then shape coding will consume a large number of bits, which significantly
decreases the overall coding efficiency. To solve above problems, a new effective
solution-Maxshift method was proposed for JPEG 2000. The Maxshift method is a
particular case of the general scaling-based method when the scaling value is so large
that there is no overlapping between BG and ROI bitplanes, i.e., so the scaling value,
s, must satisfy (1):

)max(bMs ≥ (2)

Where bM is the nominal maximum number of magnitude bitplanes in subband

b . Fig. 1(c) shows the bitplane shift in Maxshift method. All significant bits associ-
ated with the ROI after scaling will be in higher bitplanes than all the significant bits
associated with the background. Therefore, ROI shape is implicit for the decoder in
this method, and arbitrarily shaped ROI coding can be supported.

 A New Region of Interest Image Coding for Narrowband Network 427

(a) No Scaling

 (b) General scaling based method

 (c) Maxshift method

Fig. 1. Two basic Scaling method of ROI in JPEG2000

3 Disadvantages of the ROI Coding in JPEG2000

Although the Maxshift method is simple, three limitations of this method are inevita-
ble. First, it does not have the flexibility for an arbitrary scaling value to define the
relative importance of the ROI and the BG wavelet coefficients as in the general scal-
ing-based method. Second, this method requires decoding of all ROI coefficients
before accessing bit-planes of the background and uses large shifting values that sig-
nificantly increase the number of total bit-planes to encode. Finally, when there are
multiple ROIs in the same image, any ROI cannot have its own scaling value, and
therefore different priority during encoding and transmission of the image.

Because of the limitations of two standard ROI coding algorithms, some improved
methods for ROI coding were proposed. A new method was proposed in [4] with low
scaling values to take advantages of two standard methods. It is implemented by re-
moving all the overlapping bitplanes between ROI and BG coefficients, which rela-
tively modified the quantization steps of coefficients. However, the method brought
the reduction of final ROI and BG qualities. A bitplane-by-bitplane shift (BbBShift)
method was proposed in [6] by shifting the bitplanes on a bitplane-by-bitplane basis
instead of shifting them all at once in Maxshift method. Although it supports arbitrar-
ily shaped ROI coding without coding shapes, it is difficult for the BbBShift method
to code multiple ROIs with different priority during encoding and transmission. The
partial significant bitplanes shift (PSBShift) method proposed by [7] shifts part of the
most significant of ROI coefficients instead of shifting the whole bitplanes as the
standard methods do. But the PSBShift method needs the same scaling values for
every ROI for multiple ROIs coding. Additionally, this method cannot fully decode
ROIs coefficients before all BG coefficients are decoded because some residual sig-

428 L.-B. Zhang

nificant bitplanes of ROIs is not shifted at the encoder. In this paper, a novel and
flexible bitplanes shift coding method using bitplane classification is proposed, which
can efficiently compress multiple ROIs with different degrees of interest and ensure
all ROIs to be decoded before BG is decoded.

4 PBAShift Method for Single ROI

The PBAShift method is based on the facts that at low bit rates, ROIs in an image are
desired to sustain higher quality than BG, while at the high bit rates, both ROI and
BG can be coded with high quality and the difference between them is not very no-
ticeable. So we divide the all bitplanes of ROIs and BG into three parts. For different
significant parts, different shifting strategies are applied. Instead of shifting the bit-
planes all at once by same scaling value s as in Maxshift, the PBAShift method can
code ROI in an image with two strategies-all bitplanes of the BG coefficients below
all bitplanes of the ROI coefficients or all bitplanes of the BG coefficients below
partial bitplanes of the ROI coefficients. In Figure 2, we compare the PSBhift with the
new method.

(a) PBAShift method

 (b) PBAShift method

Fig. 2. Comparison of the PSBShift method and the PBAShift method for single ROI

We firstly define the parameters of PBAShift method as following,

1) 1s -The most significant bitplane number of the ROI coefficients.

2) 2s -The least significant bitplane number of the ROI coefficients.

3) 3s -The most significant bitplane number of the BG coefficients, which is also

the general significant bitplane number of the ROI coefficients.

4) 4s -The least significant bitplane number of the BG coefficients.

In this paper, we index the bottom bitplane as bitplane 1, the next to bottom as bit-
plane 2, and so on. At the encoder, the bitplane shift scheme is as following,

 A New Region of Interest Image Coding for Narrowband Network 429

A) For any bitplane b of an ROI coefficient,

a) If 2sb ≤ , no shift and encoding directly.

b) If 322 ssbs +≤< , shift b up to bitplane 1)(2 24 −−+ sbs .

c) If 32132 sssbss ++≤<+ , shift b up to bitplane 234 sssb −++ .

B) For any bitplane b of an BG coefficient,

a) If 4sb ≤ , no shift and encoding directly.

b) If 4sb > , shift b up to bitplane)(2 44 sbs −+ .

At the decoder, for any given non-zero wavelet coefficient, the first step is to iden-
tify whether it is a bitplane of the ROI coefficient or the BG coefficient. The ROI
decoding algorithm is presented as following,

A) If 34 2ssb +> , then ROIb ∈ , shift b down to bitplane 432 sssb −−+ .

B) If 34 ,,3,2,1,12 siisb L=−+= , Then ROIb ∈ , shift b down to bitplane

24 2/)1(ssb ++− .

C) If 34 ,,3,2,1,2 siisb L=+= , Then BGb ∈ , shift b down to bitplane

44 2/)(ssb +− .

If the wavelet coefficient’s MSB belongs to bitplanes of ROI, then it must be is an
ROI coefficient. Otherwise, it is a BG coefficient. The bitplanes are then shifted back
to their original levels by the decoding algorithm.

5 PBAShift Method for Multiple ROIs

In JPEG2000, both the Maxshift method and the general scaling based method can
support the multiple ROI coding. However, each method has itself the drawbacks.
The main drawback of Maxshift method is that the coefficient bitplanes of all ROIs
must be scaled with the same values, which does not have the flexibility to allow for
an arbitrary scaling value to define the relative importance of the ROIs and BG wave-
let coefficients, and cannot code ROIs according to different degrees of interest. Ad-
ditionally, in Maxshift method, all bitplanes of the BG coefficients cannot be decoded
until the all bitplanes of all ROIs are decoded.

The general scaling based method can offer the multiple ROIs coding with differ-
ent degrees of interest, but it has three major drawbacks. Firstly, it needs to encode
the shape information of ROIs. This shape information significantly increases the
complexity of encoder/decoder when the number of the ROIs increases. Secondly,
when arbitrary ROI shapes are desired, the shape coding of the ROIs will consume a
large number of bits, which reduces the overall coding efficiency. The current stan-
dard in JPEG2000 attempts to avoid this problem and only defines rectangle or ellipse
shaped ROIs because they can be coded with a small number of bits. Finally, it is not

430 L.-B. Zhang

convenient to deal with different wavelet subbands according to different degrees of
interest, which is sometimes is very important to code and transmit for objectors.

In this paper, we propose a new and flexible multiple ROI coding method-
PBAShift. The presented method not only can support arbitrary ROIs shape without
shape coding, but also allows arbitrary scaling value between the ROIs and BG,
which enables the flexible adjustment of compression quality in ROIs and BG accord-
ing to different degrees of interest. The scheme of the PBAShift method for multiple
ROI coding is illustrated in Fig. 3. The encoding and decoding method for multiple
ROIs are similar to that for single ROI. However, three points must be noticed.

Firstly, if 2s of each ROI is different, we choose the minimum one to compute the

shifting-back value of ROI bitplanes. Secondly, 1s of each ROI must is equal. Thirdly,

3s is equal to the most significant BG bitplane number, which is also equal to the

maximum value of the general bitplane numbers of all ROIs. At low bit rates, differ-
ent bitplanes are decoded with different degrees of ROI interest. At mediate bit rates,
the most significant BG bitplanes and general significant ROI bitplanes can be de-
coded. At high bit rates, both ROIs and BG can be coded with high quality and differ-
ence between them is not very noticeable.

Fig. 3. The PBAShift method for multiple ROIs

6 Experimental Results

In Fig. 4, two reconstructed 512×512 remote sensing images-San Diego Shelter Is-
land are given. They are coded with single ROI using PBAShift. In wavelet trans-
form, we adopt (5,3) integer wavelet filters. The original bitplane number is 8. We

define 41 =s , 12 =s , 33 =s , and 54 =s .

In Fig. 5, two figures give multiple ROI coding results for 512×512 Fishing Boat
image at low bit rates and mediate bit rates. The people, the latter boat and the former
boat are respectively defined as ROI-1, ROI-2 and ROI-3 in Fishing Boat image. The
priority order of these ROIs is ROI-1>ROI-2>ROI-3. We hope that the ROI-1 has the
best quality at low bit rates. The up-shifted numbers should be chosen as sROI-1>sROI-

2>sROI-3, e.g., sROI-1=6, sROI-2=5, sROI-3=4. The scaling value stored in the codestream is
s=),,max(321 −−− ROIROIROI sss . The reconstructed quality (PSNR) of three ROIs is

shown in Fig. 6. From Fig. 5, it can be found that at low bit rates (e.g., bpp<1.0), all
ROIs have the higher quality than BG. ROI-1 has the highest quality among three.

 A New Region of Interest Image Coding for Narrowband Network 431

Fig. 4. The San Diego Shelter Island image with single ROI: 0.25 bpp (left), 1.0 bpp(right)

(a) Coding bit rates from 0.1 to 1.0 bpp (b) Coding bit rates from 0.1 to 2.0 bpp

Fig. 5. Multiple ROI coding results for Fishing boat at low bit rates (a) and mediate bit rates (b)

(a) Original image (b) 0.4 bpp (c) 0.8 bpp (d) 1.6 bpp

Fig. 6. The reconstructed Fishing boat image with three ROIs: ROI-1 is people, ROI-2 is the
latter boat and ROI-3 is the former boat

ROIs. When the bit rates increases, the BG quality increases to some degree quickly.
This is because the up-shifted numbers in the GSRB of ROI-2, ROI-3 are not large
enough. Hence, the PBAShift method can support multiple ROI coding in a certain
range of bit rates, which depends on the number of up-shifted bitplanes for each ROI.

432 L.-B. Zhang

7 Conclusions

In this paper, a new ROI coding method so-called PBAShift is proposed. It has three
primary advantages for ROI coding. Firstly, the new method can support arbitrary
ROI shapes without coding shape information, which ensures the low complexity for
coding ROIs in real-world applications. Secondly, the whole scaling values of all
bitplanes are fewer than Maxshift method. Thirdly, the PBAShift can control flexibly
the quality between the ROIs and BG by adjusting scaling values. Finally, the new
method can support multiple ROI coding with different degrees of interest. We expect
this idea is valuable for future research in ROI image coding and its applications.

References

1. ISO/IEC, ISO/IEC 15444-1, Information technology JPEG 2000 image coding system-Part
1: Core coding system. http://www.jpeg.org (2003).

2. ISO/IEC JTC 1/SC 29/WC 1 (ITU-Y SC8) JPEG 2000 Part Final Committee Draft Version
1.0, (2000), December.

3. A. Skodras, C. A. Christopoulos and T. Ebrahimi, The JPEG 2000 still image compression
standard, Vol. 9, IEEE Signal Processing Magazine, (2001), 36-58.

4. C. Christopoulos, J. Askelf and M. Larsson, Efficient methods for encoding regions of in-
terest in the upcoming JPEG 2000 still image coding standard, Vol. 7, IEEE Signal Process-
ing Letters, (2000), (9), 247-249.

5. R. Grosbois, D. S. Cruz and T. Ebrahimi, New approach to JPEG 2000 compliant region of
interest coding, Proc. Of the SPIE 46th Annual Meeting, Applications of Digital Image Proc-
essing, San Diego, Vol. XXIV, CA, August, (2002).

6. Z. Wang and A. C. Bovik, Bitplane-by-Bitplane shift (BbBShift)-a suggestion for JPEG
2000 region of interest image coding, IEEE Signal Processing Letters, (2002), 9(5): 321-
324.

7. L. Liu and G. Fan, A new JPEG 2000 Region of interest image coding method: Partial Sig-
nificant bitpanes shift, IEEE Signal Processing Letters, (2003), 10(4): 35-38.

8. Zhang Li-bao and Wang, Ke. Research on Regions Of Interest Coding Based on Compensa-
tion Scheme. Third International Symposium of Multispectral Image Processing and Pattern
Recognition. Proc. SPIE. Vol. 5286. (2003), 931-934.

9. C. A. Christopoulos, A. Skodras and T. Ebrahimi, “The JPEG2000 still image coding sys-
tem: An overview”, IEEE Transaction Consumer Electronics, (2000), 46(4):1103-1127

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 433 – 440, 2005.
© IFIP International Federation for Information Processing 2005

Using Route Probing to Derive Link Traffic Load
with Edge-Based Measurements

Guofeng Zhao, Tang Hong, Zhang Yi, and Shangyu Gu

Chongqing University of Post and Telecommunication, Chongqing, China, 400065
zhaoguof@cqupt.edu.cn

Abstract. Obtaining traffic load on internal links of the network is crucial for
network management and control. Though collecting can be available on each
link, such as applying traditional SNMP scheme, the approach would be expen-
sive because it may cause heavy processing load and sharply degrade the
throughput of the core routers in high-speed IP backbone. Then monitoring
merely at the edge and estimating traffic in the core provides a good alternative
way for overcoming such functionality limitations. In this paper, we explore a
scheme on deriving internal link load of network with edge-based measure-
ments. Contrast to collecting routing data from core routers that costs much, we
propose a route probing method based on hash sampling techniques and IP
Measurement protocol between node-pairs. Based on statistical theory, we
prove that our approach is effective and present the algorithm. Performance
simulation results show the potential of our approach.

1 Introduction

Knowing the volume of traffic on each internal link is beneficial for network man-
agement and control. Basically, there exist three kinds of approaches based on passive
measurement [1] that may observe link load traffic. In traditional IP-based networks,
traffic is derived by per-link approach such that using simple network management
protocol (SNMP) and remote monitoring (RMON) [2] mechanism. But this approach
has the disadvantage that it will cause heavy processing load and sharply degrade the
throughput of the core routers in high-speed IP backbone. So monitoring at ingress
nodes and computing the link traffic load from these measurements provides another
way to overcome such functionality limitations. With this notion, A.Feldmann et al.
propose a flow-based measurement approach that traffic flows are measured only at
the ingress and routing configuration are collected from routers [3]. But the approach
has some handicaps: (1) difficult to measure each flow at the edge of backbone net-
work since there may be simultaneously ten thousands of flows. (2) collected data sets
are enormous and computation is time-consuming. (3) need of acquiring routing con-
figuration from core routers costs great. Then the third type of traffic measurement is
brought forward as direct observation. Trajectory sampling [4] is a method that pro-
vides an estimator of the path matrix using packet sampling technology. It doesn’t
need to know anything about network topology and routing information. It involves
sampling packets that traverse each link within the network and regards the set of
sampled packets as a representative of the overall traffic. However, selecting the exact
hash sampling function to meet real world is too hard.

434 G. Zhao et al.

The main contribution of this work is to develop a scheme that link traffic load on
each link of a measurement domain will be estimated with edge-based measurements
and route probing results. We apply node-pair based measurements at ingress nodes
without enabling measurements in the core of the network. In order to know how the
traffic is routed, routing matrix is constructed with route probing that using hash-
based packet sampling and applying IP measurement protocol (IPMP) [5] to transmit
path information. Based on statistical theory, we prove that our approach is feasible.
Further, we propose an algorithm for link traffic computation.

2 Our Model for Link Traffic Measurement

In our model, we measure traffic at edge routers and transmit measurement data to a
server named NCU(Network Collector Unit) where have traffic computation periodi-
cally as shown in Figure 1.

NC U

Access
link

Access
link

Peer
link

Fig. 1. Our model for link traffic measurement

At edge nodes, we measure aggregate traffic on node pairs. Edge routers send and
receive IPMP-based route probing packets and extract path information from those
packets. Such path information is collected by NCU to construct routing matrix.

Definition 1. Assume a direct graph ()EVD ,= , |V|=n, |E|=m. Name

()mi yyyyY ,,,,, 21 LL= link traffic vector, where yi denotes traffic on link ei. Let

()Lj xxxxX ,,,,, 21 LL= be SD(Source-destination) measurement vector, where xj

denotes measured traffic on path over jth SD pair and L denotes number of SD pairs
within an interval T.

Definition 2. Let A be a routing likelihood matrix with scale Lm × . For link ei and jth
SD pair, aij denotes the likelihood of traffic on jth SD pair traverse over link ei.

Then according to the following equation, we can obtain vector Y.

YT = AXT (1)

 Using Route Probing to Derive Link Traffic Load with Edge-Based Measurements 435

Obviously, edge node-pair based measurement can obtain vector X easily. Then the
main problem is that routing likelihood matrix A should be constructed before link
traffic can be derived from equation (1).

3 Route Probing

The intention of route probing rests on the idea that routers process probing packets in
the same way as other packets. Based on IPMP, path can be recorded in the probing
packet when it traverses the network. So relation between links and routes over SD
pairs will be inferred from probing packets sent and received.

The IP Measurement Protocol (IPMP) is based on packet-probes. It supports for-
ward and reverse path measurements of a single packet. The protocol has been de-
signed so measurement packets can be processed with approximately the same level
of computation as needed for IP packet forwarding. IPMP is implemented in AMP
measurement system [6] developed by National Laboratory of Applied Networks
Research.

3.1 Route Probing Based on Hash Sampling

In this section, first we give two theorems for route probing scheme. Secondly, we
present a framework for hash-based probing system.

Theorem 1. For routing likelihood matrix A, with random and independent route
probing, element aij has standard deviation

j

ijjij

n

nnn)(−
=σ (2)

where nj denotes probing packets sent over jth SD pair and nij denotes probing packets
traveled through the link ei.

Proof. Since route probing packets are sent out to their destination in random and
independent way and processed in the same way as common packets on routers. Path
records can be extracted from these probing packets, so accurate routing information
in the network can be revealed after enough probing.

Suppose within measurement period T, source node s has sent nj number of probing
packets over jth SD pair. On link ei, we obtain nij number of probing packets traveled
through the link.

Then the routing likelihood of link ei on paths over jth SD pair is given by

j

ij
ij n

n
=α (3)

With large enough number of probing, obviously, aij has a Bernoulli distribution. So
its standard deviation has

j

ijjij

j

ijij

n

nnn

n

)()1(−
=

−
=

αα
σ (4)

Thus give the proof of Theorem 1.

436 G. Zhao et al.

At each edge node, route probing is performed periodically as shown in Fig.2.
Sampled packets are constructed as probing packets based on IPMP and sent out to
destination.

H ash
sam pling

Extracting
destination

address and key
w ords

Construct IPM P
probe packet
and Send to
destination Packet in Packet

out

Fig. 2. Framework for route probing at edge router

When probing system receives a packet, it extracts specific bits from the packet to
make a key including the packet’s destination IP address. Then the key is matched to
a predefined key mask. If they do not match, the packet is not chosen for sampling. If
the packet is selected for sampling, a new IPMP request packet will be constructed as
a probe packet using the sampled packet’s destination IP address as its destination
address. Then the new packet is sent out to its destination as a common IP packet in
the network.

Definition 3. For a packet x,)(xφ denotes the key that made up of specific bits ex-

tracted from x and)(mφ the mask.

Hash-based sampling satisfies

=
=

otherwise

mxif
xh

0

)()(1
))((

φφ
φ (5)

When 1))((=xh φ , the packet is selected for sampling and a probe packet will be

constructed. The length of mask bits determines sampling probability. Suppose a

mask length m, there exist mM 2= different values for sampling and Mp 1= is the

probability of sampling a packet. Selecting adequate value of m may obtain the ex-
pected sampling results. We make m=1024 for performance simulations in section 4.

Theorem 2. For any link ei, within a measurement period T, with random and inde-
pendent route probing, the relation between measurement error and route probing
packet sampling probability p satisfies

i
i n

pn

pn

⋅+
⋅

≤
2

1σ (6)

where n denotes all traffic(packets) traveled over network and ni denotes traf-
fic(packets) traveled through the link ei.

 Using Route Probing to Derive Link Traffic Load with Edge-Based Measurements 437

Proof. Within a measurement period T, with random and independent route probing,
measurement error on link ei contains two parts, one for influence of probing packets
on background traffic denotes backσ and the other for route probing error probσ .

So, measurement error sums that

probback σσσ += (7)

i. Suppose nc number of packets are inserted into network for route probing, then
packet sampling probability p satisfies

n

n
p c= (8)

For link ei, the maximum of measurement error is

ii

ci

n

pn

n

n
back

⋅==σmax (9)

ii. For route probing error, from equation (4) we have

pn

c

n

c

c

i
prob ⋅

==σ (10)

where)1(iic αα −= . Then we have

() 4
1max =c , 10 ≤≤ iα (11)

So the following inequality satisfies

pn
i
prob ⋅

≤
2

1σ
 (12)

Then with equation (7), equation (9) and equation (12), we obtain equation (6).
Thus give the proof of Theorem 2.

3.2 Algorithm

Now we present the algorithm for link load computation.

Step 1. To initialize link traffic vector and routing likelihood matrix, let Y=0 and
A=0.

Step 2. To compute routing likelihood matrix based on route probing scheme, we
obtain the likelihood of aij is jij nn .

Step 3. To derive load on link ei, we have

=
⋅=

L

j
jiji xy

1

α (13)

438 G. Zhao et al.

where yi denotes traffic load on link ei, xj denotes measured traffic on path over jth SD
pair and L denotes number of SD pairs within an interval T.

Step 4. Repeat step 3 to compute traffic load on other links.
End.

The computation for routing likelihood matrix in step 2 of the algorithm is)(mLO .

The maximum number of SD pairs has)1()max(−= nnL . Then we conclude the

computation complexity of the algorithm is)(2mnO (m denotes links and n denotes

nodes of network).

4 Performance Simulations

The main goal behind the simulation is to evaluate the performances of our model.
The topology of simulation is shown in Fig.3. It includes five core routers and four
access subnets as ingress.

Fig. 3. Topology of simulation network

Fig. 4. Throughput on link Router2 to Router3 measured by our approach and per-link ap-
proach simultaneously when the link works in light-load situation for two hours

 Using Route Probing to Derive Link Traffic Load with Edge-Based Measurements 439

Fig. 5. Error distribution between our approach and per-link approach when the link works in
light-load situation

Fig. 6. Throughput on link Router2 to Router3 measured by our approach and per-link ap-
proach simultaneously when the link works in heavy-load situation for two hours

Fig. 7. Error distribution between our approach and per-link approach when the link works in
heavy-load situation

For paper limitation, we just show simulation results of traffic on link Router2 to
Router3. In the following figures, title including text as Traffic of Measure denotes
throughput measured by our approach and title including text as point-to-point

440 G. Zhao et al.

throughput denotes throughput measured by per-link approach. We show simulation
results that the link works respectively in light-load as Fig.4 and Fig.5 shown, and
heavy-load as Fig.6 and Fig.7 shown.

Investigating on simulation results concludes that: (1) results have little discrep-
ancy between per-link approach and ours on link traffic measurement. It implies that
our approach is effective. (2) lower error is shown in light-load situation compared to
heavy-load situation. We think it’s mostly caused by route probing traffic because that
makes a higher overhead when link traffic is light than heavy. (3) error will increase
when traffic decreasing abruptly as shown in Fig.6 and Fig.7. We think it caused by
route change that makes some traffic go to other path and transmit over this link no
more. But our route probing has a delay on detecting such routing change.

5 Conclusion

The work is to explore a new edge-based link load traffic measurement problem and
results several contributions: (1) a model for deriving link load when measurement
performing only at edge without enabling in the core. (2) a scheme for route probing
based on Hash based packet sampling and IPMP context. (3) an algorithm for deriv-
ing link traffic load.

Compared with the SNMP scheme, our approach causes few overhead in the core
because measurement is only at the edge of the network. With flow-based method,
since node-pair measurement involves aggregate flows, our scheme produces less
computation. Moreover, our scheme can probe route at the edge while need not ex-
tract routing data from the core routers. And with direct observation, our approach
doesn’t require label buffers and sampling operations in the core.

Acknowledgement

This work is supported by Chunhui project funded by Ministry of Education, Nature
Science Foundation of Chongqing and Special Fund on 4G-research of CQUPT.

References

1. Matthias Grossglauser and Jennifer Rexford, Passive Traffic Measurement for IP Opera-
tions, http://www.research.att.com/ ~jrex/papers/sfi.ps, March 2,2003

2. S. Waldbusser. Remote Network Monitoring Management Information Base, IETF RFC
2819, May 2000

3. Feldmann A, et al. Deriving traffic demands for operational IP networks: methodology and
experience. Proceedings of ACM SIGCOMM’2000, 2000. 257-270.

4. N.G.Duffield et al. Trajectory Sampling for Direct Traffic Observation, ACM Computer
Communication Review, vol.30, NO.4, Oct. 2000.

5. A. McGregor and M. Luckie. IP Measurement Protocol (IPMP), IETF draft: draft-
mcgregor-ipmp-04.txt, Feb.2004.

6. A.J.McGregor, and H.W.Braun. Balancing cost and utility in active monitoring: The AMP
example, In Proceedings of INET2000, 2000.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779 pp. 441 – 448, 2005.
© IFIP International Federation for Information Processing 2005

Scheduling Multicast Traffic in a Combined Input
Separate Output Queued Switch*

Ximing Hu, Xingming Zhang, Binqiang Wang, and Zhengrong Zhao

National Digital Switching System Engineering &Technological R&D Center,
NO. 783 P.O.Box 1001, 450002, Zhengzhou, Henan, P.R. China

{ximinghu, zhengrong_zhao}@gmail.com

Abstract. Although several promising multicast solutions have been proposed
till now; however, the support of multicasting still remains notoriously difficult
for switches or routers in networks because of the traffic expansion due to mul-
ticast replication. In this paper, we propose to use a Combined Input Separate
Output Queued Switch (CISOQ for short) to achieve high performance when
loaded with multicast traffic. By giving novel definitions for the waiting time
and the queue occupancy of multicast cells, we extend the use of oldest cell first
(OCF) and longest queue first (LQF) algorithms from the unicast-only traffic
load to the multicast traffic load. Furthermore, we show that 100% throughput
can be obtained by a CISOQ switch when it is scheduled by OCF and LQF
without speedup or by any maximal matching algorithms, just used in the uni-
cast-only traffic load before, with a speedup of 2. The only assumptions on the
multicast traffic pattern are that it is multicast-admissible and SLLN and that it
does not oversubscribe any inputs or outputs. As far as we know, this result is
the first theoretical analysis of multicast traffic arrival process till now.

1 Introduction

Nowadays, multicast-dependent services, such as multiparty telephony, video-
conferencing, distributed data processing and work-group applications, are expected
to share a significant portion of network applications, and ineluctably, will generate
tremendous amount of multicast traffic in networks. Along with the development of
next-generation network (NGN), multicasting will definitely becomes an important
feature for any future switching systems designed for working in NGN.

For routers or switches in networks, the traffic expansion due to multicast replica-
tion will degrade their switching performances which are achieved in the case of uni-
cast-only load. In order to support multicast traffic with much less or no performance
degradation under heavy multicast traffic load, several promising solutions [1] have
been proposed. General speaking, these proposals can be classified into four kinds
according to the means of multicast duplication: the first kind is that multicast cells
are replicated at input ports before they are imported into VOQ so that the individual
duplications are switched through the fabric as unicast cells [2]; the second alternative
is to take advantage of the resource in switch fabrics to achieve multicast replication

* This work is supported by the National High-Tech Research and Development Program of

China (863 Program) under grant number 2004AA103130.

442 X. Hu et al.

[3], [4]; the third kind is a hybrid replication scheme, where part of the replication
occurs in the input ports and part occurs in the fabric [5]; the fourth kind is to use
additional switching paths that allow the parallel transfer of multicast cells to their
destinations (e.g., Multicast-enable Protocol Agnostic Forwarding Engine in [6]).

However forcible these theoretical multicast solutions may be, they have not made
much difference to the way switches or routers are built due to their notoriously un-
practical implementation complexities, which has been thoroughly discussed by F. M.
Chiussi and A. Fraopncini (Refer to [1] for details.) In fact, most switches and routers
are still put up on the assumptions that multicast traffic constitutes a relatively small
part of the total traffic, and that the distribution of multicast destinations is rather
benign [1]. Intuitively, the resulting multicast performance is far from satisfaction.

In order to find a more tractable and practical switch architecture for supporting
multicast traffic, we propose a new Combined Input Separate Output Queued switch
(CISOQ) in this paper. The scope of our discussion is restricted to the standalone
switch fabric based on bufferless crossbar. But all the results presented qualitatively
apply to highly distributed switching architectures (e.g., MSM fabric arrangement in
[7]). The remaining parts of this paper are organized as follows. Section 2 presents the
architecture of a NN × CISOQ. Section 3 describes the graph model of the cell
scheduling problem for CISOQ, and extends the OCF and LQF in [8] from the uni-
cast-only traffic load to the multicast load. In Section 4, both simulation results and
theoretic analyses are provided to evaluate the multicast performance of CISOQ when
it is scheduled by OCF and LQF and maximal matching algorithms. Finally, in Sec-
tion 5, we offer some concluding remarks and topics for future studies.

2 A CISOQ Switch

Consider the NN × CISOQ 1 in Fig. 1, connecting N inputs to N outputs. At the be-
ginning of time slot n , either zero or one cell (unicast cell or multicast cell) arrives at
input)1(Nii ≤≤ . Each unicast cell)(, nAU

ji)1,1(NjNi ≤≤≤≤ contains both an uni-

cast identifier and an unicasting-destination identifier that indicates which Unicast
Output Port

jUOP)1(Nj ≤≤ it is destined for. When)(, nAU
ji

destined for
jUOP ar-

rives at input i , it is immediately placed in the queue U
jiQ , . Correspondingly, each

multicast cell)(1, nAM
Ni +)1(Ni ≤≤ contains both a multicast identifier and a multicast-

ing-destination identifier that indicates its set of destined Multicast Output
Ports }1:{ NjMOPj ≤≤ . When)(1, nAM

Ni +
 arrives at input i , it is directly placed in the

queue M
NiQ 1, + no matter what multicasting-destination identifier is. This input queuing

scheme overcomes the HOL blocking of unicast cells in the same way as the VOQ
scheme presented in [8]. In each time slot, each arbiter in every input)1(Nii ≤≤

selects no cell or one cell from the HOL of either U
jiQ , or M

NiQ 1, + according to the deci-

1 Without loss of generality, we assume that a CISOQ switch is fixed-size cell based. And,

time is divided into time slots, equaling to the transmission time of one cell.

 Scheduling Multicast Traffic in a Combined Input Separate Output Queued Switch 443

sion made by the central scheduler. Then, an Indication Signal is produced in accord
with the unicast identifier or multicast identifier of the selected cell in order to control
the selected unicast cell or multicast cell to be forwarded into either the Unicast Input
Port iUIP)1(Ni ≤≤ or the Multicast Input Port MIP .

)(1,1 nQU

)(,1 nQ N
U

)(, nQ NN
U

)(1, nQ N
U

)(1,1 nAU

)(1, nA NN
M

+

)(1, nA N
U

)(1 nA

)(nAN

)(1 nD

)(nDN

MIP

1UIP

NUIP

1MOQ

NMOP

1UOP

NUOP

NN ×

1SOQ

NSOQ

1UOQ

NMOQ

NUOQ

1MOP
N×1

)(1,1 nQ N
M

+

)(1, nQ NN
M

+

)(1,1 nA N
M

+

Fig. 1. Architecture of a NN × CISOQ switch

The NN × bufferless crossbar is responsible for the proper transfer of)(, nAU
ji

from iUIP to
jUOP . In a parallel manner,)(1, nAM

Ni +
 is duplicated and multicasted from

MIP to }1:{ NjMOPj ≤≤ by a N×1 multicast module. The output queue architec-

ture for output j)1(Nj ≤≤ is divided into two separate parts where)(, nAU
ji

from

jUOP is placed into Unicast Output Queue
jUOQ and duplication of)(1, nAM

Ni +
 from

jMOP is placed into Multicast Output Queue
jMOQ . The separation between

jUOQ

and
jMOQ may be logical or physical. We call the resulting architecture as Separate

Output Queue
jSOQ in this paper. Clearly, an output mechanism is needed in

jSOQ to

regulate the access to the output line.
The approach about how to design and implement multicast modules is available

and simple. Please refer to [13] for details. There is no need for us to repeat it again.
As shown in Fig. 1, by means of redundant multicast module to realize multicast

replication, CISOQ brings along with it the advantages that there is neither explosion
in the number of VOQ nor in the number of backpressure entities compared with the
scenario where multicast replication occurs in the switch fabric. There are no needs to
increase the speed of the VOQ or the speed of the switch fabric by a factor of N com-
pared with the case where multicast replication occurs before VOQ. So, what can be
concluded from a practical viewpoint is that the architecture of CISOQ is highly scal-
able and suitable to be deployed in the switches or routers with gigantic capacities.
Furthermore, Section 4 will show that the multicast performance of CISOQ is re-
markably well too, even under heavy multicast load.

444 X. Hu et al.

3 Multicast Scheduling Algorithms for CISOQ

3.1 Graph Model for the Scheduling Problem

In each time slot, the cell scheduling problem on the NN × CISOQ can be modeled
as finding maximum weight matching (Clearly, a maximum size matching is just a
special case of the maximum weight matching with all edges associated with weight
1.) on bipartite graph),(EVG = , where

OI VVV ∪= , the set of inputs

}1:{ NiiVI ≤≤= , }{}1:{ MIPNjUOPV jO ∪≤≤= , NVI =|| and)1(|| += NVO
,

E={edges between vertices of
IV and

OV }. Concretely, an edge between i and

jUOQ , associated with weight)(, nwU
ji

, represents the connection request of the uni-

cast cell at the HOL of U
jiQ , . An edge between i and MIP , associated with weight

)(1, nwM
Ni + , represents the request of the multicast cell at the HOL of M

NiQ 1, + .

3.2 Maximum Weight Matching

In [8], two maximum weight matching algorithms: oldest cell first (OCF) and longest
queue first (LQF) have been discussed just under the condition of unicast-only load.
In this paper, we extend the use of OCF and LQF from the unicast-only load to the
multicast load by giving novel Definition 1 for the waiting time of the multicast cells
in M

NiQ 1, + and Definition 2 for the queue occupancy)(1, nLM
Ni + of M

NiQ 1, + .

Definition 1: At time slot n , the waiting time)(,1, nW M
lNi + of

lM in M
NiQ 1, +)1(Ni ≤≤

equals ()lll msn)(−β , where)0(LlM l ≤≤ denotes the thl multicast cell in M
NiQ 1, + ,

1M is the cell which arrives M
NiQ 1, + just at time slot n , LM is the cell at the HOL of

M
NiQ 1, + , and let 0, 00 =mM when there is no cell in M

NiQ 1, + ,)2(Nmm ll ≤≤ is the

number of destined Multicast Output Ports of
lM , ()nss ll ≤≤1 is the time when

lM arrived at input i ,)1
1

(≤≤ l
l

l m
ββ is a QoS coefficient for multicast traffic.

Consider the situation when there is a NN × CISOQ scheduled by OCF and
lM is

queuing in M
NiQ 1, + .Suppose

lM need to be multicasted to lm output ports which

means lm duplications of
lM need to be transmitted. If

lM has waited in M
NiQ 1, + for

)(lsn − slots, it has the same effect that every duplication has been waited for

)(lsn − slots too. So, the total waiting time of these
lm duplications

equals ()ll msn)(− . While, in the same input i , if the cell arrived at slot ls was an

unicast cell
lU instead of

lM , the waiting time of
lU would equal)(lsn − . In order

to prevent the waiting time of
lM increase too faster than

lU , which may leads to

 Scheduling Multicast Traffic in a Combined Input Separate Output Queued Switch 445

heavy throughput degradation of unicast traffic, ()ll msn)(− ought to be multiplied

by a coefficient)1
1

(≤≤ l
l

l m
ββ . As lβ decreases, the throughput of multicast

traffic will be reduced. Specially, if
l

l m

1=β ,
lM would just be viewed as an unicast

one by OCF. Finally, in this paper, we just consider OCF algorithm for which the

weight)(1, nwM
Ni + and)(, nwU

ji is integer-valued, and)(1, nwM
Ni + equals the waiting

time)(,1, nW LNi
M

+ of
lM ; in the same time,)(, nwU

ji equals the waiting time

)(, nW ji
U of the unicast cell at the HOL of U

jiQ , .

By means of the QoS coefficient, the provision of multicast cells’ QoS can be con-
trolled, which will be proven by simulation results in Section 4.

When the CISOQ is scheduled by LQF instead of OCF, a parallel definition of the
queue occupancy)(1, nLM

Ni +)1(Ni ≤≤ of M
NiQ 1, + can be given.

Definition 2: At slot n , the queue occupancy)(1, nLM
Ni +)1(Ni ≤≤ of M

NiQ 1, + equals

=

)(
0

L

l
llmγ , where)2(Nmm ll ≤≤ is the number of destined Multicast Output Ports

of
lM , let)0(LlM l ≤≤ denotes the thl multicast cell in M

NiQ 1, + ,
1M is the cell which

arrives M
NiQ 1, + just at slot n ,

LM is the cell at the HOL of M
NiQ 1, + , and let 0, 00 =mM

when there is no cell in M
NiQ 1, + ,)1

1
(≤≤ l

l
l m

γγ is a QoS coefficient for multicast traffic.

3.3 Maximal Matching

For practical use, a maximal matching algorithm is a better option than a maximum
weight matching algorithm since it is easier to be implemented and possible to avoid
unfairness. As can be concluded from the discuss of the graph mode for the schedul-
ing problem on the CISOQ, iterative maximal size matching scheduling algorithms
(e.g., PIM [9], iSLIP [10], DRR [11] etc) used in unicast-only load before can also be
used to the case of multicast load by the CISOQ in order to find a maximal matching.

4 Performance Analyses of CISOQ

In this section, we adopt the conceptions in [12], and furthermore, we extend the defi-
nitions and results of [12] from the unicast-only load to the multicast case.

4.1 An Efficient CISOQ

Considering the fluid model of the CISOQ shown in Fig. 1, We define)(1, nAM
Ni +

 as the

number of multicast cells that has arrived at M
NiQ 1, + and)(, nAU

ji
 as the number of

446 X. Hu et al.

unicast cells that has arrived at U
jiQ , up to time slot n . We assume the multicast and

unicast arrival processes },,1,),(),({ ,1, NjiAA U
ji

M
Ni ⋅⋅⋅=⋅⋅+ satisfy a strong law of large

numbers (SLLN), as proposed in [12]: with probability one,

,,,1,
)(

1,
1,

lim Ni
n

nA
M

Ni

M
Ni

n

⋅⋅⋅== +
+

∞→
λ .,,1,,

)(
,

,

lim Nji
n

nA U
ji

U
ji

n

⋅⋅⋅==
∞→

λ (1)

Where M
Ni 1, +λ is called the multicast arrival rate at M

NiQ 1, + and U
ji,λ is called the unicast

arrival rate at U
jiQ , . In the following definition, we extend the notion that no inputs or

outputs are oversubscribed from unicast-only load to the case of multicast traffic.

Definition 3: When loaded with multicast traffic, no inputs or outputs are said to be
oversubscribed if

,,,1,1,
1

,1, Nii
N

j

U
ji

M
Ni ⋅⋅⋅=≤+∀

=
+ λλ .,,1,1,

1
, Njj

N

i

U
ji ⋅⋅⋅=≤∀

=

λ (2)

Definition 4: The multicast traffic is said to be multicast-admissible, if

.1
1

1, ≤
=

+

N

i

M
Niλ

(3)

Definition 5: When loaded with multicast traffic, a switch operating under a matching
algorithm is said to be rate stable if, with probability one,

,,,1,
)(

1,
1,lim Ni

n

nD M
Ni

M
Ni

n

⋅⋅⋅== +
+

∞→
λ .,,1,,

)(
,

,

lim Nji
n

nD
U

ji

U
ji

n

⋅⋅⋅==
∞→

λ (4)

where)(1, nDM
Ni +

 is the number of multicast cells departed from M
NiQ 1, + and)(, nDU

ji
 is

the number of multicast cells departed from U
jiQ , up to time slot n .

Definition 6: When loaded with multicast traffic, a switch is said to be efficient if
there at least exist one scheduling algorithm which can make this switch rate stable
for any arrival processes satisfying (1), (2) and (3).

Theorem 1: When loaded with multicast traffic, CISOQ is efficient when it is sched-
uled by LQF or OCF, as long as the speedup 1≥s .

Theorem 2: When loaded with multicast traffic, CISOQ is efficient when it is sched-
uled by any maximal weight matching algorithm, as long as the speedup 2≥s .

Proof: Let)(nλ be the rate matrix of the input traffic at time slot n :

])()([)(1,, nnn M
Ni

U
ji += λλλ , .,,1, Nji ⋅⋅⋅= (5)

From Def. 3,4, we know λ is a class of doubly sub-stochastic non-square)1(+× NN

matrices. While in the unicast-only case, λ just change into square NN × ones as in
[12], and,

 Scheduling Multicast Traffic in a Combined Input Separate Output Queued Switch 447

)]([)(, nn U
jiλλ = , .,,1, Nji ⋅⋅⋅= (6)

So, the proofs of Theorem 1,2 of [12], which are carried out in the unicast-only
case, can be used to prove Theorem 1,2 of this paper as long as the definitions of both
fluid model and notations used in [12] are improved from square NN × matrices to
non-square)1(+× NN ones by the same way as λ above. We omit the details here.

An efficient CISOQ can keep each output link 100% busy. From the long-run frac-
tion of time viewpoint, an efficient CISOQ can achieve 100% throughput, if it has
infinite buffer capacities. However, for practical use, a CISOQ with finite buffer ca-
pacities can approach efficient by means of an elaborate queuing discipline which is
closely tied with CISOQ architecture and will be the topic of our forthcoming paper.

4.2 Simulation Result

The simulation is carried out in a 3232 × CISOQ scheduled by OCF, which is
loaded with both multicast and unicast traffic. The multicast destinations of multicast
cells are uniformly distributed, but the total number of destined Multicast Output
Ports of every multicast cell is fixed. Let 33mβ > 22mβ > 11mβ =1. While with

the ratio of multicast load increasing from 0.1 to 1, the performance of CISOQ turns
worse more slowly as the value of m⋅β increases, as shown in Fig. 2.

Fig. 2. Simulation result of a 3232 × CISOQ

5 Conclusion

In this paper, we have presented the Combined Input Separate Output Queued
(CISOQ) switch, which is a new switch fabric configuration achieving 100%
throughout as long as the multicast traffic load satisfies the assumption that it is mul-
ticast-admissible and SLLN and that there is no inputs or outputs to be oversub-
scribed. And, we are not aware of any analytical studies of multicast traffic arrival
processes prior to this work. Obviously, the assumption applies to very general multi-
cast traffic, so the results intrinsically have high practical significance.

448 X. Hu et al.

Indeed, the provision of QoS guarantees for unicast and multicast traffic mainly
depends on two key factors: one is the scheduling algorithm that arbitrates the transfer
of cells prepared at the HOL of each input port across the switch fabric; the other is
the queuing discipline that is responsible to prepare cells according to certain re-
quirements of QoS within each VOQ and resolve the conflicts occurring among
HOLs of all VOQs in each input port. Till now, in this paper, we have just concen-
trated on the scheduling algorithm pertaining to CISOQ. The queuing discipline
which is closely tied with CISOQ will be the topic of our forthcoming paper.

References

1. F. M. Chiussi and A. Francini, “Scalable Electronic Packet Switches,” IEEE J. Select. Ar-
eas Commun., Vol. 21, No. 4, (May 2003) 486–500

2. Chen X., Lambadaris I., Hayes J., “A general unified model for performance analysis of mul-
ticast switching,” in Proc. IEEE GLOBECOM’92, New York, Vol. 3, (1992) 1498–502

3. W. Chen, Y. Chang, “A high performance cell scheduling algorithm in broadband multi-
cast switching systems,” in Proc. IEEE GLOBECOM’97, New York, Vol. 1, (1997) 170–4

4. B. Prabhakar, N. McKeown, R. Ahuja, “Multicast scheduling for input queued switches,”
IEEE J. Select. Areas in Commun., Vol. 15, No. 5, (June 1997) 855–66

5. M. Ajmone Marsan, F. M. Chiussi, A. Francini, et al, “Compression of multicast labels in
large input-queued IP routers,” IEEE J. Select. Areas Commun. Vol. 21, (2003) 21-30

6. M. Song, J. Song and H. LI, “Improved Multicast Traffic Scheduling Scheme in the
Packet-Switching Systems,” Journal of China Universities of Posts and Telecommunica-
tions, Vol. 11, (Sep. 2004) 1–7

7. F. M. Chiussi and A. Francini, “A Distributed Scheduling Architecture for Scalable Packet
Switches,” IEEE J. Select. Areas Commun., Vol. 18, No. 12, (Dec. 2000) 2665–2683

8. N. Mckeown, A. Mekkittikul, V.Anantharam and J. Walrand, “Achieving 100% Through-
put in an Input-Queued Switch,” IEEE Trans. Commun., Vol.47, (Aug. 1999) 1260–1267

9. T. Anderson, S. Owicki, J. Saxie, and C. Thacker, “High speed switch scheduling for local
area networks”, ACM Trans. Comput. Syst., Vol. 11, No. 4, (Nov. 1993) 319–352

10. N. McKeown, “The iSLIP scheduling algorithm for input-queued switches”, IEEE/ACM
Trans. on Networking, Vol. 7, No. 2, (April 1999) 188–201

11. J. Chao, “Saturn: a terabit packet switch using dual round-robin”, IEEE Communication.
Magazine .December, (2000) 78–84

12. J. Dai and B. Prabhakar, “The throughput of data switches with and without speedup”, in
Proc. of IEEE INFOCOM’2000, (May 2000) 556–564

13. Gua, Ming-Huang and Ruay-Shiung Chang, “Multicast ATM switches: survey and per-
formance evaluation,” Computer Communication Review, Vol. 28, No 2, (1998) 98–131

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 449 – 452, 2005.
© IFIP International Federation for Information Processing 2005

A QoS-Based Scheduling Mechanism for Overlay
Aggregate Traffics

Yunbo Wu1,2, Zhishu Li1, Zhihua Chen3,Yunhai Wu4, Li Wang1, and Tun Lu1

1 School of Computer Science, Sichuan University,24 southern section1,
1st Ringroad, ChengDu, China

(ybwutm,tm_001,tm_002,ths_01)@tom.com
2 Ningbo Fashion Institute, Ningbo, China

3 Kunming Meteorological Administration, west of XiHua Park, Kunming, China
khzitm@tom

4.Yunnan Design Institute of Water Conservancy and Hydroelectric Power, Kunming, China
juan01_tom@tom.com

Abstract. This paper presents a control mechanism in SON(Service Overlay
Network) architecture to provide delay guarantees of different aggregate traffics
over IP network. In addition to the bandwidth provision problem of aggregate-
traffic in service overlay network, queuing delay in the service gateway is
another critical QoS parameter, and diverse multimedia flows have different
delay requirements. To assure the delay requirements of aggregate flows in
service overlay network, we present a simple but effective adaptable control
mechanism, which consists of two-queues with exhausitive service in cyclic
order and characterizes the abilities to ensure delay requirements of various
aggregate flows according to their burstiness. Moreover, Associated
performance is analyzed by the Markov chain and probability generation
function, and simulations validate this analysis.

1 Introduction

With the explosive of growth of the Internet and multimedia applications, the need for
QoS guarantees is becoming more and more ubiquitous in the networks of future.
Moreover, Everything over IP has been regarded as a preferred solution of next-
generation Internet, then IPQoS emerges paramount importance in multimedia
delivery. In order to achieve IP QoS, several new significant architectures such as
IntServ, DiffServ, and MPLS have been proposed by IETF in last few years.
However, these and other proposals for Internet QoS, have two key requirements:
first, they require all routers along a path to implement QoS mechanisms for
scheduling and buffer management, and second, they require the right incentives for
Internet Service Providers (ISPs) to enable these functions. Unfortunately, these
demands have often turned out to be difficult to meet. Internet QoS remains to be an
open issue till now.

On the other hand, the Internet has evolved to become a commercial infrastructure
of service delivery. Many value-added and content delivery services are developed
via overlay networks rather than IP-layer, such as content delivery overlays [1], p2p

450 Y. Wu et al.

file sharing overlays [2]. Besides, Ref. [3,4] discussed service overlay networks and
service composition, while Ref. [5] studied service grid. SON architecture provides
more effective and efficient solution in QoS guarantee. Relying on the bilateral SLAs
the SON can deliver end-to-end QoS sensitive services to its users via appropriate
provisioning and service-specific resource management. The underlying network do-
mains can aggregate traffic based on the SONs they belong to and perform traffic and
QoS control accordingly based on the corresponding SLAs.

In this paper, we’ll deploy a control mechanism in SON architecture to provide de-
lay guarantees of different aggregate traffic in service overlay networks. Considering
that different types of multimedia traffics characterize various burstiness, our control
model consists of two asymmetric queues with exhaustive service in a cyclic order.
The model function independently in the service gateway of SON and has the ability
of providing lower waiting delay to the flows with higher burstiness without any
priority pre-assigning. Furthermore, we adopt an ingenious but efficient method to
deal with this asymmetric polling system, and obtain exact average waiting time
formula. Simultaneously, associated simulation verifications are presented.

The rest of the paper is organized as follows: in section 2 we describe our control
model and make some analysis of this model, in section 3 we address our concluding
remarks.

2 Model Evaluation

Our model consists of two queues with exhaustive service in a cyclic order.
Considering that different types of multimedia traffics characterize various burstiness,
we may classify multimedia traffics in to two queues according to burstiness, viz. one
queue with larger burstiness and another with smaller ones. When server visits a
queue in turn, not only all the packets already waiting in the queue will be served, but
also comprise packets arriving during the service intervals. After completing the
service of one queue, the server will move to the succeeding queue and incur a
switching-over time, then start to serve the queue in the same way. There are three
independent random processes relating to each queue separately, i.e., the packets
arriving, servicing upon a queue, and switching-over from one queue to another.
Considering difference between two traffics, parameters associated with these random
processes are generally not the same. Namely, this queuing model is asymmetric
queuing system. In terms of QoS requirements many metrics are concerned, such as
delay, delay jitter and packet loss. Our work will focus on the performance of delay of
multimedia resources, which incurred during networking node. In our analysis, we
condition the discrete system and infinite capacity in each queue. Then Related joint
generating functions are defined as follows:

() () ())(() ()())()(1121121222112211 ,, zAFzABzGzAzARzzG = (1)

() () ()) () ()()()()(2221221122111212 ,, zzAFzABGzAzARzzG = (2)

From equations (1)-(2), mean packet waiting time in queue Qi can be obtained as
following:

 A QoS-Based Scheduling Mechanism for Overlay Aggregate Traffics 451

()
()

() ()
()

()
() .2,1,
12

1

12

112

2

,
22

2

=
−
′′

+
−

′′−++= i
BA

ig

iig
w

i

ii

ii

iii

ii

i
i ρ

λ
ρλ

ρρ
λ

(3)

Moreover, we’ll present some numerical results of packet average waiting time in
each queue according to Equations (3) (Refer to Fig.1 and Fig.2). Where w1s, w2s
represent the simulation value of w1, w2, respectively.

Fig. 1. Average waiting time versue average service time (γ1= γ2=1,λ1 = λ2=0.1, β1=1)

Fig. 2. Average waiting time versus average arrival rate (γ1= γ2=1, β1 =β2=1,λ2 = 0.01)

Fig.1 shows that the queue with larger value of has lower mean waiting time than

the other one. The reason is that service related to the queue has been intensified.
While Fig.2 depicts that the average waiting time related to having higher arrival rate
is always smaller than the other related to having lower arrival rate. Moreover, in
both cases the waiting time increases as λ1 raising, just for the reason that the load of
system increases also. In addition, simulation results show good agreement with the
analytical results.

Average service Time 2

A
ve

ra
ge

W
ai

tin
g

T
im

e

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

1 2 3 4 5

w1

w2

w1s

w2s

Arrival rate λ1

A
ve

ra
ge

 w
ai

tin
g

tim
e

0

0.5

1

1.5

2

2.5

3

0.
05 0.

1
0.

15 0.
2

0.
25 0.

3
0.

35 0.
4

0.
45 0.

5

w1

w2

w1s

w2s

452 Y. Wu et al.

3 Conclusions

From the discussions above-mentioned, we can draw the following conclusions: our
scheduling model can provide lower waiting delay to the resource with higher
burstiness without any priority pre-assigning. Meanwhile changing the value of can
influence the waiting delay, which implies that the length of information packet can
affect waiting delay. These will benefit multimedia applications delivery over IP
networks.

QoS provision for multimedia application delivery in Internet is a crucial and
complex issue. Traditional IP QoS mechanisms, such as the ones offered by Interserv
and Diffserv, have encountered more difficulties in implementation and deployment
in current Internet. Instead, the method that provides value-added with QoS guarantee
based on overlay networking is getting more attractive and to be a promising solution
in Internet multimedia applications. Our control machinery can be embedded
independently in the service gateway of SONs as a supplement, it can provide delay
guarantee to various traffics with different burstiness. This combination architecture
may implement all-around end-to-end QoS guarantees. To extend our research, we
will further our control model to satisfy QoS demands of multi-types multimedia
traffics, and continue our research on the end-to-end QoS issue of various overlay
networks.

References

1. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. CAN: A scalable content-
addressable network. In Proceedings of ACM Sigcomm, August 2001.

2. Gnutella. http://gnutella.wego.com/.
3. L. Subramanian, I. Stoica, H. Balakrishnan, and R. H. Katz. OverQoS: Offering QoS using

Overlays. Proc. of First Workshop on Hop Topics in Networks (HotNets-I), Princeton, New
Jersey, October 2002.

4. X. Gu, K. Nahrstedt, R. N. Chang, and C. Ward: "QoS-assured service composition in
managed service overlay networks," in the 23rd IEEE International Conference on
Distributed Computing Systems (ICDCS2003), May 2003.

5. Gill Waters, John Crawford, Sei Guan Lim: Optimising multicast structures for grid
computing. Computer Communications 27 (2004) 1389–1400

Energy Conservation by Peer-to-Peer Relaying

in Quasi-Ad Hoc Networks�

Andrew Ka-Ho Leung and Yu-Kwong Kwok��

Department of Electrical and Electronic Engineering,
The University of Hong Kong, Pokfulam Road, Hong Kong

ykwok@hku.hk

Abstract. Thanks to the highly popular dual channel capabilities (e.g.,
GSM plus Bluetooth) in modern handheld personal communication de-
vices, an integrated cellular and ad hoc peer-to-peer network (i.e., a
quasi-ad hoc wireless network) has already been widely reckoned as a
readily practicable and attractive mobile computing environment. In this
paper, we propose a co-operative relaying scheme, called eeRelay, for such
a quasi-ad hoc network, to extend the life-time of low energy level users
significantly. More importantly, the energy efficiency of the whole net-
work is also remarkably increased.

1 Introduction

The problem of short service life of most 3G handsets serves as an alarming alert
that energy efficiency is a crucial factor in making a ubiquitous wireless com-
munication system a successful story [7]. In view of the fact that contemporary
battery technology cannot solve the service life problem, in our study we find
that “relaying” can be one promising strategy in addressing the issue.

Nowadays hand-held wireless communication devices are commonly equipped
with more than one wireless interface and are capable of communicating both
with the base station and directly with other users in ad hoc manner. Thus, we
believe that an interesting kind of ubiquitous wireless networks in future is quasi-
ad hoc in nature where communication links can be classified into two modes:
(1) one-to-one communication among peers (e.g., a user shares files with another
user directly using WLAN or data packets transmitted from one measurement
node to another one) and (2) many-to-one communication from some nodes to
the “sink” (e.g., mobile phone users access the base station in the uplink). We
treat two modes of communication linkage differently (see Figure 1(a)).

We propose a new collaborative energy management scheme, called eeRelay,
for such a quasi-ad hoc network to increase the energy efficiency. We adapt the
transmission power of mobile terminals to reduce the energy used. This is done
by using another nearby higher energy level user as a relay.

The remainder of this paper is organized as follows. In Section 2, we provide
some background information on relaying systems and describe our approach to
� This research was supported by a grant from the Research Grants Council of the

HKSAR under project number HKU 7157/04E.
�� Corresponding author.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 453–460, 2005.
c© IFIP International Federation for Information Processing 2005

454 A.K.-H. Leung and Y.-K. Kwok

increasing the energy efficiency by relaying actions. In Section 3, we present our
simulation results. Finally, in Section 4 we discuss the benefit of our protocol by
taking incentives into consideration.

2 Related Work and Proposed Approach

Relaying have been proposed in the literature [3], [5] and [9]. However, nearly
all of these proposed relaying schemes do not explore the possibility of co-
operation in energy domain. For this reason, we look at the relaying problem
in another perspective in this paper. Specifically, we define who should be the
relaying node so that the relaying process could be more energy efficient. We use
the concept of “helpers” to replace the traditional simple concept of “relays”.

2.1 Design of the Proposed eeRelay Protocol

We use cellular mobile network as an application example of quasi-ad hoc net-
work to describe our energy efficient relaying protocol, namely eeRelay. When
a low energy level user needs to set up a connection to the base station (BS).
The BS dynamically select an energy efficient relay (helper) to relay the traffic
for the low energy users. The BS is assumed to have location information of all
users.1 In our design, a user is categorized as a “Helper” in Helper Set H if:
(1) its energy level is high enough; and (2) it is physically situated in the
“Helper’s Region D” with respect to a low energy level user.

Mathematically, for a set of users n1, . . . , nn ∈ N, a user ni ∈ H if E(ni) ≥
γ and ni ∈ D where E(ni) denotes the energy level of a user ni, m ≤ n,H ⊂ N.

D is named as “Helpers’ Region”, and is defined as follows. It makes sure
that, for a user to be qualified as a “Helper”, it needs to be situated in certain
geographical position such that the relationship Pu→h + Ph→BS < Pu→BS is
satisfied. This ensures that the relaying action will not only reduce u’s energy
consumption but will also be an energy efficient one even when we focus on the
total energy used.

We assume a path loss propagation model with path loss exponent β, i.e.,

PA→B = kdβ
A→B (1)

where PA→B is the required transmit power between point A and B and dA→B is
the distance between them. In general, β is an integral value ranges from two to
four in urban areas. In our analysis we set it as four which is a value commonly
used in the literature [8]. Finally, k is a constant. 2

1 The location information can be obtained by using GPS on mobile devices or tech-
niques such as time-difference triangulation performed by three or more nearby base
stations.

2 Please note that the value of k could be different for communication links for BS–
mobile terminal or mobile terminal–mobile terminal. But here we used one fixed
value of k as an approximation. Our simulations use more realistic path loss model
to show that this approximation is justified for the purpose of defining the Helper’s
Region.

Energy Conservation by Peer-to-Peer Relaying 455

Sink

node

Many-to-one,

e.g., uplink of

cellular network

One-to-one,

e.g., Ad hoc

mode of 802.11

WLAN

Normal

node

Normal

node

(a) A quasi-ad hoc network

Base
Station

h
u

(b) Using a high energy “helper” to
relay data for a low energy source

Fig. 1. eeRelay

Now let us consider Figure 1(b) in which h acts as a relay of u to communicate
with the BS. Our goal is to find out under what circumstances would Pu→h +
Ph→BS < Pu→BS so that we can select a user (helper candidate) situated in such
a position that its relaying action will not only reduce u’s energy consumption
but will also be an energy efficient one even when we focus on the total energy
used.

According to our path loss model, to achieve this goal, we need:

d 4
u→BS > d 4

u→h + d 4
h→BS (2)

By cosine law, we have:

d 2
u→BS = d 2

u→h + d 2
h→BS − 2du→hdh→BScosθ (3)

Substitute Equation (3) into Equation (2), we have:

⇒ 2(d 2
u→h + d 2

h→BS)cosθ
du→hdh→BS

− 2cos2θ < 1 (4)

A Helper’s Region with respect to the position of the lower energy user3 is
plotted in Figure 2(f) (shaded area) and is found to be “ellipse-like”.

2.2 Implementation

Phase I—Helper Request. At first, when a low power user u wants to make
a connection, it triggers the helper request process. It transmits, with extremely
low power (say, 0.1W or less), a “helper searching packet” to ask for any user
nearby which could be a helper candidate according to the definition in Sec-
tion 2.1 (see the condition specified by Equation (1)). Any nearby user which

3 In this paper the term “user” is used interchangeably with the term “UE” (User
Terminal) used in conventional 3G UMTS-WCDMA system.

456 A.K.-H. Leung and Y.-K. Kwok

receives this packet checks its energy level and see if it could be a helper can-
didate. If it fulfills the requirement of condition (1), it sends an “helper access
packet” to BS on behalf of u, containing its own ID and u’s ID after a random
back off period so as to minimize the probability of all ACKs from different
helper candidates colliding with each other. u keeps a timer for “helper search-
ing timeout”. It re-sends a helper request packet if there is no reply from any
nearby neighbor. If u still fails in finding a helper after several attempts it will
connect to BS on its own.

Phase II—Base Station Acknowledgment and Relay Set Up. Upon
receiving the access packet from the helper candidate, the BS checks whether this
helper candidate is inside the helper’s region and confirms that the candidate’s
energy makes it eligible for helping u. BS collects helper access packets from
all the helper candidates and form a helper set Hu for u. BS then selects one
eligible helper candidate h from Hu and acknowledges both u and h by sending
an “BS-ACK packet” to them. After both u and the helper candidate h have
received the BS-ACK, they do a handshaking with each other and connection
from u to BS through h can be started.

Phase IV—Helper Maintenance and Tear Down. The helper set Hu

formed before is still useful after a helper h has been selected for u already.
This is because both u and h are moving, there can be a case that h is moving
out of the “Helper’s Region” of u suddenly, or h is moved to other cell, then
a helper handoff is needed, so the BS asks the helper to update its position
and u’s position periodically during the connection (h can get u’s GPS position
information easily by asking u to add it into the data packet periodically). Both
u and h tear down the connection after u terminates the call.

3 Performance Results

3.1 Simulation Platform

Now we study the performance of eeRelay using simulations. In our simulations,
50 UEs are scattered randomly in an 800 m × 800 m area initially and they
are allowed to move freely according to the mobility model mentioned above. In
this paper we consider a single cell case with no inter-cell handoff. We focus on
our scheme and perform “helper handoff” only. The transmit power is selected
when connection between BS and UE is established. We also assume that there
is no collision in all ACK or BS-ACK transmissions. Each simulation is run for
50,000 seconds.

The wireless devices are assumed to have three possible modes of operation:
Transmit, Receive and Idle. The energy consumption ratio of the three modes
is set as 1 : 0.6 : 0.5, as indicated by the experimental measurements done by
Feeney and Nilsson [4]. The energy consumption on a node is modeled as

PTxTTx + PRxTRx + PIDLETIDLE

Energy Conservation by Peer-to-Peer Relaying 457

where the first three P terms represent power consumption in Transmit, Receive
and Idle modes, respectively, the T terms represent corresponding time durations
that the mobile devices are in different modes.

Our scheme applies to the uplink of an integrated cellular and ad hoc net-
work. To simulate this environment, we obtain reference system parameter val-
ues from the link budget for the uplink of a typical UMTS-WCDMA 3G sys-
tem. The maximum transmit power of mobile node is 0.25W (24 dBm) and
the receiver Sensitivity for 384 kbps data service at BER = 10−3 is –109.2
dBm [6]: 4 Using the Okumura-Hata Model [6] we can estimate the transmission
range of BS and mobile devices. We assume that the calls arrive according to
a Poisson distribution where the call arrival times and the inter-arrival times
between calls are mutually independent. Our mobility model assumes UEs’ ve-
locities follow a Gaussian distribution with mean = 3 km/hr, (i.e., 0.83 m/s) and
variance = 0.54.

3.2 Simulation Results

First we consider the amount of energy used for control purpose (e.g., trans-
mission or reception of helper search packets, helper access packets, BS-ACK
packets, relaying set up and torn down). As shown in Figure 2(e), the total
amount of energy consumed for control purpose is below 0.2% of total energy
of each node. As eeRelay is running, more calls are set up and tear down. After
a transient period of around 5,000 seconds, the percentage of total energy con-
sumed for control purpose falls and finally attains an approximately constant
value.

Performance Metrics. We consider two performance metrics, the first one
is for low energy level users defined according to Section 2.1. We define the
performance metric as “Percentage life extension of uk”:

life of uk with helper scheme - life of uk without helper scheme
life of uk without helper scheme × 100 (5)

where uk ∈ U, k ≤ n. Here, “life” is defined as the total duration of time that a
UE operates until it exhausts its battery. From this metric we define the average
percentage life extension of low energy level users as:

�
k Percentage life extension of uk

k
(6)

A similar metric, which sums and averages over all users is defined as a mea-
sure for the overall energy efficiency for the whole network, namely “Percentage
life extension of all users”.

4 “UE” and “Node B” are the terminology used in UMTS-WCDMA specification for
Mobile Users and Base Station. We follow this convention and use each pair of them
interchangeably in this paper.

458 A.K.-H. Leung and Y.-K. Kwok

30 40 50 60 70 80
0

50

100

150

200

250

300

350

400

450

Average Life Extension of Low Energy Users

Threshold Value
low

A
ve

ra
ge

 L
ife

 E
xt

en
si

on
 /

%

(a) Average life extension of low energy
level users, mean velocity = 0.83 m/s

30 40 50 60 70 80
0

20

40

60

80

100

120
Average Life Extension of All Users

Threshold Value
low

A
ve

ra
ge

 L
ife

 E
xt

en
si

on
 /

%

(b) Average life extension of all users,
mean velocity = 0.83 m/s

0.5 1 1.5 2 2.5 3 3.5
0

10

20

30

40

50

60

70
Average Life Extension of Low Energy Users

Mean Velocity of Nodes / ms−1

A
ve

ra
ge

 L
ife

 E
xt

en
si

on
 /

%

(c) Average life extension of low energy
level users, γ = 50

0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

30
Average Life Extension of All Users

Mean Velocity of Nodes / ms−1

A
ve

ra
ge

 L
ife

 E
xt

en
si

on
 /

%

(d) Average life extension of all users, γ
= 50

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12
Percentage of Total Energy Used for Control Purpose

Time / sec

E
ne

rg
y

C
om

su
m

pt
io

n
fo

r
C

on
tr

ol
 P

ur
po

se
/ %

(e) Percentage of total energy consumed
for control purpose, γ = 50, mean veloc-
ity = 0.83 m/s

−100 −50 0 50 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

Base Station

UE

(f) Helper’s Region of a UE at (-50,50)
; BS at (0,0)

Fig. 2. Protocol performance

Effect of Threshold γ. For a mean velocity of users = 0.83 m/s, ε = 0.5,
the performance metrics we defined are plotted in Figure 2(a) and 2(b). We
find that our scheme yields significant average life extension on the low energy

Energy Conservation by Peer-to-Peer Relaying 459

users uk, ranging from 456% to 40% for γ ranging from 30 to 80, depending
on the threshold value γ (i.e., the definition of “low energy level user”). If the
threshold is set to be very low (e.g., 30), then the average life extension for those
low energy level users uk is very significant (over 400%). We believe that this
is due to the contribution from a large number of helpers (e.g., 38 helpers out
of 50 users for γ = 30 in the example we plot). But the tradeoff is the number
of users that can be classified as “low energy level user” is small and thus the
ratio of users who can gain benefit is small (12 low energy level users out of 50
users). A more fair scheme is to define the value of γ as half of the maximum
value of energy levels, the number of u and h would then be half-half, assume
that the energy levels of all UEs are uniformly distributed. This “half-half” case
yields an average life extension of around 76%. The simulation results also show
increases in life extension averaged over all users, representing a system-wide
energy efficiency. The life extension ranges from around 110% to around 28%
(see Figure 2(b)). To conclude, we see a tradeoff between the average gains by
each of the low energy level user (uk, k ≤ n) and the total number of low energy
level users who could gain (k).

Effect of Mobility of Users. For γ = 50 (the numbers of low energy level
users and helpers are half-half), the performance metrics we defined are plotted
against mean velocity of users in Figures 2(c) and 2(d).

From our simulation results, we find that the gain through the use of our
scheme is sensitive to the mobility of users. Consider Figures 2(c) and 2(d) that
when the mean velocity of users increases from 0.83 m/s (3 km/hour) to 2.5 m/s
(12 km/hour), the average life extension of low energy level users decreases from
around 61.6% to around 9.7% while the life extension averaged over all users
also decreases from 27.6% to around 0.8% as the mobility increases from 0.83
m/s to 2.5 m/s. This shows that our scheme is more suitable for low mobility
users (e.g., pedestrians or people walking around in a shopping mall).

4 Incentives

Our scheme can be considered as “beneficial” on two aspects: (i) energy con-
sumption of the whole network is reduced; and (ii) energy consumption of low
energy level users is also reduced. Since helpers are asked to “share” their energy
among those who need, this causes extra energy consumption on them, you may
ask: Are those helpers in fact “losers” in our protocol? The answer
is no and the reasons are: (1) when every node is running eeRelay protocol, it
guarantees that whenever any node is in low energy state, high energy level users
in its helper’s region would help it by relaying its traffic, this provides incentive
for any node to act as a helper when it is in high energy state since other nodes
would help it in return when its energy level falls below the threshold; (2) In ap-
plication like P2P file sharing, extending the life of low energy level users means
more nodes could contribute to the P2P community. These arguments justify as
to why we need to help those who are at low energy levels.

460 A.K.-H. Leung and Y.-K. Kwok

5 Conclusions

We have presented a new energy sharing scheme. With our theoretical analysis
and simulations, we also demonstrate the increased overall energy efficiency. We
believe that the key point to extend the service life of mobile user terminals is
the co-operation between users.

References

1. P. Agrawal, “Energy efficient protocols for wireless systems,” Proc. IEEE PIMRC
1998, vol. 2, pp. 564–569, Sept. 1998.

2. BitTorrent, http://bitconjurer.org/BitTorrent/, 2004.
3. S. Doshi, S. Bhandare and T. X Brown, “An On-demand minimum energy routing

protocol for a wireless ad hoc network,” ACM SIGMOBILE Mobile Computing and
Communications Review, vol. 6, no. 2, pp 50–66, July 2002.

4. L. M. Feeney and M. Nilsson, “Investigating the energy consumption of a wireless
network interface in an ad hoc networking environment,” Proc. IEEE INFOCOM
2001, vol. 3, pp. 1548–1557, Apr. 2001.

5. T. J. Harrold and A. R. Nix, “Intelligent relaying for future personal communication
systems,” Proc. IEE Colloquium on Capacity and Range Enhancement Techniques
for the Third Generation Mobile Comm. and Beyond (Ref. No. 2000/003), Feb.
2000.

6. H. Holma and A. Toskala, WCDMA for UMTS: radio access for third generation
mobile communications, John Wiley & Sons, 2002.

7. C. Panasik, “Getting the most from 3G: battery life is key,” available from
http://www.findarticles.com/p/articles/mi m0MLY/

8. T. S. Rappaport, Wireless communication, principle and practice, Prentice Hall,
1996.

9. H. Wu, C. Qiao, S. De and O. Tonguz, “Integrated cellular and ad hoc relaying
systems: iCAR,” IEEE Journal on Selected Areas in Comm., vol. 19, no. 10, pp.
2105–2115, Oct. 2001.

is 9 3/ai 108331198, 2004.

Developing Energy-Efficient Topologies

and Routing for Wireless Sensor Networks

Hui Tian, Hong Shen, and Teruo Matsuzawa

Graduate School of Information Science,
Japan Advanced Institute of Science and Technology,

hui t@jaist.ac.jp

Abstract. The performance of wireless sensor networks (WSNs) is
greatly influenced by their topology. WSNs with patterned topologies
can efficiently save energy and achieve long networking lifetime. In this
paper, we discuss different patterned topologies for constructing WSNs
which can provide the required coverage area and the connectivity of
all sensor nodes. We compare different performance measures among all
patterned topologies, and find that WSNs in strip-based topology can
provide the greatest coverage area with the same number of sensor nodes
as used for WSNs in other patterned topologies. Strip-based topology
also consumes least energy in the routing protocol of flooding. We show
that triangle-based topology can provide the highest reliability among
all patterned topologies. We also propose several routing protocols for
WSNs in patterned topologies, which are based on different parameters
when selecting next-hop neighbor. Our protocols require only local
information and work in a simple and effective way to achieve energy
efficiency.

Keywords: Wireless sensor networks, topology, routing, energy efficient.

1 Introduction

Due to the wide applications of WSNs and inherent limitations of sensor nodes
on power and memory, study on energy-efficient topologies and routing becomes
increasingly important for WSNs, especially in the scenarios of emergency treat-
ment, disaster rescue and so on. All issues in WSNs are related to one funda-
mental and important issue, that is how to keep connected coverage in a WSN
with as less power consumption in routing as possible.

The connected-coverage problem is to achieve two goals when deploying sen-
sor nodes: coverage and connectivity [4]. Coverage is to ensure that the entire
physical space of interest is within the sensing range of at least one of the active
sensors. Connectivity is to ensure that all the sensor nodes can communicate
with the base station by either single-hop or multi-hop path. The connected-
coverage problem in WSNs can easily be solved if the number of sensor nodes
and energy-constraint needn’t to be concerned. However, it is not possible to
construct a connected-coverage WSN without energy and economy concerns in

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 461–469, 2005.
c© IFIP International Federation for Information Processing 2005

462 H. Tian, H. Shen, and T. Matsuzawa

practice. Energy-constraint, instead, is extremely stringent in WSNs. There-
fore, it is significant to study on constructing a connected-coverage WSN while
consuming as least energy as possible so as to maximize the networking life-
time.

Networking lifetime is defined as the time internal from the start to the time
that the WSN can provide satisfactory performance on sensing and transmission.
It is directly affected by power consumption in the procedure of sensing, com-
munication and data processing. Since all the sensor nodes are battery-powered,
it is paramount to develop efficient methods to save energy. The existing work to
save energy can be classified into two categories. One is turning off or changing
some nodes to sleep mode as proposed in [3,4,10]. The other is minimizing sens-
ing range and transmission range while keeping connected coverage as proposed
in [5,8].

We address the issue of keeping connected coverage with power efficiency
from the topology point of view in the paper. It is unlike existing studies in
either connectivity and coverage problems, or in energy-efficiency routing proto-
col. WSNs in patterned topologies are assured to provide longer network lifetime
than randomly deployed WSNs if both use the same number of sensor nodes.
We call these patterned topologies energy efficient topologies. They have many
significant applications. For example, node placement in patterned topologies
can efficiently save energy and achieve long networking lifetime in some scenar-
ios where priori node deployment for WSNs are possible. Such scenarios exist
in many applications such as danger alarm and vehicle tracking as we have dis-
cussed in [11]. Thus study on energy efficiency topologies can guide to construct
WSNs with potentially more energy saving and longer lifetime. It is also worth
noting that patterned topologies can also instruct to choose duty-on nodes to
keep connected coverage in a WSN and put all other sensor nodes in sleep-
ing mode so as to avoid redundant overlapping area, save energy, and thus
prolong the networking lifetime [4]. Therefore, in this paper, we study differ-
ent patterned topologies for WSNs and compare their performance on different
measures.

We also propose several routing protocols for WSNs with patterned topolo-
gies and compare their performance by simulation. This work provides a supple-
ment to [4] which only address how to save energy by choosing duty-on sensor
nodes based on patterned topologies. The routing protocols proposed in this
paper requires only local information, which is different from DSAP in [9]. Our
routing protocols can achieves energy efficiency and perform in a simple and
effective way.

The rest of the paper is organized as follows. In section 2 we present the model
of connected-coverage WSNs and highlight the important parameters that affect
the performance of WSNs. Section 3 compares different topology patterns and
their affections on performance of WSNs. Section 4 proposes several routing
protocols and compare their performance by simulation. Section 5 gives the
concluding remarks.

Developing Energy-Efficient Topologies and Routing for WSNs 463

2 Modelling Connected-Coverage WSNs

A connected-coverage WSN is defined as a wireless sensor network that can
guarantee coverage of all the required region and connectivity among all sensor
nodes in the WSN. We assume the region of interest to be 2-dimensional. Assume
the area of the region to be A. There are N sensor nodes and one base station
placed in the region. Each sensor node deployed in the region can sense any event
within the disk with radius rs centered at the sensor node. Each sensor node can
communicate with other sensor nodes whose Euclidean distance between them
is no more than rt, that is, nodes s1 and s2 can communicate with each other
if their Euclidean distance Ed(s1, s2) ≤ rt. Otherwise, they cannot. The sensing
radius of a sensor node can be either equal or unequal to its communication
radius in the WSN.

The sensing ability of each sensor node diminishes as distance increases. In
[6], the sensing ability at point y of sensor node si is assumed to be inversely
proportional to Ed(si, y)k where k is a sensor technology-dependent parameter.
This characteristic of sensor nodes introduces an important parameter, we call
it sensing strength factor dmm, stating how well region A is covered and sensed.
If we define miniEd(si, y) as the distance of point y to its closest sensor node,
y ∈ A, then all points in A have a distance at most maxy∈AminiEd(si, y). We
use dmm to denote this distance:

dmm = maxy∈AminiEd(si, y).

Thus dmm is the maximum distance from any point to its closest sensor node.
Usually a WSN is required to be deployed with a particular sensing strength
factor equal to dmm so that distance from any point to its closest sensor node
is no more than dmm to ensure coverage and sensing strength. The less dmm is,
the better each point is sensed in the WSN. In [2] and [7], similar parameters
can be found, but they were proposed for other applications.

The power consumption is another important parameter to measure how
much energy different topology patterns can save for WSNs. Since each sensor
node usually includes a sensing unit, a processing unit, a transceiver unit and
a power unit as modelled in [1], power consumption can be divided into three
domains: sensing, communication, and data processing. Of the three domains,
we are only concerned with the maximum energy spent by a sensor node in data
communication. This involves both power consumed in data transmission, de-
noted by Pt, and in data reception, denoted by Pr. That is, the power consumed
by a sensor node is Ps = Pt + Pr.

3 Patterned Topologies for Connected-Coverage WSNs

As we have discussed in in [11], sensor nodes can be placed in hexagon, square,
and triangle-based topologies. In [4] strip-based topology has also been proposed
to place nodes to construct a connected-coverage topology for WSNs. We will
discuss all these topology patterns in this section and compare the performance

464 H. Tian, H. Shen, and T. Matsuzawa

of WSNs in different patterns. The case that the sensing range of a sensor node
equals to its transmission range is discussed in the comparison part.

3.1 WSNs with Hexagon-Based Topology

In hexagon-based WSNs, each sensor node has three neighbor nodes located
uniquely around the node. Connecting all sensor nodes to their neighbor nodes
obtains the minimum unit in the shape of hexagon. Thus the WSN in this topol-
ogy pattern is called the hexagon-based WSN. The distances of the node to
its neighbor nodes are all set to rt so that direct communication is available
between the node and its neighbor nodes, and each neighbor provides maxi-
mal additional sensing area [11]. Figure 1 specifies a WSN with hexagon-based
topology. To compare it with other WSNs with different topologies, we place the
same number of sensor nodes (25) for all WSNs. We assume node 06 to be the
aggregation node which plays the role of aggregating the sensed information in
the WSN and reporting to the base station.

Fig. 1. A WSN with hexagon-based topology

3.2 WSNs with Square-Based Topology

In square-based WSNs, each sensor node has four neighbor nodes located
uniquely around the node. Connecting all sensor nodes to their neighbor nodes
obtains the minimum unit in the shape of square. Thus the WSN in this topol-
ogy pattern is called the square-based WSN. The distances of the node to its
neighbor nodes are set to rt. A WSN composed of 25 sensor nodes is given in
Figure 2. Node 04 is assumed to be the aggregation node.

3.3 WSNs with Triangle-Based Topology

In triangle-based WSNs, each sensor node has six neighbor nodes located
uniquely around the node. Connecting all sensor nodes to their neighbor nodes
obtains the minimum unit in shape of triangle. Thus the WSN in this topology
pattern is called the triangle-based WSN. Same as above, the distances of the
node to its neighbor nodes are set to rt. Figure 3 is a triangle-based WSN with
25 sensor nodes deployed. Node 04 is assumed to be the aggregation node.

Developing Energy-Efficient Topologies and Routing for WSNs 465

Fig. 2. A WSN with square-based topology

Fig. 3. A WSN with triangle-based topology

In WSNs with triangle-based topology, we find that every point within the
area is covered by at least two sensor nodes. We call the reliability provided
by such kind of node placement 2-reliability. A 2-reliability WSN can maintain
its connected-coverage for any single sensor node failure. When every point is
covered by at least k sensor nodes, the sensor network is called k-reliability. The
WSNs with other patterned topologies are 1-reliability as discussed in [11].

3.4 WSNs with Strip-Based Topology

To keep the connectivity of two sensor nodes, their distance should be no more
than rt. To maximize the coverage area sensed by the same number of sensor
nodes, [4] proposes a strip-based topology as in Figure 4.

The strip-based WSN in Figure 4 clearly shows that sensor nodes 40, 41
and 42 connect 4 self-connected strips 00 − 05, 10 − 14, 20 − 25 and 30 − 34.
By this way of node placement, these sensor nodes construct a connected WSN
with strip-based topology. The total number of sensor nodes is 25 as before. We
assume node 05 to be the aggregation node.

3.5 Performance Comparison

Given the same number of sensor nodes, we compare the above four types of
patterned topologies on coverage area, sensing strength factor, reliability and
energy consumption. We assume rt = rs = r in all WSNs. For coverage area

466 H. Tian, H. Shen, and T. Matsuzawa

Fig. 4. A WSN with strip-based topology

Fig. 5. Performance comparison among WSNs with different patterned topologies

comparison, we do not consider the marginal places covered by edge sensor
nodes because the marginal area exists only in a few places and occupies a
negligible portion of the whole coverage area of the WSN which often includes
a huge number of sensor nodes. For energy consumption comparison, we fix
the destination to be the aggregation node as designated above. The source is
fixed to be a node with distance 4r from the destination. In this case, the less
the energy is consumed, the better the node placement pattern is. The table in
Figure 5 gives the results of these performances comparison.

From the table in Figure 5, we can see that strip-based topology provides
maximal connected-coverage with the same number of sensor nodes and con-
sumes least energy by the routing protocol of flooding. WSNs in triangle-based
topology provide the best reliability and the best sensing strength while trading
off total coverage area and energy consumption. These conclusions hold when
comparison is performed in general cases of large-scale WSNs.

4 Routing Protocols in Patterned WSNs

We propose several routing protocols in this section. Different from Directional
Source-Aware Protocol (DSAP) [9] where each node must have the knowledge

Developing Energy-Efficient Topologies and Routing for WSNs 467

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45

50

Time (hour)

T
ot

al
 e

ne
rg

y
co

ns
um

pt
io

n
(K

J)

Approach 3

Approach 2

Approach 1

Lifetime Lifetime Lifetime

Fig. 6. Energy consumption and lifetime comparison among three approaches

of global information of topology, our routing protocols only require local infor-
mation.

We define a routing selection function f(h, s) for a sensor node to choose
neighbor nodes when routing the message back to the aggregation node. The
function is determined by the hop count value h of neighbor nodes and stream
unit s which has been sent by neighbor nodes. Here we assume the stream sent
by a sensor node can be measured by stream unit, thus s means how many units
have been sent by the sensor node. We denote the battery life of sensor node i
by bi.

We propose three approaches to route back the message for different aims.
All of them are based on the routing selection function f(h, s) = αh + βs.

1. Maximize the total energy saving for WSNs, i.e., B =
∑

i bi: This can
be obtained by minimizing first the hop count value h when choosing next-hop
neighbor and then minimize s. In this case, α = 1, and β = σ, where σ is a small
number which approximates to 0.

2. Maximize the minimal energy maintained by all sensor nodes, i.e., minibi:
This can be obtained by minimizing first the stream units s of next-hop neighbor
and then h. In this case, α = σ, and β = 1.

3. Maximize both the total energy and minimal energy of all sensor nodes:
This can be obtained by minimizing both h and s. In this case, α = β = 1.

We name the protocols as routing selection function-based protocols. It works
as follows:

1. Distance identification: The aggregation node floods the discovery message
in the WSN with a determined TTL value. Each sensor node records its distance
from the aggregation node by hop count. If a sensor node receives several broad-
cast messages, it records the least value of hop count.

2. Data collection: When a sensor node senses any abnormal event and needs
to report the event, it chooses a neighbor with minimized f(h, s) to route back
the message.

To compare the performance of our protocols, we simulate the square-based
WSN with the routing protocol for simplicity. We use OPNET as the simulation
environment. We assume the networking lifetime is from the start to the time

468 H. Tian, H. Shen, and T. Matsuzawa

that any node exhausts its power in the WSN since one node failure results in
an unconnected coverage for WSNs with square-based topology.

From Figure 6, we can see that Approach 1 provides least network lifetime.
Approach 2 gets a longer lifetime than approach 1 and, however, trades off much
more energy consumption by choosing a longer path to the aggregation node in
the WSN. Approach 3 can provide the longest lifetime, which is almost as twice
as that provided by Approach 1 because it tries to find a shorter path and a
next-hop neighbor with more energy in every step.

5 Conclusion

We discussed different patterned topologies for WSNs in this paper. It is found
that strip-based topology provides the maximal connected coverage and con-
sumes the least energy by flooding protocol, whereas triangle-based topology
reaches the best coverage performance with a higher reliability and greater sens-
ing strength. In WSNs with patterned topology, we proposed several routing
protocols which achieve different goals. The simulation showed that the net-
working lifetime is maximized by selecting routing based on both hop count
and stream unit of next-hop neighbor. Thus, patterned WSNs equipped with
their protocols provide great promises and guarantees their potential applica-
tions to meet different needs. Our routing protocols may also be extended to
WSNs without regular topologies, which will be explored in our future study.

Acknowledgement

This research is conducted as a program for the “21st Century COE Program”
by Ministry of Education, Culture, Sports, Science and Technology.

References

1. I.F. Akyildiz and W. Su, Y. Sankarasubramaniam and E. Cayirci, Wireless Sensor
Networks: A Survey, Computer Networks, Vol. 38(4), pp.393–422, 2002.

2. Edoardo S. Biagioni and Galen Sasaki, Wireless Sensor Placement For Reliable
and Efficient Data Collection, Proc. of the 36th Hawaii International Conference
on System Sciences (HICSS), 2003.

3. Alberto Cerpa and Deborah Estrin, ASCENT: Adaptive Self-Configuring sEnsor
Networks Topologies, Proc. of INFOCOM, 2002.

4. Koushik Kar and Suman Banerjee, Node Placement for Connected Coverage in
Sensor Networks, Proc. of WiOpt, 2003.

5. Martin Kubisch and Holger Karl and Adam Wolisz and Lizhi Charlie Zhong andJan
Rabaey, Distributed Algorithms for Transmission Power Control in Wireless Sensor
Networks, Proc. of IEEE Wireless Communicationsand Networking Conference
(WCNC), 2003.

6. Xiang-Yang Li and Peng-Jun Wan and Ophir Frieder, Coverage in Wireless Ad-hoc
Sensor Networks, Proc. of IEEE ICC, 2002.

Developing Energy-Efficient Topologies and Routing for WSNs 469

7. Seapahn Meguerdichian and Farinaz Koushanfar and Miodrag Potkonjak and Mani
B. Srivastava, Coverage Problems in Wireless Ad-hoc Sensor Networks, Proc. of
IEEE INFOCOM, 2001.

8. Jianping Pan and Y. Thomas Hou and Lin Cai and Yi Shi and Sherman X. Shen,
Topology Control for Wireless Sensor Networks, Proc. of MobiCom, 2003.

9. Ayad Salhieh and Jennifer Weinmann and Manish Kochhal and Loren Schwiebert,
Power Efficient Topologies for Wireless Sensor Networks, Proc. of Int’l Conf. on
Parrallel Processing, 2001.

10. Di Tian and Nicolas D. Georgannas, A Coverage-Preserving Node Scheduling
Scheme for Large Wireless Sensor Networks, Proc. of ACM Int’l Workshop on
Wireless Sensor Networks and Applications(WSNA), 2002.

11. Hui Tian and Hong Shen, An optimal coverage scheme for wireless sensor network,
Proc. of 2005 IEEE International Conference on Networks (ICN’05), Reunion Is-
land, France, April 2005, pp. 722-730.

The Efficient Transmission Scheme in Wireless

Crypto Communication

Jinkeun Hong1 and Kihong Kim2

1 Division of Information and Communication, Cheonan University,
115 Anse-dong, Cheonan-si, Chungnam 330-740, South Korea

jkhong@cheonan.ac.kr
2 Graduate School of Information Security, Korea University,
1, 5-Ka, Anam-dong, Sungbuk-ku, Seoul 136-701, South Korea

hong0612@hanmir.com

Abstract. An efficient interleaving algorithm is applied to reduce the
loss of ciphered information when a cipher system transmits over a wire-
less fading channel environment. As such, a new scheme for deciding the
interleaving depth over a wireless environment is described. Simulations
confirm that the proposed effective algorithm with a variable interleaving
depth produces a better performance over a fading channel than a static
depth algorithm with a fixed interleaving depth. Experimental results
showed that the BER performance of the proposed efficient interleaving
scheme was higher than that of the fixed interleaving depth scheme. Of
particular note is that the dynamic allocation algorithm (DAA) reduces
degraded error bits by up to 51.5%, compared with static allocation al-
gorithm (SAA) of depth 48 in 224MHz.

1 Introduction

Aviation industries are undergoing a major paradigm shift in the introduction
of new network technologies [1, 2, 3]. Tactical information LINK22 is a NATO
term for a message standard that includes an anti-jam, secure data system with
standard waveforms and messages used for exchanging tactical information be-
tween different military platforms, thereby providing a common communications
network to a large community of airborne, surface, and even subsurface or space
elements [4, 5, 6, 7, 8]. In previous studies about tactical networks, performance
of high rate LINK22 operation obtained by using quadrature amplitude modu-
lation presented by R. Le Fever, et al. [4], and B. White [5] presented layered
communication architecture for the global grid, while B. F. Donal [6] introduced
digital messaging on the Comanche helicopter, the area of tactical data links,
air traffic management, and software programmable radios has been researched
by B. E. White [7]. As the coordination concept of ADS-B civil network and
tactical networks becomes more widespread, the necessity of security for these
networks is of increasing importance [8, 9, 10].

However, in order to solve security issues in secure tactical networks, the
efficiency and transmission performance of security services must be taken into

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 470–477, 2005.
c© IFIP International Federation for Information Processing 2005

The Efficient Transmission Scheme in Wireless Crypto Communication 471

account. From the point of view of aeronautical environmental characteristics,
research on optimizing the security considerations of tactical network services,
such as low bandwidth, limited consumed power energy and memory processing
capacity, and cryptography restrictions is important issue. A cipher system using
a link-by-link encryption technique is generally used for security. Except for er-
ror propagation, the security level is reflected by the period, common immunity,
and linear complexity and since these properties are easy to implement in terms
of hardware and do not create any communication channel delays, a cipher sys-
tem is usually applied to wireless communications. However, when enciphered
data is transmitted on a wireless channel, poor communication channel envi-
ronments, multi-path fading, and interference result in a burst of errors at the
decipher output. The fading received at the mobile unit is caused by multi-path
reflections of the transmitted encrypted information by local scatters, such as
forests, buildings, and other human-built structures, or natural obstacles such
as forests surrounding a mobile unit [11, 12, 13]. Interleaving is one practical
solution for combating burst errors, where a poor encryption communication
channel resulting from a burst of errors can be enhanced using an interleaving
scheme, and the transmission performance over a wireless channel and radio
communication channel has already been evaluated when using an interleaving
method in [14, 15, 16, 17]. About the area of interleaving research, X. Gui, et
al. [14] proposed a novel chip interleaving in DS SS system, and the subject
of multiple access over fading multi-path channels employing chip interleaving
code division direct sequence spread spectrum has researched by Y. N. Link, et
al. [15], the research of required interleaving depth in Rayleigh fading channels
has been proposed by I. C. King, et al. [16]. And also, in terms of transmission
performance, the performance considerations for secure tactical networks, such
as mobility, bandwidth, and BER, are very important. This paper presents a
cipher system for security in LINK22, plus an effective interleaving scheme is
applied to the ciphered information to enhance the transmission performance
over a fading channel.

Section 2 reviews the nature of a fading channel and provides statistical
expressions for burst error sequences, then section 3 outlines the cipher system
with synchronization information. Thereafter, interleaving scheme based on a
variable depth of interleaving using a non fixed interleaving depth allocation
algorithm is explained and simulation results presented in section 4. Finally,
section 5 summarizes the results of this study.

2 Characteristics of Wireless Mobile Environment

Wireless fading channel modeling is used to perform a statistical analysis based
on defining the relational functions, such as the probability density function
(PDF), cumulative probability distribution (CPD), level crossing rate (LCR),
average duration of fades (ADF), and bit error rate (BER). The mean burst
length is derived from the defined relational functions and experiments are used
to consider the interleaving depth based on the mean burst length.

472 J. Hong and K. Kim

Fig. 1. Mean burst length for variation of power in tactical data link environment

In the above equation ρ is the C/N ratio and K is the power ratio of the
direct wave and reflected waves. The equation of CPD(F (L)) for Rician fading
is used as follows :

BER(ρ, K) =
1 + K

2(ρ + 1 + K)
exp(

−Kρ

ρ + 1 + K
) (1)

In a Rician fading channel, the symbol error rate (SER) is applied in Eq. (1).

SER(ρ, K) = 1 − (1 − BER)8 (2)

It can be derived mean burst length as in Fig. 1 [11,12,13]. Where frequency
range is from 224MHz to 400MHz, the variation of power deviations is down to
-25dB, and the velocity of mobile device is 24Km/h.

3 Secure Wireless Cipher System

This paper presents a secure cipher system. Plus, interleaving scheme is also
applied to the ciphered information to enhance the transmission performance
over a fading channel. To provide robust encrypted communication, the trans-
mitter and receiver are both synchronized using a synchronization pattern. If
the received synchronization pattern is detected normally, the error-corrected
coded session key bit-stream is received and the ciphered data is deciphered.
The LINK22 system consists of the data link processor (DLP) for presentation
layer, the system network controller (SNC) for transport and network layer, link
level COMSEC (LLC) and signal processing controller for data link. The ser-
vice of SPC in data link supports point to point link oriented. The data rate
of SPC are 16Kbps in fixed frequency mode of UHF. The Reed-Solomon code
scheme(such as RS(90,66), RS(90,75), according to the number of message per
slot) is applied signal processing controller (SPC) of data link layer.

The Efficient Transmission Scheme in Wireless Crypto Communication 473

Transmit guard

22msec 15.94msec

Preamble Encrypted data Propagation guard

10.0625msec

Transmit guard

22msec 15.94msec

Preamble Encrypted data Propagation guard

10.0625msec

Fig. 2. TDMA time slot architecture of LINK22 tactical data link

The key-stream generator was designed considering the security level [18,19],
i.e. the linear complexity, randomness, common immunity, period, and composi-
tion of a nonlinear function. In Fig. 2, the transmit guard part is assigned during
22msec, the preamble is 15.94msec, and propagation guard is 10.0625msec The
propagation/guard interval is the time period that allows for the propagation of
the signal to the maximum range and time required for the NUs to prepare for
the transmissions in the next time slot. In encrypted region, the allowed latency
time of maximum encryption and decrytion is between 12.1msec and 15.8msec.
The encrypted date rate in link layer COMSEC of LINK22 is between 4.8Kbps
and 115.2Kbps.

4 Performance of DAA and Experimental Results

When ciphered information is transmitted over a Rician fading channel in which
the received signal level is time variant, some of the ciphered information is lost
due to burst errors, resulting a loss of the synchronization pattern and error in
the session key in a period of synchronization. Interleaving is an effective way
of randomizing burst errors, plus, burst errors can not be corrected without the
application of interleaving and deinterleaving. The function of the received power
(nL) at K = 0 can be expressed as follows :

⎛
⎜⎝

nL0

...
nLn−1

⎞
⎟⎠ =

⎛
⎜⎝

L0e
−L0

...
Ln−1e

−Ln−1

⎞
⎟⎠ (3)

The ADF, t(L) can be expressed as follows :

⎛
⎜⎝

t(L0)
...

t(Ln−1)

⎞
⎟⎠ =

⎛
⎜⎜⎝

F (L0)
n0
...

F (Ln−1)
n0

⎞
⎟⎟⎠ (4)

Therefore, the relationship between the mean burst length (mbl), the trans-
mission rate (B), and the average duration of fades (t(L)) can be expressed as
follows : ⎛

⎜⎝
mbl0

...
mbln−1

⎞
⎟⎠ =

⎛
⎜⎝

B × t(L0)
...

B × t(Ln−1)

⎞
⎟⎠ (5)

474 J. Hong and K. Kim

Let kn, n = 0, 1, 2, · · · , be a constant process with a finite set of states
k0, k1, · · · , kn−1. In deriving the equation, the required condition under which
the FEC scheme can still correct all errors is as follows :⎛

⎜⎝
k0

...
kn−1

⎞
⎟⎠ =

⎛
⎜⎝

mbl0
...

mbln−1

⎞
⎟⎠ ×

⎛
⎜⎝

d0

...
dn−1

⎞
⎟⎠ (6)

These interleaving schemes were evaluated in a simulation environment where
the wireless channel is a Rician fading channel, the date rate was 16Kbps, the
frame size is 14.4Kbits, the communication access time was 60minutes, the SER
was 7.9 × 10−4, the data rate of LLC was between 4.8Kbps and 115.2Kbps,
the moving velocity was 24Km/h, and the carrier frequency applied was from
244MHz to 400MHz. The performance of the DAA and SAA interleaving depth
algorithms was then evaluated though simulations. Since the structure of in-
terleaving basically depends on the interleaving depth (d), four types of DAA
structure were used: depth(d) × span(S) = 4 × 1200, 8 × 1200, 12 × 1200, 24 ×
1200, 48 × 1200, 96 × 1200. When the depth is 12, the delay time is consumed
about 1sec. As the depth increase, the delayed time increase. But as transmission
rate of SPC is fixed and date rate of LLC increase, the delayed time decrease.
However, it is difficult to adapt the depth of interleaving in a variational fading
channel, plus, the required depth should be sufficient to handle the resulting er-
rors in the SAA. Therefore, to adapt the depth of interleaving in the variational
fading channel, the flexible DAA method was applied.

In condition of No RS coding and RS(120,75) coding with SER of 7.9×10−4

channel, the resulting performance of the SAA is shown in Fig. 3 and Fig. 4,
respectively. When the transmission rate was 16Kbps, the date rate of LLC was
14.4Kbps, the SER was 7.9 × 10−4, the iteration was 48, the depth of the SAA

Fig. 3. Error bits relative to depth of SAA (SER : 7.9 × 10−4, No RS coding)

The Efficient Transmission Scheme in Wireless Crypto Communication 475

Fig. 4. Error bits relative to depth of SAA (SER : 7.9 × 10−4, RS(120,75))

was 24, as shown in Fig. 3, the error bits of the deciphered data without RS
coding were degraded 17% at a SAA depth of 8. In condition of transmission
condition with RS(120,75) coding, the depth of the SAA was 24, the error bits of
the deciphered were degraded 65% at a SAA depth of 8. Of particular note is that
the RS(120, 75) coding reduces degraded error bits by up to 65.9%, compared
with No RS coding at SAA depth of 24 in 224MHz environment. When the
depth of the DAA was 12, 24, 48, 96, as shown in Table 1, the performance of
the DAA block interleaving was better than that of the others. The corrected
symbol rate in the DAA applied is higher than that of the other types (depth =
4, 8, 12, 24, 48, 96).

At a SAA depth of 24, the corrected symbol rate was corrected 14.5%, 48.5%
at a SAA depth of 48, 100% at a SAA depth of 96, in severe channel without
RS coding of 224MHz environment. Meanwhile, Table 2 presents a comparison
of DAA and SAA with 55 iterations. When the delayed time when using DAA
was about 3,095sec, however, the delayed time by the SAA depth of 24 was
about 1,738sec, the SAA depth of 48 was 3,476sec, the SAA depth of 96 was
6,952sec. Therefore, when increasing the depth, the corrected symbol rate and
delayed time were enhanced. With regard to the delayed time and corrected
symbol rate, the performance of the proposed method was superior to that of

Table 1. Comparison of delayed time relative to depth of SAA

Trans. rate (Kbps) Depth=4 Depth=8 Depth=12 Depth=24 Depth=48 Depth=96

SPC=16 LLC=14.4 0.25sec 0.5sec 1sec 2sec 4sec 8sec

LLC=28.8 0.125sec 0.25sec 0.5sec 1sec 2sec 4sec

LLC=57.6 0.0625sec 0.125sec 0.25sec 0.5sec 1sec 2sec

LLC=115.2 0.03125sec 0.0625sec 0.125sec 0.25sec 0.5sec 1sec

476 J. Hong and K. Kim

Table 2. Comparison of DAA and SAA with 55 iterations (SER : 7.9×10−4 , 28.8Kbps)

Depth Corrected Symbol Rate Delay

DAA 100% 3,095sec

Depth = 4 1.0% 217sec

Depth = 8 2.3% 434sec

Depth = 12 5.4% 8,695sec

Depth = 24 14.5% 1,738sec

Depth = 48 48.5% 3,476sec

Depth = 96 100% 6,952sec

SAA when applied to allow the delayed time of DAA. Consequently, the results
of the transmission performance when using the DAA and SAA confirmed that
the performance of the proposed DAA method was better for the case of signal
recovery in an erasure channel.

5 Conclusions

This paper examines a cipher system for security in tactical network, plus an
interleaving scheme is applied to the ciphered information to enhance the trans-
mission performance over a fading channel. As such, a frame of ciphered informa-
tion is lost if the synchronization pattern and session key for the frame are lost.
Therefore, applying an interleaving method to reduce the frame loss and thereby
enhance the transmission performance would seem to be an effective option that
can be evaluated using the non fixed interleaving depth scheme. A cipher system
was proposed using an effective interleaving scheme for the interleaving depth
to enhance the transmission performance of the ciphered information.

Experimental results showed that the SER performance of the proposed ef-
ficient interleaving scheme was higher than that of the fixed interleaving depth
scheme. Of particular note is that the DAA reduces degraded error bits by up
to 51.5%, compared with SAA of depth 48 in 224MHz.

References

1. T. Mulkerin. Free Flight Is in the Future : Large-Scale Controller Pilot Data
Link Communications Emulation Testbed. IEEE Aerospace and Electronic Systems
Magazine, 2003.

2. R. T. Oishi. Future Applications and the Aeronautical Telecommunication Net-
work. IEEE Aerospace Conference, 2001.

3. EUROCONTROL. Feasibility Study for Civil Aviation Data Link for ADS-B Based
on MIDS/LINK 16. TRS/157/02, 2000.

4. R. Le Fever and R. C. Harper. Performance of High Rate LINK22 Operation
Obtained by Quadrature Amplitude Modulation (QAM). IEEE Milcom’01, 2001.

The Efficient Transmission Scheme in Wireless Crypto Communication 477

5. B. E. White. Layered Communication Architecture for the Global Grid. IEEE
Milcom’01, 2001.

6. B. F. Donald. Digital Messaging on the Comanche Helicopter. DASC’00, 2000.
7. B. E. White. Tactical Data Links, Air Traffic Management, and Software Pro-

grammable Radios. DASC’99, 1999.
8. H. J. Beker and F. C. Piper. Cipher Systems : The Protection of Communicstions,

Northwood Books, Londos, 1982.
9. Bruce Schneier. Applied Cryptography, 2nd ed., John Wiley and Sons Inc., 1996.

10. A. R. Rainer. Analysis and Design of Stream Ciphers. Springer-Verlag, 1986.
11. W. C. Y. Lee Mobile Cellular Telecommunications : Analog and Digital Systems,

2nd ed., McGraw-Hill, 1996.
12. C. Y. William. Mobile Communications Engineering, McGraw-Hill, 1982.
13. C. Y. William. Mobile Communications Design Fundamentals, John Willey & Sons,

1993.
14. X. Gui and T. S. Ng. A novel Chip Interleaving DS SS System. IEEE Trans. Veh.

Technol., Vol.49, No.1, pp.21-27, 2000.
15. Y. N. Link and D. W. Lin. Multiple Access Over Fading Multi-Path Channels

Employing Chip Interleaving Code Division Direct Sequence Spread Spectrum.
IEICE Trans. Commun., 2001.

16. I. C. King and C-I C. Justin. Required Interleaving Depth in Rayleigh Fading
Channels. Globecom’96, 1996.

17. S. J. L. et al. Effective Interleaving Method in Wireless ATM Networks. ICT’97,
1997.

18. M. Kimberley. Comparison of Two Statistical Tests for Key-Stream Sequences.
Electronics Letters, Vol.23, No.8, pp.365-366, 1987.

19. M. G. Helen. Statistical Analysis of Symmetric Ciphers Thesis submitted in ac-
cordance with the regulations for Degree of Doctor of Philosophy, Queensland Uni-
versity of Technology, 1986.

Constructing k-Connected k-Cover Set

in Wireless Sensor Networks Based on
Self-pruning�

Jie Jiang, Minghua Han, Guofu Wu, and Wenhua Dou

School of Computer Science,
National University of Defense Technology,

410073, Changsha, China
jiangjie@nudt.edu.cn

Abstract. Density control is a promising approach to conserving sys-
tem energy and extending lifetime of wireless sensor networks. Most of
previous work in this field has focused on selecting a minimal subset of
active sensor nodes for high efficiency while guaranteeing only 1-coverage
(or plus 1-connectivity of the network). In this paper, we address the is-
sue of constructing a k-connected k-cover set of a wireless sensor network
for fault tolerance and balance efficiency. We propose a distributed, lo-
calized algorithm based on self-pruning for selecting active sensor nodes
to form a k-connected k-cover set for the target region. The performance
of the proposed algorithm is evaluated through numerical experiments.

1 Introduction

Because of advances in micro-sensors, wireless networking and embedded pro-
cessing, wireless sensor networks (WSN) are becoming increasingly available for
commercial and military applications, such as environmental monitoring, chem-
ical attack detection, and battlefield surveillance, etc [1,2,3].

Energy is the most precious resource in wireless sensor networks due to the
following factors. First, the sensor nodes are usually supported by batteries with
limited capacity due to the extremely small dimensions. Second, it is usually
hard to replace or recharge the batteries after deployment, either because the
number of sensor nodes is very large or the deployment environment is hostile and
dangerous (e.g. remote desert or battlefield). But on the other hand, the sensor
networks are usually expected to operate several months or years once deployed.
Therefore reducing energy consumption and extending network lifetime is one
of the most critical challenges in the design of wireless sensor networks.

One promising approach to reducing energy consumption is density control,
which only keeps a subset of sensors active and puts other sensors into low-
powered sleep status. Most of previous researches on density control focus on

� This work is supported by the National Natural Science Foundation of China under
grant number 90104001.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 478–486, 2005.
c© IFIP International Federation for Information Processing 2005

Constructing k-Connected k-Cover Set in Wireless Sensor Networks 479

only sensing coverage [4,5,6,7,8,12]. If a sensor node’s sensing area is completely
included by its neighbors’ sensing coverage, it is redundant and can be turned
off safely. These papers don’t consider the impact of coverage-scheduling on
network connectivity. Some other researches [9,10,11] consider the coverage and
connectivity requirement at the same time. That is, every point in the target
region must be covered by at least one active sensor and the communication
graph induced by active sensors must be connected. But only 1-coverage and
1-vertex connectivity can be guaranteed.

The k-coverage and k-connectivity properties are desirable in some criti-
cal applications. k-coverage and k-connectivity can enhance the robustness and
fault-tolerance of the sensor network. Even if k− 1 sensor nodes fail due to acci-
dental damage or energy depletion, the target region is still completely covered
and the communication network is still connected. Therefore the network can
survive the failure of at most k − 1 sensor nodes. And the k-coverage can im-
prove the sensing accuracy. As the sensing function is often interfered with by
noise signals, the sensing accuracy can be improved when each point is covered
at least by k sensor nodes.When different sensor nodes report the sensed data
back to the sink along different routes, the loss of event can be avoided. And in
localization applications, the location of a target will be more accurate when it
is detected by many sensors from different bearings. Also the k-connectivity can
provide more routing flexibility, which is helpful to realize the load balancing of
data traffic among sensor nodes.

The major contributions of this paper are as follows. First, we propose a
general framework based on self-pruning to construct a k-connected k-cover set.
The degree of coverage and connectivity can be flexibly specified in this frame-
work according to application requirements and different algorithms that detect
k-connectivity or k-coverage redundancy in a distributed, localized manner can
be integrated into the proposed framework. Second, we propose a distributed,
localized algorithm to detect whether a sensor node is k-coverage redundant
based on order-k Voronoi diagram.

The rest of this paper is organized as follows. The problem addressed in
this paper is formulated in section 2. And a general framework and distributed,
localized algorithms are proposed in section 3. We present the experimental
results in section 4 and end with conclusion remarks in section 5.

2 Problem Formulation

A point p is covered by a sensor node si if the distance between p and si is
not larger than Rs, i.e., d (si, p) ≤ Rs. A point p is k-covered if it is covered
by k distinct active sensor nodes. An area R is completely k-covered by a sen-
sor network if every point in R is k-covered by sensor nodes in the networks.
Using omni-direction antenna, a sensor node si’s communication range is a cir-
cle centered at si with radius Rc. Sensor nodes within si’s communication rage
are called si’s communication neighbors, which si can directly communicate
with.

480 J. Jiang et al.

Definition 1. (communication graph/path) Given a sensor network consisting
of a set of sensor nodes, S = {s1, s2, . . . , sn}, the communication graph of
the sensor network Gc = (Vc, Ec) is an undirected graph, where Vc = S and
eij = (si, sj) ∈ Ec if d (si, sj) ≤ Rc. We say that the communication graph Gc

is induced by S. A communication subgraph induced by a subset of sensor nodes
S′ ⊆ S is the subgraph of Gc which only involves sensor nodes in S′. A commu-
nication path in the communication graph is a sequence of sensors where any two
sequential sensors are communication neighbors. A communication graph Gc is
connected if there is a communication path between any two vertices of Gc.

Definition 2. (k-connected k-cover set) Consider a sensor network consisting
of a set of sensor nodes S = {s1, s2, . . . , sn} deployed in a target region R. A
subset of sensors S′ ⊆ S is said to be a k-connected k-cover set for R if:

(1) R is completely k-covered by S′, that is, every point in R is covered by at
least k distinct sensor nodes in S′.

(2) The communication graph induced by S′ is k-vertex connected.

Minimal k-Connected k-Cover Set (MKCC) Problem: Given a sensor
network consisting of a set of sensor nodes S deployed in a target region R,
where S is a k-connected k-cover set for R when all sensor nodes are active.
The minimal k-Connected k-Cover Set problem is to find a k-connected k-cover
subset S′ ⊆ S with the minimal cardinality.

The MKCC problem is NP-hard as it is a generalization of the minimal
1-connected 1-coverage problem, which is already known to be NP-hard [9].

3 Distributed and Localized Algorithm Based on
Self-pruning

3.1 Basic Framework

The distributed, localized self-pruning algorithm is based on the following idea.
A sensor node si can be safely turned off if its removal will not destroy the
k-coverage and k-connectivity properties of the network. That is, the remaining
sensor nodes after removing si from the sensor network still form a k-connected
k-cover set for the target region. Sensor node si is not needed for k-connectivity
if every pair of its one-hop neighbors has k alternate replacement communication
paths not involving si. And sensor node si is not needed for k-coverage if each
point in its coverage area is covered by at least k other sensors. When a sensor
node satisfies both the above two conditions simultaneously, its removal will still
preserve the k-connectivity and k-coverage characteristics of the sensor network.
When several nodes rely on each other to satisfy the above two conditions, node
priorities are used to resolve the cyclic dependency. And to limit the communi-
cation overhead in a reasonable level, each node makes its own decision based on
neighborhood information only within l communication hops, where l is a small
integer (about 2 or 3). Although the partial neighborhood information may gen-
erate incomplete communication graph and incorrect Voronoi diagram and thus

Constructing k-Connected k-Cover Set in Wireless Sensor Networks 481

cause more sensors than optimal to be active, the properties of k-connectivity
and k-coverage are still guaranteed.

In this framework, the required connectivity degree and coverage level can
be specified separately and arbitrarily according to application requirements.
And also any algorithm for detecting k-connectivity redundancy and k-coverage
redundancy in a distributed and localized manner can be integrated into this
framework.

3.2 Algorithm Description

A. k-Connectivity Redundant Condition
A sensor node si is not needed for preserving the k-connectivity property

of the sensor network S if it is k-connectivity redundant. We denote the set of
remaining sensors after removing si from S by S\si.

Definition 3. (k-connectivity redundant) A sensor node si is k-connectivity
redundant if the communication graph induced by S\si is still k-connected.

k-Connectivity Redundant Condition: A sensor node si is k-connectivity
redundant if for any two one-hop neighbors sn and sm of si, there are k node
disjoint replacement paths connecting sn and sm via several intermediate nodes
in Nl (i) (if any) with lower priority than si, where Nl (i) is node si’s l-hop
communication neighbors.

The node priority can be any combination of the remaining energy, node
id, and random numbers. The only requirement is that the priority should be
able to set up a total order among all sensor nodes so as to resolve the cyclic
dependent relationship among neighbors. In paper [13], Wu et al. use a similar
condition to construct a k-CDS for MANET.

B. k-Coverage Redundant Condition
A sensor node si is not needed for preserving the k-coverage property of the

target region if it is k-coverage redundant.

Definition 4. (k-coverage redundant) A sensor node si is k-coverage redundant
if the target region is still completely k-covered by S\si.

The k-coverage redundancy of sensor node si is detected by utilizing the
order-k Voronoi diagram.

Definition 5. (order-k Voronoi diagram [14]) Given a set of distinct genera-
tor sites P = {p1, p2, . . . , pn} in the 2D plane R

2. The order-k Voronoi region
associated with a subset Pi

k = {pi1, pi2, . . . , pik} ⊂ P is defined as:

V
(
Pi

k
)

=
{

q ∈ R
2|max

ph

{
d (q, ph) |ph ∈ Pi

k
}
≤ min

pj

{
d (q, pj) |pj ∈ P\Pi

k
}}

.

The set of order-k Voronoi regions, V (k) =
{

V1
(k), V2

(k), . . .
}
, is called the order-

k Voronoi diagram of R
2 generated by P .

Fig.1 is an example of order-3 Voronoi diagram with 20 random genera-
tor sites. Sensor node si can calculate the order-k Voronoi diagram of the

482 J. Jiang et al.

Fig. 1. Order-3 Voronoi Diagram with 20

random sites

Fig. 2. Neighbor order-2 Voronoi diagram

target region by taking its l-hop neighbors Nl(i) as generator sites. We use
NOV D (l, k, i) to denote the resultant Voronoi diagram, NOV V (l, k, i) to de-
note a Voronoi vertex of NOV D (l, k, i), and NOV IP (l, k, i) to denote an in-
tersection point between an edge of the NOV D (l, k, i) and the circumcircle of
si’s sensing disk. In Fig.2, suppose the circle represents sensor node s7’s (which
is not shown in this figure) sensing area and assume its the 2-hop neighbor set is
N2 (7) = {s1, s2, s3, s4, s5, s6}. Taking N2 (7) as Voronoi sites, we can construct
the neighbor order-2 Voronoi diagram NOV D (2, 2, 7). Each Voronoi polygon is
associated with a pair of sensor nodes (shown in bracket) and NOV V (2, 2, 7) =
{A, B, C, D, E, F, G, H, I, J} and NOV IP (2, 2, 7) = {P1, P2, P3, P4, P5, P6}.

Theorem 1. A sensor node si is k-coverage redundant if and only if every
NOV V (l, k, i) vertex and every NOV IP (l, k, i) point, which lies in si’s sens-
ing disk, is covered by all of the k corresponding Voronoi sites (sensor nodes in
Nl (i)).

Proof. (1) necessary condition. If sensor node si is k-coverage redundant, all
NOV V (l, k, i) vertices and NOV IP (l, k, i) points in Si are k-covered by other
nodes. According to the definition of order-k Voronoi diagram, each of these
points must be covered by its k closest sites, i.e., the corresponding nodes asso-
ciated with the Voronoi polygon.

(2) sufficient condition. Sensor node si’s sensing disk Si is divided into several
subareas by NOV D (l, k, i). There are two types of subareas. One is the closed
convex polygon involving only NOV V (l, k, i) vertices. The other is a convex
area involving not only NOV V (l, k, i) vertices, but also NOV IP (l, k, i) points.

Case 1. Consider the subarea involving only NOV V (l, k, i) vertices. If all
these NOV V (l, k, i) vertices are covered by the k associated Voronoi sites, ac-
cording to the convexity of the Voronoi region and sensor node’s sensing area,
the subarea formed by these NOV V (l, k, i) vertices is covered k sensor nodes in
Nl (i).

Constructing k-Connected k-Cover Set in Wireless Sensor Networks 483

Case 2. Consider the subarea of the second type. In this case, the bound-
ary of the convex subarea includes an arc segment of si’s coverage circumcircle
Ci. Let’s take Fig.3 as an example. Points V IP1 and V IP2 are the intersec-
tion points between Ci (solid circle) and two Voronoi edges. To cover these two
NOV IP (l, k, i) points, sensor node sj must lie in the intersection area between
circles C1 and C2 (dotted circle), where C1 (C2) is centered at V IP1 (V IP2)
with radius Rs. For every point p on the arc segment between V IP1 and V IP2

(counterclockwise), d (sj , p) ≤ Rs. If all other NOV V (l, k, i) vertices (e.g., A,
B, and C) of this convex region are also covered by sj , every point in this convex
region will be covered by sj . Similar to case 1, if all NOV V (l, k, i) vertices and
NOV IP (l, k, i) points of the convex region are covered by each of the associated
k closest sensor nodes, this convex subarea is surely k-covered even without si,
which means that si is k-coverage redundant in this case. �

To avoid that two neighboring sensor nodes turn off simultaneously thus
leaves blind points in the target region, node priority is also used to prevent the
cyclic dependent relationship as the k-connectivity redundant condition does.

k-Coverage Redundant Condition:
A sensor node si is k-coverage redundant if every NOV V (l, k, i) vertex and
every NOV IP (l, k, i) point, which lies in si’s sensing disk, is covered by the
corresponding associated Voronoi sites (sensors) in Nl (i) with lower priorities
than si.

Fig.4 illustrates the k-coverage redundant condition on the basis of Fig.2.
The shadowed circle is sensor node s7’s coverage area. If we take node id as
node priority, node s7 has the highest priority among its 2-hop neighbors. And
we can see that, when P6, J, I, H, P5 points are covered by both s5 and s6,
P5, H, G, F, P4 are covered by both s4 and s5, P4, F, E, P3 are covered by both
s3 and s4, P3, E, D, P2 are covered by both s2 and s3, P2, D, C, B, A, P1 are
covered by both s1 and s2, P1, A, J, P6 are covered by both s1 and s6, A, B, I, J
are covered by both s2 and s6, B, C, G, H, I are covered by both s2 and s5,
D, C, G, F, E are covered by both s2 and s4, then s7 is 2-coverage redundant. If
a sensor node meets both the above two redundant conditions, it is safe to put

Fig. 3. Proof of Case 2 Fig. 4. Example of k-coverage redundant

condition (k = 2)

484 J. Jiang et al.

the sensor node into low-powered sleep status immediately. Finally, all sensor
nodes that don’t satisfy the above two conditions remain active and form the
k-connected k-cover set for the target region.

It has been shown that when Rc ≥ 2Rs the complete coverage of the target
region implies connectivity of the network [11]. Further, it can be easily proved
that the k-coverage implies k-connectivity if Rc ≥ 2Rs. So in the case of Rc ≥
2Rs, the k-coverage redundant condition alone can construct a k-connected k-
cover set for the target area.

4 Performance Evaluation

The target region is an area of 40 × 40 unit square. The sensing model and
wireless communication model are presented in section 2. In our experiments,
neighbor hop number l is 2 and node id is used as node priority. All results
shown here are the average values over 50 runs.

Fig.5 shows how the size of KCC (number of active sensor nodes) constructed
by the proposed self-pruning algorithm varies with the network size (deployed
node number) when k is set to 1, 2 and 3 separately. We can see that the size of
KCC is much smaller than that of the original network. Therefore the proposed
algorithm can decrease the number of active sensor nodes and hence reduce the
total energy consumption effectively, which is helpful to prolong the network
lifetime. In both figures the size of KCC increases with the network size under
all settings of k. We also notice that when Rc = 2Rs the size of KCC is smaller
than the corresponding size when Rc = Rs.

Fig.6 shows how the size of 2-connected 2-cover set varies with Rs when Rc

is fixed to 10 units. We see that under different network size (150 and 250),
the number of active sensor nodes decreases with the increase of Rs. In Fig.7,
we compare the performance of the proposed self-pruning algorithm with the
distributed version of the Greedy algorithm in [9] under different network size
when k = 1 and Rc = Rs = 10. Although the Greedy algorithm can result in a

(a)Rs = 10, Rc = 10 (b)Rs = 10, Rc = 20

Fig. 5. Size of KCC vs. network size

Constructing k-Connected k-Cover Set in Wireless Sensor Networks 485

Fig. 6. Size of KCC vs.Rs (k = 2,

Rc = 10)

Fig. 7. Self-pruning (k = 1, Rs =

Rc = 10) vs. Greedy

Table 1.

Node Number Original VCD Origianl CD KCC VCD KCC CD Success Ratio

100 3 4 2 2 100%

150 5 4 3 2 100%

200 9 5 3 2 100%

250 10 5 4 2 100%

300 10 6 4 2 100%

slightly smaller active sensor node set, it must maintain global state information
during its executing process and therefore it is prone to message loss. On the
contrary, the proposed self-pruning algorithm only needs local neighborhood
infomation and hence is more robust to message loss.

Table 1 shows the variation of the network Vertex Connectivity Degree
(VCD) and the Coverage Degree (CD) before and after applying the self-
pruning algorithm. The original vertex connectivity degree is computed when
all sensor nodes are active using the max-flow min-cut algorithm. The cov-
erage degree d means that each sensor node can cover its associated Voronoi
vertices in the order-d Voronoi diagram while can’t cover all of its Voronoi ver-
tices in the order-(d + 1) Voronoi diagram. We consider the comparison when
k = 2, Rc = Rs = 10. From Table 1 we can see that both the vertex connec-
tivity degree and the coverage degree are reduced but still satisfy the specified
requirement (k = 2). The success ratio is 100% under different network size.

5 Conclusions

In this paper we address the issue of constructing a minimal k-connected k-
cover set (KCC) for a target region and propose a general framework for this
problem. Different algorithms for detecting k-connectivity and k-coverage redun-
dancy in a localized manner can be integrated into the self-pruning framework.

486 J. Jiang et al.

And different connectivity and coverage requirements can be specified flexibly
in our framework. We also propose a novel, distributed and localized algorithm
to detect k-coverage redundancy of a sensor node based on order-k Voronoi di-
agram. Experimental results show that the proposed self-pruning algorithm can
construct the k-connected k-cover set reliably and reduce the number of active
sensor nodes whilst maintaining the k-connectivity and k-coverage properties of
the original network, which is helpful to reduce system energy consumption and
prolong the network lifespan.

References

1. A. Mainwaring, J. Polastre, R. Szewczyk, and D. Culler. Wireless Sensor Networks
for Habitat Monitoring. In Pro. of WSNA’02, Atlanta, USA, September, 2002.

2. J. Elson and D. Estrin. Sensor Networks: A Bridge to the Physical World. Wireless
Sensor Networks, Kluwer, 2004.

3. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless Sensor
Networks: A Survey. Computer Networks (Elsevier) Journal,pp.393-422, 2004.

4. B. Carbunar, A. Grama, J. Vitek, and O. Carbunar. Coverage Preserving Redun-
dancy Elimination in Sensor Networks. In Proc. of SECON 2004, Santa Clara, CA,
USA, 2004.

5. F. Ye, G. Zhong, S. Lu, and L. Zhang. Peas: A Robust Energy Conserving Protocol
for Long-Lived Sensor Networks. In Proc. of ICDCS’03, 2003

6. H. Chen, H. Wu, and N. Tzeng. Grid-Based Approach for Working Node Selection
in Wireless Sensor Networks. In Proc. of IEEE ICC’04, Paris, France, 2004.

7. S. Slijepcevic and M. Potkonjak. Power Efficient Organization of Wireless Sensor
Networks. In Proc. of IEEE ICC’01, Helsinki, Finland, 2001

8. T. Yan, T. He, and J. Stankovic. Differentiated Surveillance Service for Sensor
Networks. In Proc. of SenSys’03, Los Angels, CA, USA, 2003.

9. H. Gupta, S. R. Das, and Q. Gu. Connected Sensor Cover: Self-Organization of
Sensor Networks for Efficient Query Execution. In Proc. of MobiHoc’03, Annapolis,
Maryland, USA, 2003.

10. X. Wang, G. Xing et al. Integrated Coverage and Connectivity Configuration in
Wireless Sensor Networks. In Proc. of SenSys’03, Los Angeles, CA, 2003.

11. H. Zhang and J. C. Hou. Maintaining Sensing Coverage and Connectivity in Large
Sensor Networks. In Proc. of NSF International Workshop on Theoretical and
Algorithmic Aspects of Sensors, Ad Hoc Wireless, and Peer-to-Peer Networks, 2004.

12. D.Tian and N.D.Georganas. A Coverage-Preserving Node Scheduling Scheme for
Large Wireless Sensor Networt. In Proc. of WSNA’02, Atlanta, Geogia, USA, 2002.

13. F. Dai and J. Wu. On Constructing K-Connected K-Dominating Set in Wireless
Networks. In Proc. of IEEE IPDPS, 2005.

14. A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial Tessellations: Concepts
and Applications of Voronoi Diagram. John Wiley & Sons Press,1999.

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 487 – 494, 2005.
© IFIP International Federation for Information Processing 2005

GCMPR: Gateway-Centric Multi-path Routing
for Internet Connectivity of Wireless Mobile

Ad Hoc Network

Yongqiang Liu, Wei Yan, and Yafei Dai

Computer Networks and Distributed Systems Laboratory, Peking University,
Room 1716, Science Building No.1, Peking University, Beijing, China

{lyq, yanwei, dyf}@net.pku.edu.cn

Abstract. Connecting ������ Ad Hoc Network (MANET) to the Internet will
extend Internet into a new territory by making web service available “anytime,
anywhere”. However, many simulations and practical experiments have shown
that when communication is between mobile nodes in MANET and fixed nodes
on Internet, the bandwidth is asymmetrical and the available throughput is
greatly limited. In this paper, we present a gateway-centric multi-path routing
protocol (GCMPR), which ensures every mobile node has a set of link-disjoint
and loop-free paths to gateway. The novel routing algorithm over multiple paths
can provide higher aggregate bandwidth and improve the end-to-end delay.
Simulations for comparing performance between GCMPR and other connec-
tivity methods show that GCMPR achieves 40% throughput enhancement and
remarkable improvement for the end-to-end delay. Furthermore, GCMPR can
be easily applied to other scenarios in MANET when some hosts provide spe-
cial service and are visited frequently.

1 Introduction

Mobile ad-hoc communication [1] has been one of the most active research areas in
the past decade. For many applications in the mobile environment, it is much desired
that a self-organizing ad hoc network is somehow connected to the world-wide Inter-
net. We refer to such connecting networks as wireless hybrid networks. Usually, a
MANET node with Internet access can operate as a gateway and provide Internet
access to other nodes in the MANET.

There have been some researches on connectivity for MANET, such as node ad-
dressing[2], gateway discovery[3] and routing algorithms[4-5]. The performance
evaluations of wireless hybrid networks [6,7] have shown that the communication
bandwidth between MANET nodes and Internet nodes is asymmetrical. As illustrated
in Fig.1-(a), the end-to-end throughput is actually determined by the bandwidth be-
tween MANET nodes and the gateway. The aim of our work is to develop a multi-
path routing protocol for providing higher aggregate bandwidth to gateway and im-
prove the performance of the wireless hybrid network.

488 Y. Liu, W. Yan, and Y. Dai

Wired network

Transport Layer

GateWayay

Wireless Ad Hoc network

Bandwidth

Bandwidth Visiting Node
Corresponding Node

Wired network

GateWayay

Wireless Ad Hoc network

Bandwidth

Bandwidth(1,2,3) Visiting Node
Corresponding Node

Fig. 1. Bandwidth illustration over wireless hybrid network

Some multi-path routing approaches have been proposed, such as
TORA[8],SMR[9], AOMDV[10], and AODVM[11]. But none of them can be di-
rectly applied to the wireless hybrid network, because these protocols require the
destination node to be in MANET. To solve this problem, we present a Gateway-
Centric Multi-Path Routing (GCMPR) protocol. As illustrated in Fig.1-(b), GCMPR
is a hybrid routing protocol. The gateway pushes proactively its link-disjoint routing
entries into the routing tables of the rest of the nodes in MANET. The communica-
tions among MANET nodes still use single path routing on-demand.

The advantages of GCMPR can be summarized as follows:

1. When there is a large percentage of traffic between MANET nodes and Internet
nodes traversing the gateway, GCMPR can greatly improve the end-to-end throughput
compared to the single path routing approach.

2. When there are many nodes need to establish multi-path routing to the gateway,
GCMPR requires fewer additional control messages than other multi-path routing
protocols, therefore, lower overhead in MANET.

3. In other routing approaches, only the source node has multi-path information to
the destination. The intermediate nodes in GCMPR also keep multi-path information
to the gateway. Therefore, GCMPR is more effective in recovering the broken path.

The remainder of this paper is organized as follows. Session 2 describes the proto-
col mechanism in detail. Performance evaluation by simulation is presented in Section
3 and concluding remarks are given in Section 4.

2 Gateway-Centric Multi-path Routing in Hybrid Network

2.1 Protocol Overview

The GCMPR is a distributed message-based routing scheme. As illustrated in Fig.2,
the basic idea of message-based routing is that a gateway information message is
generated by the gateway and sent to its neighbors. The neighbors add their own in-
formation into the message and forward it to the downstream nodes. Analyzing the
messages coming from different neighbors, the MANAT node can form multiple link-
disjoint paths to the gateway. The main steps of GCMPR are as follows:

 GCMPR: Gateway-Centric Multi-path Routing for Internet Connectivity 489

Fig. 2. An example of setting up multiple paths to the gateway with GCMPR

1. Gateway broadcasts periodically a gateway advertisement (GWADV) message
throughout the ad hoc network.

2. When the GWADV message is received from its neighbors, a node makes a de-
cision based on its states. These states include following scenarios: 1) whether the
GWADV can provide the information for it to find another link-disjoint path to the
gateway. 2) whether the message should be forwarded to its downstream nodes. To
achieve these two goals, each MANET node uses a variant PID to identify each path
to the gateway. The PID is defined as follows:

>=< hopfirsthopnextPID _,_ (1)

where the next_hop is the IP address of the upstream neighbor along the path and
first_hop is the IP address of the first hop just before the gateway. For the path1 (t->k-
>j->G) in Fig2, from the view of node t, >=< jkPID ,1

We define that

)__()__(jijiji hopfirsthopfirsthopnexthopnextPIDPID ==∨==⇔== (2)

)__()__(jijiji hopfirsthopfirsthopnexthopnextPIDPID ≠∧≠⇔≠ (3)

By comparing the PIDs in the GWADV messages, GCMPR can guarantee that the
paths to the gateway are link-disjoint and loop-free. This is accomplished by applying
GWADV forwarding rule to each intermediate node. Details and proof of the for-
warding rule will be discussed in following sessions.

3. In order to reduce the overhead in the ad hoc network, only useful GWADV
messages which can create a new link-disjoint path or shorter path to downstream
nodes are modified and forwarded by the receiving node.

4. When a node detects its next hop in the path out of its range, it performs a micro
repair to find an alternative path to the gateway and the cost of this repair is very low.

5. If a mobile node (S) wants to communicate with another node (D), S estimates
the location of D (whether D is in MANET or on Internet) by broadcasting a network-
wide RREQ and waiting for corresponding RREP. In GCMPR, RREQ is extended to
contain additional information for forming reverse multi-path routing to the source.

490 Y. Liu, W. Yan, and Y. Dai

2.2 Gateway Advertisement Message and Gateway Routing Table

A gateway can advertise its presence by sending a GWADV message. The GWADV
message contains information for propagating a new link-disjoint path to the gateway
for downstream nodes. The general format of this message is shown in Fig.3, where
ADVERTISEMENT ID (ADV_ID) is the sequence number of the message and lager
ADV_ID means fresher message.

 0 7 15 23 31

TYPE FLAG Reserved Hop Count

GATEWAY ADDRESS

ADVERTISEMENT ID

FIRST HOP ADDRESS

SENDER’S ADDRESS

SENDER’S NEXT HOP ADDRESS

LIFETIME

}PID {

Fig. 3. Format of Gateway Advertisement Message

As introduced in section1, in GCMPR, each MANET node only establishes multi-
path routing to the gateway and keeps single path routing among MANET nodes. An
additional gateway routing table (called gw_rtable) is designed to record path infor-
mation to the gateway. The structure of the gw_rtable and the relationship between
the two routing tables are illustrated in Fig.4.

destination next_hop

Original routing table

gw address1 ADV_ID paths list

hop_count1 next_hop1 first_hop1

hop_count2 next_hop2 first_hop2

gateway table (gw_table)

Fixed node1 DEFAULT

DEFAULT gw_address1

Fig. 4. The structure of gw_rtable and the relationship between the two routing tables

 2.3 GWADV Forwarding Rule

As mentioned in section 2.1, GCMPR uses GWADV forwarding rule to form multiple
loop-free paths to the gateway. Moreover, the rule can reduce additional routing over-
head and prevent downstream nodes from receiving wrong PID information. The
detailed GWADV forwarding rule is shown in Fig.7.

 GCMPR: Gateway-Centric Multi-path Routing for Internet Connectivity 491

Fig. 5. GCMPR GWADV forwarding rule

3 Performance Evaluation

3.1 Simulation Environment

The simulations were done with ns2 [12]. All of the simulations were run in an ad hoc
network consisting of 50 nodes uniformly spreading in an 1000x1000 meter area.
Nodes are equipped with an IEEE 802.11 radio network interface, operating at 1Mbps
with 250m transmission range. Nodes move according to the Random Waypoint mo-
bility model, at uniformly distributed speed between 0 and 15m/s.The traffic pattern
consists of several CBR/UDP connections between randomly chosen source and two
fixed nodes in wired network.�The sending interval at the source is 20ms and packet
size is 80 bytes.

In [11], the AODV protocol is modified to implement solutions to the wireless hy-
brid network by adding node addressing and the gateway discovery methods. We

492 Y. Liu, W. Yan, and Y. Dai

refer to the modified AODV as AODV+. There are two gateway discovery mecha-
nisms In [11], the AODV protocol is modified to implement solutions to the wireless
hybrid network by adding node addressing and the gateway discovery methods. We
refer to the modified AODV as AODV+. There are two gateway discovery mecha-
nisms in AODV+: reactive gateway discovery and proactive gateway discovery. In
the simulation, four protocols are measured. They are AODV+ with reactive gateway
discovery (called reactive AODV+), AODV+ with proactive gateway discovery (pro-
active AODV+), AODV incorporating GCMPR without micro repair (GCMPR) and
AODV+GCMPR with micro repair (GCMPR with micro repair). We use salvage
mode as multi-path selection scheme [10] and the gateway broadcasts an advertise-
ment in every 5 seconds.

Three important metrics of protocol performance are evaluated:

Packet Throughput: This is the product of the size of the packet and the number of
packets received by destination in a unit time. Data packets can be dropped in the
network either at the source or at intermediate nodes for node mobility and wireless
channel collision.

End-to-End Delay of Data Packets: This includes all possible delays caused by
buffering during route discovery, queuing delay at the interface, retransmission delays
at the MAC, propagation time and transfer time.

Routing Control Messages Overhead: Routing control messages include gateway
discovery advertisement, request and reply. The metric is the ratio of the number of
control message to the total data packets received by the destination.

3.2 Simulation Results

Fig.6, 7 and 8 show the results with varying mean node speeds. Fig 6 compares the
packet throughput performance of four protocols. The throughput of all protocols
decreases with increase of mean node-speed, because nodes will drop packets if they
have no routes to forward when topology changes. GCMPR always drops fewer pack-
ets than other protocols and the throughput improvement is up to about 40%. This is
because of the availability of alternative paths to forward the packets when one path
fails. The GCMPR with micro repair outperforms other protocols because of its rapid
route recovery at intermediate nodes.

Fig.7 shows the end-to-end delay of four protocols. As expected, the delay in-
creases with mean node-speed grows. This is because of the increase in the number of
route failures and the consequent packet cache. GCMPR with micro repair improves
the delay almost by a factor of two. So the improvement of packet end-to-end delay is
more significant than that of the throughput.

In Fig.8, it can be seen that GCMPR has more control overhead (average about
20%), because it uses additional GWADV messages to form multiple paths to the gate-
way. With the increasing mobility, reactive AODV+ has to send more route discovery
requests to discover the path to the gateway and therefore higher overhead.

 GCMPR: Gateway-Centric Multi-path Routing for Internet Connectivity 493

Fig. 6. Throughput with varying mobility

Fig. 7. End-to-end Delay with varying mobility

Fig. 8. Routing overhead with varying mobility

4 Conclusions

Routing protocols with multi-path capability can improve the bandwidth between the
gateway and mobile nodes in MANET, because it can effectively deal with mobility-
induced route failures. In this paper, we have proposed a gateway-centric multi-path
protocol (GCMPR) which ensures that each mobile node has a set of link-disjoint and
loop-free paths to the gateway. Another feature of GCMPR is the micro repair with
minimal additional overhead. We have studied the performance of GCMPR relative to

494 Y. Liu, W. Yan, and Y. Dai

AODV+ using ns-2 simulations under varying mobility scenarios. The results show
that GCMPR can improve the throughput by up to 40% and offers a significant reduc-
tion in the end-to-end delay.

Reference

1. Alex Ali Hamidian: A Study of Internet Connectivity for Mobile Ad Hoc Networks in NS
2. Master’s thesis, Lund Sweden (2003)

2. Jönsson U, Alriksson F,Larsson T: MIPMANET- Mobile IP for Mobile Ad Hoc Networks.
In Proceedings of the Workshop on Mobile Ad Hoc Networking and Computing (Mobi-
Hoc), Boston, USA (2000)

3. Xi J.; Bettstetter C: Wireless Multihop Internet Access: Gateway Discovery, Routing and
Addressing. In Proceedings of the International Conference on Third Generation Wireless
and Beyond (3Gwireless’02), San Francisco, USA(2002)

4. Perkins C: IP Mobility for IPv4, Revised. draft-ietf-mobileip-rfc2002-bis-08.txt(2001)
5. Wakikawa R., Malinen J., Perkins C., Nilsson A: Global Connectivity for IPv6 Mobile

Ad Hoc Networks, IETF Internet Draft, November 2001.Work in progress.
6. S. Xu and T. Saadawi: Does the IEEE 802.11 MAC protocol Work Well in Multihop

Wireless Ad Hoc Networks. IEEE Communication Magazine, Volume 39(2001) 130-137.
7. G. Anastasi, E. Borgia, M. Conti, E. Gregori: IEEE 802.11Ad Hoc Networks: Performance

Measurement. IIT Internal Report(2003)
8. V.D. Park and M.S. Corson: A Highly Adaptive Distributed Routing Algorithm for Mobile

Wireless Net-works. Proceedings of IEEE INFOCOM’97 Conf (1997)
9. Lee, S.-J., Gerla, M: Split Multipath Routing with Maximally Disjoint Paths in Ad Hoc

Networks. IEEE International Conference on Communications, Vol. 10 (2001)
10. Marina, M.K., Das, S.R.: On-demand Multipath Distance Vector Routing in Ad Hoc Net-

works. Proceedings of the International Conference for Network Protocols (2001)
11. Ye, Z., Krishnamurthy, S.V., Tripathi, S.K.: A Framework for Reliable Routing in Mobile

Ad Hoc Networks. IEEE INFOCOM (2003)
12. K. Fall: The ns Manual. http://www.isi.edu/ ns/nsdocumentation.htm(2002)

A Semantic and Adaptive Context Model

for Ubiquitous Computing

Yunting Tang1 and Qing Wu2

1 Ningbo Institute of Technology, Zhejiang University,
Ningbo, Zhejiang, China 315001

tyt@nit.net.cn
2 College of Computer Science, Zhejiang University,

Hangzhou, Zhejiang, China 310027
wwwsin@cs.zju.edu.cn

Abstract. Ubiquitous computing pursues naturalness and harmony. We
think that semantic and adaptation are two important aspects. This
paper presents a semantic and adaptive context model for ubiquitous
computing. We emphasize the fusion of semantic information and context
model in smart vehicle space to support ubiquitous computing. In our
work, we use a web ontology language to model ontologies of context
including the common essential ontology and the application domain-
specific ontology. In addition, we present an application scenario in smart
vehicle space. Also, we propose a prototype system of our model.

1 Introduction

A new computing model is coming into our life, which we called ”ubiquitous
computing” [1]. Environment, people, and smart devices are three elements of
this novel computing model. In order to relate with each other harmoniously and
naturally, we should synthesize multifarious techniques. As a result, ubiquitous
computing integrates many research areas including software architecture, mid-
dleware platform, languages design, distributed systems, artificial intelligence,
vision recognition, user interfaces, and biological authentication. Recently, many
related academic research efforts and commercial reality are made for ubiquitous
computing. As a whole, they focus on active and smart spaces such as intelligent
home, easy meeting-room, and smart museum. In the smart spaces, in terms of
changes of the people, environment and devices, this computing model automat-
ically and continuously self-adjusts according to pre-defined strategies to new
states in order to provide better cooperation and communication between enti-
ties. Achievement of this attractive goal poses a large number of new challenges
for software architecture and middleware technology. The traditional computing
models are no longer suitable [2]. Therefore, a novel middleware architecture
is needed to support ubiquitous computing. We consider the keystone to be
adaptation, which we use a semantic context model to realize. Context-aware
mechanisms provide an infrastructure for adaptation. Since there are many dif-
ferent run-time environments, in order to achieve greatly improved cooperation,

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 495–502, 2005.
c© IFIP International Federation for Information Processing 2005

496 Y. Tang and Q. Wu

they should understand and communicate with each other better than they do
today. Thus we define common essential ontology for smart space. On the other
hand, to deal with the specific application domains, we first find problem do-
mains, and then build ontology of specific domains. Moreover, according to the
context complexity, we deal with context according to hierarchy and priority.
Emphatically, we argue that ”semantic view” for context is the key enabler of
smart space.

Vehicles have merged into our daily life, playing an important role. Because
we need more comfort, facility and safety in vehicles, we select vehicle space
as a representative scene of ubiquitous computing. In this paper, we propose
a semantic context model integrating semantic web technology and ontology
language for self-adaptation. Our work is related to other pervasive and context
aware computing research such as CoBrA [3], Context Toolkit [4], One.World
[5], TOTA [6]. Compared with the previous systems, our design focuses are
twofold. Firstly we focus on smart vehicle space; secondly we emphasize the
semantic view of a context-aware middleware model in smart vehicle space and
we propose a semantic context model. Because context-driven and person-centric
are the characteristics of ubiquitous computing, we consider the semantic context
model is very important. We have defined the common essential ontology and
application domain-specific ontology in smart vehicle space.

The structure of the paper is as follows. Section 2 presents the the semantic
and adaptive context framework, which comprises smart vehicle space overview,
semantic view for context and the formal specification of our context model. Sec-
tion 3 introduces an application domain-based ontology in smart vehicle space.
Next, section 4 presents an application scenario in smart vehicle space and a
prototype system of our model. Finally, section 5 summarizes the discussion.

2 Semantic and Adaptive Context Framework

As Tim Berners-Lee [7] described, semantic web is an extension of the current
web where information is given well-defined meaning, better enabling computers
and people to cooperate better. Below, we present smart vehicle space and se-
mantic view for context. In addition, we propose a semantic and adaptive context
model.

2.1 Smart Vehicle Space

Smart vehicle space is an essential research field of smart spaces. Using security
authentication, image processing and pattern recognition technology, in terms
of relationships between people, vehicle and environments, the grade of security
and comfort is greatly improved.

Smart vehicle space has four parts, which is defined as SVS=(CA, CR, AC,
CP), where CA is a context acquisition system; CR is a context repository rea-
soning system; AC is an auto controlling system and CP is a centralized pro-
cessing system. CA is defined as CA=((�statpe,�statdv,�staten), (sen, cam,

A Semantic and Adaptive Context Model for Ubiquitous Computing 497

soundrec)). CA comprises sensors, cameras and sound receivers, which aims at
sensing the status change of people, devices and environments in the vehicle.
CR is defined as CR=(context, ontology, domain, inference), and uses correla-
tive contexts and application domain-based ontologies to make the manipulating
strategy for adaptation. AC is defined as AC=(ste, com, ent, nav, sec), which in-
cludes steering, communication, entertainment, navigation and security subsys-
tem. Particularly, CP is the kernel of smart vehicle space, which controls above
third parts co-operating effectively and adaptively. We define CP as CP=f(CA,
CR, AC), where f is a control function.

2.2 Semantic View for Context

Context [8] is any information that can be used to characterize the situation of
an entity. An entity may be a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and
application themselves. Commonly used contexts consist of location, identity,
time, temperature and activity. We consider specific objects in environments are
all context. The semantic information of context is essential for dealing with
complex tasks in ubiquitous computing environments.

Context-aware is an ability to sense and use different context. Any application
that takes advantage of context is a context-aware application. Context-aware
computing is the ability of computing devices to detect, interpret and respond
to the change of environment and system. The W3C organization has specified
a language OWL that is based on DAML and OIL for semantic web, which is
more expressive than RDF and RDF-S. Because context is so complicated and
hard to understand and use, we have introduced semantic web technology into
the context framework in smart space. We share common vocabularies and use
OWL as our standard syntax to present information and inference. In this way,
we model the different context hierarchies more effectively and adaptively.

2.3 Semantic and Adaptive Context Model

In this part, we give a detailed formal specification for the semantic and adaptive
context model, including three definitions and one algorithm.

Definition 1 Context Model. Context model CON=(S, P, V) is a 3-tuple,
where S={s1, s2, ..., sn} is a set of context semantic information; P={p1, p2, ..., pn}
is a set of attributes of S; and V={v1, v2, ..., vn} is set of values of S.

Definition 2 Semantic Context Model. Semantic Context model MSC=(K,
T, S) is a 3-tuple, where K is context-driven kernel including basic context
services; T is a set of context base and process tools; T is defined as T=(B, O),
where B=(SB, TB) is a set of context bases comprising context shared base and
transcendent base; O=(SR, CF) is a set of context tools such as smart reasoning
and context fusion algorithm. S, defined as S=(Stpe, Sten, Stde), is a set of states
of people, environments and smart devices.

498 Y. Tang and Q. Wu

Definition 3 Semantic and Adaptive Context-Aware Processing Model.
Semantic and adaptive context-aware processing model SACM=(O, A, S, G, N,
T), where O is the application domain-based ontology; A is a process of con-
text acquisition, which aims to gain raw data from sensors and transform it to
ontology entities or attributes. The data they export are of different type and
structure, which is abstracted so that it can be used by an application; S is
a process of context storage, which stores the acquired context in a repository
for access when necessary; G is a process of context aggregation, which inte-
grates correlative context for a specific entity; N is a process of context analysis,
which infers current status of entities or the intention of users; T is a process
of context-aware actions. We specify appropriate action rules for a number of
context scenarios. At run-time, whenever the system state matches a particular
scenario, the associated action will be automatically executed according to pre-
defined strategies. Emphatically, T process is not serial and static, because of
the execution of actions will cause the system to enter a new state, so bringing
the system to a new context scenario. In addition, there may be multiple pro-
cesses in progress interacting with each other. As a result, T is a stochastic and
recursive process.

Algorithm SAC. To elaborate the semantic and adaptive context process, we
present the SAC algorithm.

Algorithm SAC(msc, sacm, �con): According to semantic of the context-aware
tasks, it implements the adaptive context process.

Input:
Semantic context set msc (a subset of MSC);
Semantic and adaptive context-aware processing sacm (a subset of
SACM);
A set of change of context ccon;

Output:
A new semantic context set msc’ (a subset of MSC);

Begin
Decompose ccon into several basic atom-context sets (atcs);
Foreach atc in atcs do
Do sacm.a according to sacm.o, msc.s;
Do sacm.s, sacm.g, sacm.n according to msc.b.sb and msc.b.tb
Until sacm.t;
Update(msc.b.sb);
Update(msc.b.tb);

Endfor
End.

3 Application Domain-Based Ontology

An ontology [9] is an agreement about shared conceptualization, which includes
conceptual frameworks for modelling application domain knowledge, content-

A Semantic and Adaptive Context Model for Ubiquitous Computing 499

specific protocols for communication among interacting agents, and agreements
about the representation of specific domain theories. Ontology has such charac-
teristics as definitions of representational vocabulary, a well-defined syntax, an
easily understood semantics, efficient reasoning supports, sufficient expressive
capabilities, and convenience of expressions. We understand ontology at two dif-
ferent levels. (a) It is a vocabulary, which uses appropriate terms to describe
entities and relationships between entities. (b) It is a knowledge base for a spe-
cific domain. In our view, ontology describes domain knowledge in a general way
and provides consistent understanding of one application domain.

3.1 Common Ontology

For smart spaces, we have built some common essential ontology EO=(SS, PL,
TI, PI, DC, SP), where SS is a set of smart space characteristics, which describes
names, types, important locations and devices; PL is a set of physical location of
person and devices; TL is a set of time, presenting the period of time or instant
time; PI is a set of person identities, on which the system confirms one person
different to others; DC is a set of devices characteristics, including names, types
and attributes; SP is a set of security and privacy policy, denoting a person’s
capabilities.

3.2 Specific Ontology

Because smart vehicle space is a specific environment, we examine its character-
istics from the view of context. (a) Space -inside vehicle- is relatively confined.
The devices inside the vehicle may have limited capabilities and be fixed to the
vehicle. Also, the space for user to move is restricted. (b) Though environments
-outside of vehicle- continually change, we need not consider the whole range of
dynamics, just those can influence our system.

The above characteristics determine the definitions of context in smart vehicle
space. We use the idea of ontology to describe the context information. The
context in smart vehicle space is defined as CONsvs=(VC, EC, DC), where VC
is a set of vehicle context, concerning the statuses and attributes of devices inside
the vehicle, such as air-condition, wiper, light, engine, ABS, and seat; EC is a
set of environment context, comprising the environmental elements which may
influence driving, such as weather, road status, fingerposts, and signal lamps;
DC is a set of driver context, including (a) the status of a driver, such as the
suitability and ability to driving; (b) physiological parameters, such as alcohol
levels and pupil diameter.

We have used Protégé [10] tool to build context and create instances in smart
vehicle space. Protégé is an ontology editor tool, providing a GUI for the user to
create and manage the ontology architecture. Using Protégé, we export files in
OWL format for inference. Figure 1 shows the ontology of smart vehicle space.

3.3 Ontology Usage

We have developed an ontology repository and defined three base classes, which
represent the context inside the smart vehicle, the outside environment of the

500 Y. Tang and Q. Wu

Fig. 1. Ontology Built in Protégé

vehicle, and the driver respectively. In order to be able to rely on the knowledge
base, we filter the context scenario and specify fixed conditions(context) that
trigger specific actions. Once the system meets the condition we have defined,
the context reasoning system will be triggered and will perform the associated
actions.

The context scenarios that we are interested in comprise three parts. We
define IS=(SD, OI, DR), where SD is a set of security driving, including the
scenario of driving at high speed in case of emergency; OI is a set of influences
of outside environment, such as the vehicle can follow the signpost and turn
to the right , or the ABS will engage in the case of loss of traction; DR is
a set of the driver status. Importantly, we specify several driver conditions.
Each one corresponds to different physiologic parameters. According to different
danger level, system takes various actions. For example, if the driver is unable to
continue driving when the danger level is high, the system will force a controlled
stop and call for help. If the condition is not very serious, the system may simply
park at the nearest convenient location. As a result, in terms of the ontology,
the system can deal with different problems adaptively.

4 One Scenario

To demonstrate the application of the semantic and adaptive context model,
we present the following scenario. It is time for Mr. Wu to go to work. He

A Semantic and Adaptive Context Model for Ubiquitous Computing 501

approaches his vehicle and puts his palm on the lock authentication machine.
Next, his fingerprint information is sent to the in-vehicle computer that receives
the data, analyzes them, confirms him as a legal driver, and then orders the door
to open. After the door opens, he gets into the vehicle, sits down, and puts his
ID card on the ID machine. At the same time, a sensor measures his weight and
a camera records his appearance. These data are sent to the in-vehicle computer,
which recognizes his identity. If allowed, the system sends a welcome command
to the audio device in the entertainment system. A voice ”Welcome, Mr. Wu”
comes from the speaker. At the same time, the in-vehicle computer orders the
entertainment system to play his favourite music and the climate system to
adjust the air quality according to his preferences. Mr. Wu inputs his destination
into the in-vehicle computer. The optimal router and some alternative routers
are given. He selects the optimal one and the in-vehicle computer accepts his
selection. He may say: ”start”. His command is received by voice sensor and sends
it to the in-vehicle computer. Then the in-vehicle computer sends a command to
the control system and the motor starts. The vehicle monitoring system detects
the vehicle’s status is good, and reports the status to the in-vehicle computer.
If the control system detects water in the road, it will send a message to the
in-vehicle computer. Therefore, Mr. Wu is warned to pay attention to the road
condition and the control system sets the vehicle parameters to avoid skids. On
arrival at the destination, the in-vehicle computer stops the motor and opens the
door. Mr. Wu gets out. The in-vehicle computer orders the door to close after
his departure is detected by the lock sensor.

According to the above scenario, we have developed a prototype system for
smart vehicle space based on the semantic and adaptive context model. Figure
2 shows one screen shot of the system. According to our context model, we

Fig. 2. A Screen Shot of the Prototype System

502 Y. Tang and Q. Wu

have defined an ontology related to smart vehicle space. With this prototype
system, we can capture the required information about drivers, environments
and vehicles. The system adapts to different conditions automatically.

5 Conclusions

In this paper, we have proposed a semantic and adaptive context model for smart
vehicle space to explore ubiquitous computing. We focus on synchronization and
adaptability aspects of semantic context, using OWL to build an ontology of
smart vehicle space. Further, we argue that it is crucial to focus on the ontology-
based context-aware aspect of interaction and communication. Moreover, from
a practical point of view, we give a scenario in smart vehicle space and present
a prototype system of our context model.

References

1. Weiser M: The Computer for the 21st Century. Scientific American, pp.94-100
(1991)

2. Anand Tripathi: Next-Generation Middleware Systems Challenges Designing.
Communications of the ACM, 45(6), pp. 39-42 (2002)

3. Harry Chen, Tim Finin and Anupam Joshi: A Context Broker for Building Smart
Meeting Rooms. American Association for Artificail Intelligence (2004)

4. Daniel Salber, Anind K. Dey and Gregory D. Abowd: The Context Toolkit : Aiding
the Development of Context-Enabled Applications. Proceedings of CHI’99. ACM
Press (1999)

5. Robert Grimm, Janet Davis, Eric Lemar, Adam MacBeth, Steven Swanson,
Thomas Anderson, Brian Bershad, Gaetano Borriello, Steven Gribble, and David
Wetherall: System support for pervasive applications. ACM Transactions on Com-
puter Systems, 22(4), pp. 421-486 (2004)

6. Marco Mamei and Franco Zambonelli: Programming Pervasive and Mobile Com-
puting Applications with the TOTA Middleware. In proceedings of the 2nd IEEE
International Conference on Pervasive Computing and Communications, (2004)

7. Tim Berners-Lee and Mark Fischetti: Weaving the web: The original design and
ultimate destiny of the world wide web by its inventor. (2001)

8. Anind K. Dey: Providing Architectural Support for Building Context-Aware Ap-
plications. PhD thesis, Georgia Institute of Technology (2000)

9. B. Chandrasekaran, John. R Josephson, and Richard V. Benjamins: What Are On-
tologies, and Why do We Need Them? IEEE Transactions on Intelligent Systems,
pp. 20C26 (1999)

10. Natalya, F. N., Michael, S., Stefan, D., Monica, C., Ray, W. F., Mark, A. M. :
Creating Semantic Web Contents with Protege-2000. IEEE Intelligent Systems,
Vol. 16, No. 2. IEEE Computer Society, pp. 60-71 (2001)

H. Jin, D. Reed, and W. Jiang (Eds.): NPC 2005, LNCS 3779, pp. 503 – 510, 2005.
© IFIP International Federation for Information Processing 2005

Research of Survival-Time-Based Dynamic Adaptive
Replica Allocation Algorithm in Mobile

Ad Hoc Networks*

Yijie Wang and Kan Yang

National Laboratory for Parallel and Distributed Processing, Institute of Computer,
National University of Defense Technology, Changsha, China, 410073

wwyyjj1971@vip.sina.com

Abstract. Power conservation and extending survival time are critical issues in
mobile ad hoc networks, as the nodes are powered by battery only. In this
paper, according to the mobility of nodes, the survival-time-based adaptive
replica allocation algorithm is proposed. In the survival-time-based dynamic
adaptive replica allocation algorithm, based on the locality of data access, the
replica allocation scheme is adjusted regularly in order to reduce the power
consumption, and thus extend the survival time of network. The relation
between mobility models and efficiency of survival-time-based dynamic
adaptive replica allocation algorithm is studied. The results of performance
evaluation show that the survival-time-based dynamic adaptive replica
allocation algorithm can reduce the total power consumption of network greatly
and extend the survival time of network evidently.

1 Introduction

The mobile ad hoc networks [1] (MANET) consist of a collection of wireless nodes
without a fixed infrastructure. In addition to the issues associated with a mobile
network, the power consumption and mobility of the server(s) must also be
considered in a MANET. While data replication is very effective for improving the
data availability, mobile nodes generally have poor resources and it is impossible for
mobile nodes to have replicas of all data items in the network.

At present, several algorithms are proposed for replica allocation in mobile ad hoc
networks. Most of the existing algorithms are focused on the data availability during the
network division, the power consumption of nodes is not considered sufficiently. The
algorithms SAF[2], DAFN[3] and DCG[4] are proposed by Takahiro Hara in Osaka
University. In these three algorithms, the access frequency from mobile nodes to each
data item and the status of the network connection are taken into account to improve the
data availability during the network division. The collection of global information of
data access frequency will bring about vast communication cost, especially while the
network topology changes frequently. The algorithm [5] proposed by Karen H. Wang in

* This work is supported by the National Grand Fundamental Research 973 Program of China

(No.2002CB312105), A Foundation for the Author of National Excellent Doctoral
Dissertation of PR China (No.200141), and the National Natural Science Foundation of
China (No.69903011, No.69933030).

504 Y. Wang and K. Yang

Toronto University, the algorithm [6] proposed by Jiun Long Huang in National Taiwan
University and the algorithm [7] proposed by Kai Chen in Illinois University are all
aimed at the group mobility model, and the replica allocation is decided by the
prediction of network division.

In this paper, in view of the power consumption and survival time of nodes, a
survival-time-based dynamic adaptive replica allocation algorithm (STDARA) is
proposed. Section 2 states the problem and our motivation. Section 3 describes the
survival-time-based dynamic adaptive replica allocation algorithm. Section 4 presents
the results of performance evaluation. Section 5 provides a summary of our research
work.

2 Model and Statement of the Problem

2.1 Power Control

Definition 1. Relay Region
The relay region of a node r for a node s is defined as

() () () (){ }xsPxrPrsPxrsR ,,,, <+= .

()xsP , is the power incurred if node s directly transmits signal to node x, and

() ()xrPrsP ,, + is the power incurred if node s uses the node r as the relay node for

transmission from s to node x.

Definition 2. Enclosure Region
The enclosure region of a node s is defined as

() ()
()
I

sTr

rsEsE
∈

= ,

.

The region ()rsE , is called the enclosure region of node s by node r, it is the

complement of region ()rsR , . ()sT is the set of nodes lying within the transmission

range of node s.

Definition 3. Neighbors
The neighbors of a node s is defined as

() () (){ }sEysTyysN ∈∈= ,
.

The nodes that lie in the enclosure region of s is called the neighbors of s, and they are
the only nodes to which s will maintain communication links for power-efficient
transmission.

2.2 Data Access

Definition 4. Read-Write Pattern
The read-write pattern for an object O is the number of data access requests (read and
write) to O generated by each node in a time interval t.

 Research of Survival-Time-Based Dynamic Adaptive Replica Allocation 505

As the replica allocation is adjusted dynamically according to data access requests,
the number of data access requests is weighted in view of the residual power of nodes.

Definition 5. Weighted Number of Read-Write Requests
The weighted number of read requests on object O received by u in the time interval t
is

() () ()
()()∈

×=
ui init

E

N
iE

iEireaduread

receive

residual

()iread is the number of read requests on object O generated by node i in the time

interval t. ()iEinit is the initial power of node i. ()iE residual is the residual power of

node i. ()ureceiveN is the set of nodes, from which the data access requests are

transmitted to node u.
The weighted number of write requests on object O received by u in the time

interval t is

() () ()
()()∈

×=
ui init

E

N
iE

iEiwriteuwrite

receive

residual

()iwrite is the number of write requests on object O generated by node i in the time

interval t.

2.3 Replica Allocation

Definition 6. Replica Allocation Scheme
The replica allocation scheme for an object O is the set of nodes at which O is
replicated.

The power consumption of a single read request by node s is

() () () () ()vu

u

i
iivread rnPnnPnsPrsPOsP ,,,,,,

1

1
11 ++==

−

=
+K

.

vr is the replica node of object O, which is chosen for read request. in (i = 1, 2, …, u)

is the relay nodes between s and vr .

The power consumption of a single write request by node s is

() () ()
()∈

+=
Osetrr

ivvwrite

i

rrPrsPOsP
_

,,,,, KK

.

()Osetr _ is the set of replica nodes of object O. ()vrsP ,,K is the power

consumption of update operation on vr , ()
()∈ Osetrr

iv

i

rrP
_

,,K is the power consumption

of update operations on other replica nodes in ()Osetr _ .

The total power consumption of data access to object O in a time interval t is

506 Y. Wang and K. Yang

() () () () ()()
∈

×+×=
Ns

writeread OsPOsWriteOsPOsadOPOWER ,,,,Re

.

()Osad ,Re is the number of read requests to O in a time interval t, ()OsWrite , is

the number of write requests to O in a time interval t.
The problem of finding an optimal replica allocation scheme has been proved to be

NP-complete for different power consumption models. In this paper, based on the
heuristic algorithm, a survival-time-based dynamic adaptive replica allocation
algorithm is proposed to find a suboptimal replica allocation scheme.

3 Replica Allocation Considering Survival Time

STDARA is executed periodically and independently in each replica node, the
execution cycle is set according to the change of network topology and read-write
pattern.

STDARA includes expansion test, switch test and contraction test. The description
of STDARA is as follows:

//for object O, m∈ r_set(O)
Calculate the neighbors of replica node rn, which is
denoted as N(rn).
for (u∈N(m) , u∉r_set(O))
{ // expansion test is done for each neighbor of m,
which is not replica node of object O
 if (the expansion condition is satisfied)
 { // replica expansion
 r_set(O) = r_set(O) + {u} ;
 return;
 }
}
for (u∈N(m) , u∉r_set(O))
{ // expansion test is done for each neighbor of m,
which is not replica node of object O
 if (the switch condition is satisfied)
 { // replica switch
 r_set(O) = r_set(O) - {m} + {u} ;
 return;
 }
}
for (m)
{ // contraction test is done for m
 if (the contraction condition is satisfied)
 { // replica contraction
 r_set(O) = r_set(O) - {m};
 return;
 }
}

There are two extreme situations for expansion test (Fig.1).

 Research of Survival-Time-Based Dynamic Adaptive Replica Allocation 507

In Fig.1(a), each shortest path between u and replicas of object O will pass through
m. In Fig.1(b), each shortest path between m and other replicas of object O will pass
through u. The compromised expansion condition is as follows:

() ()
()

() ()() () 0,,...,
_

<×+−×=∆
∈

muPuwriteureadurPrwriteE EE
Osetrr

E

(1)

()rwriteE is the weighted number of write requests on object O received by r in the

time interval t, ()uread E is the weighted number of read requests on object O

received by u in the time interval t.

(a) (b)

u

m

r1

r2

r_set(O)

u

m

r1

r2

r_set(O)

Fig. 1. Two extreme situations for expansion test and switch test

There are two extreme situations for switch test (Fig.1).
In Fig.1(a), each shortest path between u and replicas of object O will pass through

m. In Fig.1(b), each shortest path between m and other replicas of object O will pass
through u. The compromised switch condition is as follows:

() ()() () () ()() () 0,2, <×+×−×+=∆ muPureaduwritemuPmwritemreadE EEEE (2)

There are two extreme situations for contraction test (Fig.2).

(a) (b)

u

m

r1

r2r_set(O)

u

m

r1

r2
r_set(O)

Fig. 2. Two extreme situations for contraction test

In Fig.2(a), each shortest path between u and other replicas of object O will pass
through m. In Fig.2(b), each shortest path between m and other replicas of object O
will pass through u. The compromised contraction condition is as follows:

508 Y. Wang and K. Yang

() ()() () ()
()

() 0,...,,
_

<×−×+=∆
∈

urPrwritemuPuwriteureadE
Osetrr

EEE

(3)

4 Performance Evaluation

4.1 Influence of Mobility of Nodes on Efficiency of Survival-Time-Based
Dynamic Adaptive Replica Allocation Algorithm

The parameters of test environment are shown in Table 1. We compare STDARA and
algorithm ADR-G [8]. In ADR-G, the spanning tree is build to organize replicas. The
mobility model of nodes is Random Waypoint Mobility Model [9].

Table 1. Parameters of test environment

parameter default value
range of movement 1000m×1000m

number of mobile nodes 50
speed of migration 0m/s ~ 10m/s

direction of migration 0 ~ 2
number of objects 1

interval of algorithm execution 10s
initial number of replica 5

ratio between reads and writes 5:1
initial node power 10×103 J

power consumption model two-ray ground reflection Model (n=4)
antenna Omni-directional Antenna

In Fig.3, the total mobile node power decreased gradually. Compared with
ADR_G, the mean power consumption in STDARA is 35.7% less. In STDARA, the
replica allocation scheme is adjusted according to power consumption, so the power
consumption is reduced greatly, and the survival time of network is extended
evidently.

0

100

200

300

400

500

600

0 100 200 300 400 500 600
Time (s)

T
o

ta
l M

o
b

ile
 N

o
d

e
P

o
w

er
 (

kJ
)

ADR-G

STDARA

Fig. 3. Mobility of nodes

 Research of Survival-Time-Based Dynamic Adaptive Replica Allocation 509

4.2 Relation Between Mobility Models and Efficiency of Survival-Time-Based
Dynamic Adaptive Replica Allocation Algorithm

Three typical mobility models [9] are selected to investigate the relation between
mobility models and efficiency of STDARA. Three mobility models are Random
Waypoint Mobility Model, Random Gauss-Markov Mobility Model and Reference
Point Group Mobility Model, which are denoted as RW, GM and RPG respectively.
The parameters of test environment are shown in Table 1. We observe the influence
of different mobility models with different speed of migration on efficiency of
STDARA.

0

100

200

300

400

500

600

0 100 200 300 400 500 600

Time (s)

T
o

ta
l M

o
b

ile
 N

o
d

e
P

o
w

er
 (

kJ
)

RW : 5~10m/s
GM : 5~10m/s
RPG : 5~10m/s
RW : 0~5m/s
GM : 0~5m/s
RPG : 0~5m/s

Fig. 4. Mobility models

In Random Waypoint Mobility Model (Fig.4), the power consumption difference
between different speeds of migration is little. In Random Gauss-Markov Mobility
Model (Fig.4), the speed of migration influences the power consumption obviously.
The speed of migration is higher, network topology changed more frequently, if the
replica allocation scheme is not adjusted in time, the power consumption will be
increased more greatly. In Reference Point Group Mobility Model (Fig.4), only one
group is selected, the relative movement between nodes is little, the network topology
is relatively stable, thus the replica allocation scheme can be adjusted in time, so the
power consumption will not increased greatly.

5 Conclusion

The power consumption and mobility of nodes are significant characteristic of mobile
ad hoc network. In the survival-time-based dynamic adaptive replica allocation
algorithm, according to the power consumption of nodes, the replica allocation
scheme is adjusted regularly, the replicas are distributed evenly among all the nodes,
thus extend the survival time of network. The results of performance evaluation show
that the survival-time-based dynamic adaptive replica allocation algorithm can reduce

510 Y. Wang and K. Yang

the total power consumption of network greatly and extend the survival time of
network evidently. The relation between mobility models and efficiency of survival-
time-based dynamic adaptive replica allocation algorithm is studied.

References

1. Gruenwald, L., Javed, M., and Gu, M. Energy-Efficient Data Broadcasting in Mobile Ad-
Hoc Networks. In Proc. International Database Engineering and Applications Symposium
(IDEAS '02), July, 2002.

2. Takahiro Hara. Effective Replica Allocation in Ad hoc Networks for Improving Data
Accessibility. Proceeding of IEEE Infocom 2001, 2001, 1568~1576

3. Takahiro Hara. Replica Allocation in Ad hoc Networks with Periodic Data Update.
Proceedings of Int’l Conference on Mobile Data Management (MDM 2002), 2002, 79~86

4. Takahiro Hara. Replica Allocation Methods in Ad Hoc Networks with Data Update. Mobile
Networks and Applications, MONET, 2003, 8(4):343~354

5. Karen H Wang, Baochun Li. Efficient and Guaranteed Service Coverage in Partitionable
Mobile Ad-hoc Networks. IEEE Joint Conference of Computer and Communication
Societies (INFOCOM'02), 2002, 1089~1098

6. Jiun-Long Huang, Ming-Syan Chen, Wen-Chih Peng. Exploring Group Mobility for
Replica Data Allocation in a Mobile Environment, Proceedings of the 12th International
Conference on Information and Knowledge Management, Database Session 3: Data
Management in Mobile Environments, 2003, 161~168

7. Kai Chen, Klara Nahrstedt. An Integrated Data Lookup and Replication Scheme in Mobile
Ad Hoc Networks. Proceedings of SPIE International Symposium on the Convergence of
Information Technologies and Communications (ITCom 2001), 2001, 1~8

8. O Wolfson , S Jajodia , Y Huang . An Adaptive Data Replication Algorithm . ACM
Transactions on Database System , 1997 , 22(4):255~314

9. T Camp , J Boleng , and V Davies . A Survey of Mobility Models for Ad Hoc Network
Research . Wireless Communication & Mobile Computing (WCMC) , Special Issue on
Mobile Ad Hoc Networking , 2002 , 2(5):483~502

Author Index

Bae, Yongeun 172
Bae, Young Lae J. 335
Barner, Kenneth 132
Bo, Cheng 84

Cai, Bin 363
Cai, Zhiping 266, 295
Cao, Jiannong 180
Cao, Qiang 363
Catlett, Charles E. 1
Cheng, Bin 144
Chen, Ling 229
Chen, Yawen 189
Chen, Yifeng 180
Chen, Zhihua 449
Cho, Dong Uk 335
Cho, Joon-Woo 387
Cho, You-Ze 253
Choi, Hyun-Jin 387
Choi, Wan 257
Choi, Young-Soo 253
Chung, Ilyong 172
Chung, Ilyoung 176

Dai, Yafei 487
Défago, Xavier 56
Deng, Dafu 105
Dong, Yisheng 229
Dou, Wenhua 303, 310, 478

Fardis, Masoum 321
Fathy, M. 245
Foster, Ian 2
Furnari, Mario Mango 249

Galily, Mehdi 321
Gang, Sun Zhi 274
Gang, Yang 65
Gao, Guang R. 132
Giordano, Maurizio 249
Gu, Qi 229
Gu, Shangyu 433

Habibipour, Farzad 321
Han, Gun Heui 359

Han, Kun Hee 205
Han, Minghua 478
Hao, Ding 317
He, Feng 22
He, Yanxiang 56, 180
He, Yun 163
Heo, Joon 355
Higham, Lisa 261
Hong, Choong Seon 355
Hong, Jinkeun 470
Hong, Tang 433
Hsieh, Meng-Yen 343
Hu, Kongfa 229
Hu, Meizhi 22
Hu, Ximing 441
Hu, Ziang 132
Huang, Keying 153
Huang, Linpeng 80
Huang, Weitong 213, 221, 278
Huang, Yueh-Min 343

Jeong, Sam Jin 205
Jeong, Yo-Won 417
Jia, Yan 123
Jiang, Weijin 317
Jiang, Wenbin 144
Jie, Jiang 478
Jin, Hai 97, 105, 144

Kan, Yang 503
Kawash, Jalal 261
Khonsari, A. 245
Kim, Jungtae 351
Kim, Kihong 470
Kim, Won Young 257
Koenig, Hartmut 88
Ko, Il Seok 335
Koo, Jae Hyung 327
Kwok, Yu-Kwong 453

Lee, Cheol-Ho 351
Lee, Dong Hoon 327
Lee, Sung-Hyup 253
Lei, Yang 197
Leung, Andrew Ka-Ho 453

512 Author Index

Li, Bin 229
Li, Guoqing 153
Li, Ken-Li 197
Li, Liangjie 22
Li, Liu 72
Li, Minglu 80
Li, Quanlin 32
Li, Ren-Fa 197
Li, Shan-Shan 113
Li, Wei 14
Li, Yajuan 32
Li, Zhishu 449
Liao, Xiang-Ke 113
Lim, Seung-Ho 387, 417
Lin, Chuang 32
Liu, Baohong 310
Liu, Bixin 123
Liu, Dingsheng 153
Liu, Fang 266, 295
Liu, Fuwen 88
Liu, Jin-Yuan 113
Liu, Lin 22
Liu, Qihe 84
Liu, Xianghui 266, 295
Liu, Yongqiang 487
Lu, Liu 303
Lu, Tun 449
Lv, Shaohe 266, 295

Ma, Zhaofeng 405
Mao, Hongyan 80
Matsuzawa, Teruo 461
Meng, Ran 371
Ming, Gu 405
Ming, Zhang Xiao 274
Moon, Jongsub 351

Na, Yun Ji 359
Nam, Young Jin 396
Niu, Yanwei 132

Ould-Khaoua, M. 245

Park, Chanik 396
Park, Kyu-Ho 387, 417

Qiao, Lin 213, 221, 278

Regentova, Emma 285

Safaei, F. 245
Seo, Jung-Taek 351
Seok, Ko Il 359
Shan, Zhiguang 32
Shao, Zhiyuan 144
Shen, Hong 189, 461
Shih, Wen-Chung 48
Shim, Jeong Min 257
Shon, Taeshik 351
Shu, Jiwu 371, 379
Sun, Jiaguang 405

Tak, Dongkil 172
Tang, Yunting 495
Tang, Zhizhong 213, 221, 278
Tan, Yu-Song 113
Tian, Hui 461
Tian, Zhimin 72
Tie, Jing 22
Tseng, Shian-Shyong 48
Tu, Xuping 105

Van, Tien Pham 409

Wang, Binqiang 441
Wang, Li 449
Wang, Yijie 503
Wang, Yuexuan 40
Wang, Ziqiang 238
Wu, Cheng 40
Wu, Gongyi 163
Wu, Guofu 478
Wu, Jie 180
Wu, Qing 495
Wu, Quanyuan 123
Wu, Xiaojun 65
Wu, Yongwei 22
Wu, Yunbo 449
Wu, Yunhai 449

Xiao, Liquan 303, 310
Xiao, Nong 14
Xie, Changsheng 363
Xie, Xianghui 14
Xiong, Naixue 56
Xu, Ke 40
Xu, Yusheng 317
Xu, Zhiwei 14
Xuan, Zhang Min 274
Xue, Wei 371, 379

Author Index 513

Yan, Wei 487
Yang, Chao-Tung 48
Yang, Guowei 84
Yang, Yan 56
Yang, Yang 72
Yazdian, Ali 321
Yi, Zhang 433
Yin, Jianping 266, 295
Yin, Zuoning 97
Youn, Chunkyun 172, 176
Yu, Haiyan 14
Yuan, Quan 97, 105

Zha, Li 14
Zhai, Zhengli 72
Zhang, Chao 97, 105
Zhang, Dexian 238
Zhang, Guangyan 379
Zhang, Haihui 65

Zhang, Heying 303, 310
Zhang, Jianzhong 163
Zhang, Li-Bao 425
Zhang, Tianwen 270
Zhang, Wenyi 153
Zhang, Xingming 441
Zhao, Chucheng 97
Zhao, Guofeng 433
Zhao, Mingyu 270
Zhao, Qi 163
Zhao, Xibin 405
Zhao, Zhengrong 441
Zheng, Jun 285
Zheng, Weimin 22, 379
Zhen, Shangyou 317
Zhi, Guo 405
Zhou, Bin 123
Zhou, Xingshe 65
Zhou, Yan-Tao 197

	Frontmatter
	Special Session on Grid and System Software
	TeraGrid: A Foundation for US Cyberinfrastructure
	Globus Toolkit Version 4: Software for Service-Oriented Systems
	System Software for China National Grid

	Session 1: Grid Computing
	CGSV: An Adaptable Stream-Integrated Grid Monitoring System
	Performance Modeling and Analysis for Resource Scheduling in Data Grids
	Study on π-Calculus Based Equipment Grid Service Chain Model
	A Performance-Based Parallel Loop Self-scheduling on Grid Computing Environments
	A Resource-Based Server Performance Control for Grid Computing Systems
	IBP: An Index-Based XML Parser Model
	A Stochastic Control Model for Hierarchical Grid Service
	Service-Based Grid Resource Monitoring with Common Information Model
	Distributed Gridflow Model and Implementation

	Session 2: Peer-to-Peer Computing
	A Secure P2P Video Conference System for Enterprise Environments
	Adaptive Query-Caching in Peer-to-Peer Systems
	Design and Deployment of Locality-Aware Overlay Multicast Protocol for Live Streaming Services

	Session 3: Web Techniques
	Dynamic Thread Management in Kernel Pipeline Web Server
	QoS Aware Service Composition with Multiple Quality Constraints

	Session 4: Cluster Computing
	Performance Modelling and Optimization of Memory Access on Cellular Computer Architecture Cyclops64
	TCP-ABC: From Multiple TCP Connections to Atomic Broadcasting
	A Parallel File System Based on Spatial Information Object
	Topology-Aware Multi-cluster Architecture Based on Efficient Index Techniques
	A Parallel Routing Algorithm on Circulant Networks Employing the Hamiltonian Circuit Latin Square
	An Efficient Load Balancing Algorithm for Cluster System

	Session 5: Parallel Programming and Environment
	A Greedy Algorithm for Capacity-Constrained Surrogate Placement in CDNs
	An Improved Scheme of Wavelength Assignment for Parallel FFT Communication Pattern on a Class of Regular Optical Networks
	A Parallel {\itshape O}({\itshape n}2<Superscript>7{\itshape n}/8</Superscript>) Time-Memory-Processor Tradeoff for Knapsack-Like Problems
	Improving Parallelism of Nested Loops with Non-uniform Dependences
	A Static Data Dependence Analysis Approach for Software Pipelining
	A Dynamic Data Dependence Analysis Approach for Software Pipelining
	A Parallel and Distributed Method for Computing High Dimensional MOLAP
	An Improved ACO Algorithm for Multicast Routing
	Performance Modelling of Pipelined Circuit Switching in Torus with Hot Spot Traffic
	An Incremental Compilation Approach for OpenMP Applications
	Enhanced Congestion Control Algorithm for High-Speed TCP
	Advanced Software On-Demand Based on Functional Streaming
	Can Out-of-Order Instruction Execution in Multiprocessors Be Made Sequentially Consistent?
	Efficiently Passive Monitoring Flow Bandwidth
	A Heuristic for Scheduling Parallel Programs with Synchronous Communication Model in the Network Computing Environments
	A Formal Model for Network Processor Workload
	Coping with Data Dependencies of Multi-dimensional Array References

	Session 6: Network Architecture
	QoS-Based Dynamic Channel Allocation for GSM/GPRS Networks
	Distributed Active Measuring Link Bandwidth in IP Networks
	Preferential Bandwidth Allocation for Short Flows with Active Queue Management
	A New Self-tuning Active Queue Management Algorithm Based on Adaptive Control
	Research on Multi-agent System Automated Negotiation Theory and Model
	Adaptive Congestion Control in ATM Networks

	Session 7: Network Security
	Secure Password Pocket for Distributed Web Services
	The Modified DTW Method for On-Line Automatic Signature Verification
	A Secure On-Demand Routing with Distributed Authentication for Trust-Based Ad Hoc Networks
	Probabilistic Packet Filtering Model to Protect Web Server from DDoS Attacks
	An Identity Authentication Protocol for Acknowledgment in IEEE 802.15.4 Network
	A Design of the Digital Content Distribution System Based on the Public Key and the Hierarchical Web Caching Structure

	Session 8: Network Storage
	Cluster-Aware Cache for Network Attached Storage
	Design and Implementation of a SAN Agent for Windows NT Architecture
	MagicStore: A New Out-of-Band Virtualization System in SAN Environments
	A Content Delivery Accelerator in Data-Intensive Servers
	A Systematic Scheme to Resolve QoS Dissatisfaction for Storage Cluster
	Secure Anonymous Communication with Conditional Traceability

	Session 9: Multimedia Service
	Real-Time Video over Programmable Networked Devices
	A New Raid-Disk Placement Method for Interactive Media Server with an Accurate Bit Count Control
	A New Region of Interest Image Coding for Narrowband Network: Partial Bitplane Alternating Shift
	Using Route Probing to Derive Link Traffic Load with Edge-Based Measurements
	Scheduling Multicast Traffic in a Combined Input Separate Output Queued Switch
	A QoS-Based Scheduling Mechanism for Overlay Aggregate Traffics

	Session 10: Ubiquitous Computing
	Energy Conservation by Peer-to-Peer Relaying in Quasi-Ad Hoc Networks
	Developing Energy-Efficient Topologies and Routing for Wireless Sensor Networks
	The Efficient Transmission Scheme in Wireless Crypto Communication
	Constructing {\itshape k}-Connected {\itshape k}-Cover Set in Wireless Sensor Networks Based on Self-pruning
	GCMPR: Gateway-Centric Multi-path Routing for Internet Connectivity of Wireless Mobile Ad Hoc Network
	A Semantic and Adaptive Context Model for Ubiquitous Computing
	Research of Survival-Time-Based Dynamic Adaptive Replica Allocation Algorithm in Mobile Ad Hoc Networks

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

